
Articles
https://doi.org/10.1038/s41587-022-01211-7

1Department of Computational Biology, Cornell University, Ithaca, NY, USA. 2Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 
USA. 3Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA. ✉e-mail: jonhlis@cornell.edu; haiyuan.yu@cornell.edu

Regulation of transcription is a synergetic process requiring 
both trans-regulatory factors, such as transcription factors, 
and cis-regulatory elements, like promoters and enhancers. In 

contrast to promoters, which initiate transcription in their proxi-
mal regions to produce stable RNA products, enhancers regulate 
their target gene(s) distally. Certain epigenomic signatures (enrich-
ment of H3K4me1 and H3K27ac, high chromatin accessibility and 
CBP/p300 binding) are considered to be defining features of active 
enhancer loci1,2. However, studies also reveal that enhancers could 
themselves produce relatively short-lived divergent transcripts, 
called eRNAs3,4. More recent studies further showed that distal 
divergent transcription events are more reliable marks for active 
enhancers than epigenomic signatures5,6. Recently we proposed7,8—
and later experimentally verified6—the basic unit of active enhanc-
ers that are defined by the TSSs of the divergent eRNA transcription 
and are delimited by the promoter-proximal RNA polymerase II 
(Pol II) pause sites flanking these TSSs. Therefore, to identify active 
enhancers genome wide it is critical to detect eRNAs and their TSSs 
with high sensitivity and specificity.

Enhancer RNAs are usually in extremely low abundance in 
cells due to their short half-life. Therefore, conventional RNA-seq 
experiments capture eRNAs with very low efficiency3. Recently, two 
categories of genome-wide RNA-seq assay have been developed, 
focusing on either TSSs or the actively transcribing polymerase posi-
tions (Fig. 1a). We named eight assays (GRO9/PRO-cap10, CoPRO8, 
Start-seq11, CAGE12, RAMPAGE13, NET-CAGE14, csRNA-seq15 and 
STRIPE-seq16) from the former category as TSS assays, because 
these assays enrich for active 5′ TSSs of promoters and enhanc-
ers (Fig. 1a). We also named five assays (GRO-seq17, PRO-seq10, 
mNET-seq18, Bru-seq19 and BruUV-seq20) from the latter category 
as nascent transcript (NT) assays, because they are designed to 
trace the elongation or pause status of polymerases and capture 

their products (Fig. 1a). To enrich for RNA populations of interest 
these assays implement various experimental strategies, including 
nuclei/chromatin isolation8–11,18, nuclear run-on8–10 and metabolic 
labeling19,20 with biotin- or bromo-tagged nucleotides and affinity 
purification, Pol II immunoprecipitation18, size selection15,16 and 
enzymatic elimination of non-capped RNAs8–10,16, or chemical tag-
ging of capped RNAs12–14. We summarize the key experimental steps 
of both TSS and NT assays in Fig. 1b. In fact, the list of all assays 
compared here, plus total RNA-seq21,22, have all been used in some 
capacity to identify enhancer elements. However, considering that 
most of these assays are not specifically designed to capture eRNAs, 
caution should be exercised when exploiting these assays and their 
data to identify active enhancers.

Because these assays were initially designed for different pur-
poses, various computational tools were developed for exploring 
and interpreting the raw experimental data—for example, Tfit23, 
dREG24,25 and dREG.HD26 were developed to identify transcrip-
tional regulatory elements (TREs) from some NT assays, includ-
ing GRO-seq and PRO-seq; FivePrime27 (based on paraclu28), 
GROcapTSSHMM7 and HOMER15 were introduced for analysis of 
data from CAGE, GRO-cap and csRNA-seq, respectively. While all 
these tools can potentially be used to identify eRNA transcription 
and active enhancers, there has not been a systematic evaluation 
and comparison of their performance with datasets generated by 
the aforementioned experimental assays.

In this study we systematically examined 13 experimental assays, 
including seven TSS assays, five NT assays and total RNA-seq (as 
the outgroup), in terms of their sensitivity and specificity for cap-
turing eRNAs. We also developed a computational tool, PINTS, 
which is designed to identify enhancer candidates from these 
assays. Moreover, by comparison of PINTS with eight other widely 
used computational tools, we found that PINTS gave the highest 
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overall performance pertaining to robustness, sensitivity and speci-
ficity, especially when analyzing data from TSS assays. Finally, we 
constructed a comprehensive enhancer candidate compendium 
for 120 cells and tissues using the robust and unified definition of 
active enhancers based on detected eRNA TSSs genome wide5–7, 
and developed an online web server (https://pints.yulab.org/) to 
navigate, prioritize and analyze enhancers based on a wide range of 
genomic and epigenomic annotations. We expect that our enhancer 
compendium will become a valuable resource to the research com-
munity for the effective selection of candidate enhancers for further 
functional characterization.

results
TSS assays are more sensitive in regard to eRNA detection. To 
perform a quantitative comparison of eRNA detection sensitiv-
ity, we first normalized all libraries by downsampling them to 
the same sequencing depth as the library with the lowest depth 
(18.9 million mappable reads; Supplementary Table 1). We then 

compared the assays’ sensitivity by examining their coverage in 
803 (635 intergenic, 113 intronic and 55 others) previously iden-
tified bona fide enhancers validated by CRISPR–Cas9-mediated 
deletion and CRISPR interference (CRISPRi) in K562 cells29–37 
(CRISPR-identified enhancer set, Methods and Supplementary 
Table 2). With the same sequencing depth, GRO-cap ranks first in 
sensitivity: it covers 86.6% of CRISPR-identified enhancers (70.4% 
divergent: ≥five reads detected from both strands, and 16.2% uni-
directional: ≥five reads detected only on one strand; Fig. 2a and 
top track in Extended Data Fig. 1a). csRNA-seq is in second place, 
with 73.7% (47.3% divergent and 26.4% unidirectional) coverage 
of these validated enhancers (Fig. 2a and Extended Data Fig. 1a). 
We re-evaluated the sensitivity of the 13 assays using another set 
of reference enhancers (previously validated by massively parallel 
reporter assay (MPRA)38–42 and self-transcribing active regulatory 
region sequencing (STARR-seq)6,43–45), and the results remained 
the same (Extended Data Fig. 1a, bottom). Furthermore, to test 
the robustness of our conclusion, we also evaluated the sensitivity 
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Fig. 1 | comparison of currently available assays for detection of erNAs. a, Schematics of enhancer and promoter/gene transcription by RNA Pol II (left) 
and characteristic profiles of TSS and NT assays (right, area shaded light blue). Black lines represent genomic DNA; nascent RNAs are denoted by purple 
curved lines with 5′ and 3′ ends colored blue and red, respectively, and gray spheres as caps and yellow ovals indicating RNA Pol IIs. Arrows indicate the 
direction of sequencing reads, TSS assay in blue and NT assay in red. Representative read density profiles are colored blue or red for TSS and NT assays, 
respectively. CPS, cleavage polyadenylation site; TTS, transcription termination site. b, Enrichment strategies used in different TSS and NT assays. TEX, 
terminator exonuclease; UVC, ultraviolet C; PD, pyrimidine dimer. A detailed description is available in Supplementary Notes.
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of eight assays with data available for another cell line, GM12878, 
using STARR-seq-identified enhancers as reference6,46. As with K562 
(Extended Data Fig. 1a), GRO-cap was the most sensitive assay for 
detection of active enhancers in GM12878 (Extended Data Fig. 1b).

We further evaluated the sensitivity of these assays by their abil-
ity to capture unstable transcripts. eRNAs are usually less stable 
than messenger RNAs, and this was the case seen here by compar-
ing decay rates of transcripts47 from 514 CRISPR-identified enhanc-
ers to mRNAs (P value from two-sided Mann–Whitney U-test 
<10−10; rank-biserial correlation, 0.442). We then used as the cutoff 
between stable and unstable transcripts the 95th quantile of decay 
rates of mRNAs and surveyed the distribution of read counts cap-
tured in the two categories among all assays. Consistent with our 
conclusion above, GRO-cap showed the smallest differences in 
read coverage between stable and unstable transcripts (Cohen’s d, 
−0.003; 95% confidence interval (CI) (−0.033, 0.023)), indicating 
that assays using nuclear run-on followed by cap selection have the 
greatest ability to enrich unstable transcripts, which is of particular 
importance in detection of eRNAs (Fig. 2b and Extended Data Fig. 
1c). We evaluated the effects of technical artifacts, including strand 
specificity and mispriming, and our results suggest that all libraries 
have high strand specificity (average, 0.984; s.d., 0.019; Extended 
Data Fig. 2a–c) and low internal priming rates (Supplementary 
Notes and Extended Data Fig. 2d,e).

Cap selection or Pol II pausing does not bias eRNA capture. 
Assays enriching for capped RNAs showed an advantage in detec-
tion of eRNAs (Fig. 2a,b). Because not all eRNAs are necessarily 
capped, we wanted to assess whether the fraction of capped eRNAs 
would influence these quantifications of eRNAs. To address this 
concern we reanalyzed a previously published dataset6, where librar-
ies were prepared with input RNAs preselected for different capping 
states (capped, uncapped and unselected), and we assessed the abili-
ties of these libraries to detect CRISPR-identified enhancers. The 
difference among libraries prepared with three different inputs is 
minimal: there is a ~97% overlap between the library prepared with 
capped RNAs and that with unselected RNAs. Therefore, we con-
sider the bias in enhancer detection as negligible when enriching for 
capped RNAs (Extended Data Fig. 2f,g and Supplementary Notes).

Another concern about run-on assays is whether paused poly-
merases can efficiently resume elongation. A previous study in 
Drosophila showed that sarkosyl treatment could unleash paused 
polymerases and allow for efficient elongation of nascent RNAs 

that correlated with Pol II levels as measured by chromatin immu-
noprecipitation sequencing (ChIP–seq)48. Here, we calculated the 
correlation coefficient of promoter reads detected by PRO-seq and 
POLR2A ChIP-exo49 associated with paused Pol IIs in human K562 
cells and found little difference, indicating that paused Pol IIs elon-
gate efficiently in run-on assays (Extended Data Fig. 2h).

Gene body reads in NT assays contribute to lower sensitivity. For 
the two families of assays that we compared in this study, we noticed 
that TSS assays are generally more sensitive in detection of eRNAs 
than NT assays, even for assays that use very similar enrichment 
strategies (Fig. 1b). For instance, while both GRO-cap and PRO-seq 
employ similar nuclear run-on procedures, there is a 41.3% differ-
ence between their divergent coverage of the CRISPR-identified 
enhancer set (Fig. 2a). When inspecting the genome-wide distri-
bution of reads (Fig. 3a and Extended Data Fig. 3a), we noticed 
that NT assays have significantly higher proportions of reads aris-
ing from gene body regions (mean of NT assays, 65.6%; mean of 
TSS assays, 13.0%; P value derived from two-sided Mann–Whitney 
U-test, 0.003), which is not surprising as they are designed to reveal 
all actively transcribing RNA polymerases whereas TSS assays are 
specifically designed to identify TSSs. Because eRNA transcription 
is, on average, much lower than that of genes7, such a high portion 
of gene body reads in NT assays dilutes the signal from eRNAs and 
substantially lowers their sensitivity in regard to detection of active 
enhancers. As shown in Fig. 3b, NT assays detect a substantial num-
ber of reads in the FAM89A gene body whereas TSS assays have 
reads in only the promoter regions of the FAM89A gene. As a result, 
almost all NT assays (except PRO-seq) have no discernable signal at 
a distal enhancer locus near the FAM89A gene that was validated by 
CRISPRi34 (Fig. 3b). Another potential problem regarding NT assays 
is that reads that are mapped to intergenic or intronic regions could 
be derived from either eRNAs, the unprocessed precursors of RNAs 
from other categories (for example, pre-mRNAs) or read-through 
from an upstream transcription event (Extended Data Fig. 3b), 
which further reduces their sensitivity in detection of eRNAs.

Most RNA transcripts in living cells belong to the families of 
highly abundant RNAs—for example, ribosomal RNAs and small 
nuclear RNAs. When capturing eRNAs with sequencing-based 
methods, a successful exclusion of RNAs of these high-abundance 
families from the sequencing libraries during the preparation process 
can greatly enhance the efficiency and sensitivity of eRNA identifi-
cation. We compiled a comprehensive list of high-abundance RNAs 
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in human cells by incorporating annotations from GENCODE50, 
RefSeq51 and RMSK52. Based on this list, an average of 7.12% of the 
mappable reads in each assay originated from rRNAs despite most of 
the assays employing strategies to reduce rRNA inclusion (Extended 
Data Fig. 3c). By simulating an rRNA-depleted BruUV-seq library, 
we found that complete depletion of rRNAs could contribute to a 
1.76-fold boost in detection of eRNAs (Extended Data Fig. 3d).

When the assay specifically enriches for short transcripts, like 
csRNA-seq, a relatively large proportion (31.5%) of mappable reads 
were found to have originated from snRNAs (Extended Data Fig. 
3c). Detection of such a disproportionally large fraction of snRNAs 
suggests potential contamination in the sequencing library from 
the splicing intermediates. To test this possibility, we calculated 
signal density at all splice sites in the human genome according to 
GENCODE annotation (release 24, comprehensive version)50. As 
shown in Extended Data Fig. 3e, csRNA-seq detected more signals 
at the splicing junctions than all the other assays.

TSS assays, especially GRO-cap, have higher specificity. While 
genomic regions with detectable transcriptional events account for 
75% of the human genome53, many of these events are considered to 
be spurious transcriptional noise54,55 because of their extremely low 
transcript yields compared to mRNAs and the intrinsic promiscuity 
of RNA Pol II under certain circumstances56. Therefore, it is criti-
cal to detect and differentiate reads that originated from spurious  

transcription in these assays. To that end, we collected non-enhancer 
loci from eight MPRA38–42 and STARR-seq6,43,44 studies and fur-
ther removed elements overlapping with predicted enhancer-like 
sequence (ELS) or promoter-like sequence (PLS) from candidate 
cis-regulatory elements (cCRE) annotations57 to generate a set of 
7,097 loci (referred to as the ‘non-enhancer set’; Methods, Extended 
Data Fig. 4a and Supplementary Table 3). We observed that signal 
intensities in the CRISPR-identified enhancer set are often higher 
than those in the non-enhancer set (Fig. 3c and Extended Data 
Fig. 4b; all with P values from two-sided Mann–Whitney U-test 
<10−10), with GRO-cap having the highest signal-to-noise ratio 
(64-fold enrichment; Fig. 3c and Extended Data Fig. 4b for K562 
and Extended Data Fig. 4c for GM12878).

We also calculated the false discovery rate (FDR) for each assay 
based on the overlap of their reads with both the CRISPR-identified 
enhancer and non-enhancer sets. We found that TSS assays gener-
ally have lower FDR than NT assays (TSS assay mean, 0.232 ver-
sus NT assay mean, 0.544; P value from two-sided Mann–Whitney 
U-test 2.0 × 10−5; Fig. 3d and Extended Data Fig. 4d), with assays 
enriching for capped and short RNAs having the lowest FDR (mean, 
0.083; s.d., 0.007).

PINTS. Two categories of tools are currently available to process 
data generated by RNA-seq assays. Tools in the first category predict 
entire transcription units and are primarily used for NT assays, for 
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example, HOMER (GRO-seq)58 and groHMM59, to determine the 
start and end positions of transcription units (Extended Data Fig. 
5a). Tools in the second category usually identify narrower regions 
for potential regulatory elements (mainly promoters and enhancers, 
often referred to as peak callers) and include GROcapTSSHMM7, 
dREG24, Tfit23, dREG.HD26, TSScall11, HOMER (csRNA-seq)15 and 
FivePrime27 (based on Paraclu28). Based on previous studies, the 
peak of divergent TSSs, which is associated with eRNA transcrip-
tion, is an effective mark for active enhancers5,6. Therefore, in this 
comparative study, we focused on the second category of computa-
tional tools.

To achieve higher resolution in identification of transcriptional 
regulatory elements, a common practice is to look only at the ends 
of captured transcripts. Two critical issues emerge when evaluat-
ing the statistical significance of peaks (that is, TSSs), especially for 
TSS assays. First, when considering only transcript ends the fraction 
of zeros (no mapped reads per base pair) in the local background 
increases, which deflates read density in the local background 
and thus inflates the statistical significance of candidate TSSs and 
results in false positives. Second, multiple TSSs can localize in close 
proximity in the genome and therefore inflate the estimation of 
read density in the local background, resulting in diminished sta-
tistical significance for all TSSs in that locus and leading to false 
negatives in TSS detection. To address these issues, we developed 
PINTS, which uses zero-inflated Poisson models to evaluate local 
read densities and employs interquartile range (IQR)-based refine-
ment to ameliorate false negatives by conditional masking of candi-
date TSSs in the local background (Extended Data Fig. 5b). PINTS 
was inspired by MACS2 (ref. 60), with modifications specifically 
implemented for identification of eRNA TSSs from genome-wide 
TSS assays. After evaluation of the significance of each TSS, PINTS 
defines TREs as divergent TSS pairs that are within 300 base pairs 
(bp) of each other, as suggested by previous studies6,8 (Extended 
Data Fig. 5b and Methods). We identified candidate enhancers as 
distal TREs >500 bp away from known protein-coding gene TSSs6.

Peak callers vary in resolution and computational needs. 
Candidate enhancer loci identified by different algorithms should 
share the same features as CRISPR-identified enhancers with 
characteristic epigenomic marks (DHS, H3K27ac, H3K4me3 
and H3K4me1) and transcription factor (CBP/p300, GATA1 
and CTCF)-binding sites. Indeed, we found that candidate 
enhancers identified by most tools recapitulate these features of 
CRISPR-identified enhancers (Fig. 4a,b and Extended Data Fig. 6a). 
However, the patterns of epigenomic marks and transcription fac-
tor binding sites of candidate enhancers identified by MACS2 (ref. 
60), a widely used peak caller for analysis of ChIP–seq data, are dis-
tinct from those of CRISPR-identified enhancers, suggesting that 
the default peak-shifting model of MACS2 may not be suitable for 
identification of eRNA TSSs of active enhancers (Supplementary 
Notes and Extended Data Fig. 6b).

We further surveyed the size distribution of these elements as 
an indication of peak-calling resolution. We found that PINTS, 
GROcapTSSHMM, Tfit and TSScall achieved higher resolution 
(average peak size of 185–300 bp) than other tools in analysis of TSS 
assay data (Fig. 4c and Extended Data Fig. 6c). Notably, peaks called 
by dREG.HD and MACS2 ranged between 548 and 751 bp in size, 
whereas those of dREG, FivePrime and HOMER ranged between 
381 and 460 bp.

The amount of computational resources required by a peak caller 
greatly affects its general applicability. Here, we compared the total 
amount of central processing unit (CPU) time and peak memory 
usage required by each tool for identification of divergent elements 
from TSS assays (Fig. 4d,e). Based on our calculation, it is feasible 
to run PINTS, MACS2, HOMER, GROcapTSSHMM, TSScall and 
FivePrime on a typical personal computer.

PINTS achieves high overall performance for TSS assays. A com-
mon task in functional studies of enhancers is to compare active 
enhancers across different conditions and diseases21,22, which 
requires that in silico enhancer-predicting tools be robust against 
biological and experimental variances. To test the upper bound of 
robustness for the aforementioned tools, we performed peak calling 
using these tools on datasets from 12 assays by aligning each dataset 
to two commonly used builds of the human reference genome: hg19 
and hg38. Because there is no variation in the sequencing datasets 
themselves and the two reference genome builds are very similar61 
(Extended Data Fig. 7a), we expected that differences in peak calls 
using these two different genome builds would be minimal across 
all datasets. We found that by simply changing the reference genome 
builds, half have a Jaccard index <0.9 for at least one assay (Fig. 
4f). Furthermore, we noticed that Jaccard indices were even lower 
when we tried to evaluate robustness across real technical and bio-
logical replicates (average, 0.507; s.d., 0.246), especially for TSScall 
and FivePrime, where their robustness was only 0.401 (s.d., 0.104) 
and 0.384 (s.d., 0.203), respectively (Extended Data Fig. 7b). PINTS 
consistently showed a high level of robustness in both cases (aver-
age 0.976, s.d. 0.008 between genome builds; and average 0.728, s.d. 
0.052 across replicates).

To evaluate sensitivity and specificity, two key performance 
metrics, we merged the CRISPR-identified enhancer set with the 
promoter regions from GENCODE v.24 (ref. 50) as the positive set 
and non-enhancer loci as the negative set (Methods and Extended 
Data Fig. 8a). We then evaluated each tool’s performance for all 
TSS assay datasets (Fig. 4g). The results show that PINTS achieved 
the best balance between sensitivity and specificity (PINTS mean 
area under the curve (AUC) 0.780, s.d., 0.082; mean AUC for the 
second-best tool (dREG) 0.652, s.d. 0.109). Moreover, when we com-
pared the performance of all available tools on sparsely sequenced 
libraries (with 18.9, 15 and 10 million mappable reads), PINTS still 
outperformed the other tools (Extended Data Fig. 8b–d). When 
evaluating unique TREs identified by PINTS, we noticed enrich-
ments in epigenomic marks (H3K27ac and H3K4me1; Extended 
Data Fig. 9a) and motifs for both enhancer-activity-related and 
cell-type-specific transcription factors (Extended Data Fig. 9b). For 
all of these computational tools we summarize their key require-
ments, main characteristics and applicability to different RNA-seq 
assays in Extended Data Fig. 10.

An enhancer compendium for human cell and tissue types. 
Previous studies have shown that, compared with histone marks, 
detection of enhancers by divergent eRNA TSSs has advantages 
in both resolution and specificity5,6. Introducing an eRNA-centric 
enhancer compendium, in addition to all available enhancer datasets 
based on histone marks57,62, will be an invaluable resource to better 
understand gene regulation, to functionally annotate the noncod-
ing genome and to help prioritize noncoding variants across disease 
cohorts by their potential impact on enhancer activities63. Toward 
this goal, we applied PINTS to identify candidate enhancers using 
TSS assay datasets (that is, GRO/PRO-cap, CoPRO, csRNA-seq, 
NET-CAGE, RAMPAGE, CAGE and STRIPE-seq) across 33 cell 
lines, seven in vitro differentiated cells, 35 primary cells and 45 tis-
sue samples, including all available TSS assay datasets through the 
ENCODE portal (Fig. 5a). Such a comprehensive catalog of enhanc-
ers across a wide range of human cells and tissues analyzed by the 
same exact computational pipeline provides an excellent resource to 
perform meaningful comparative genomic analyses for studying the 
dynamics of enhancers and gene regulation in general, which will 
help focus on true biological differences while minimizing technical 
variations. In addition, for seven human cell lines (K562, GM12878, 
HepG2, HeLa-S3, MCF-7, H9 and HCT116) we applied all other 
available tools (FivePrime, HOMER, TSScall, dREG, dREG.HD and 
Tfit) to identify candidate enhancers. We believe that this unique 
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resource of enhancers in seven cell lines, with multiple TSS assay 
datasets analyzed by all available computational tools, will greatly 
help further studies of enhancers and their key architecture char-
acteristics. All of these candidate enhancer calls are made publicly 
available through our web server (https://pints.yulab.org) and are 
described in detail below. We will regularly update our enhancer 

compendium as new datasets, especially those for new cell lines or 
samples, and assays become available.

In human K562 cells where datasets were available from all TSS 
assays, our results show that GRO-cap has by far the highest num-
ber of distal TREs (19,006 identified by PINTS, with 9,531 unique 
enhancer calls not identified by any other assay); the second-best 
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dataset, csRNA-seq, has only 14,375 enhancer calls with 5,048 unique 
(Fig. 5b). This is not surprising given that GRO-cap showed the 
highest sensitivity in detection of eRNA transcription (Fig. 2a,b), 
and the GRO-cap dataset has the third-highest read depth (Fig. 5b). 
We selected three CRISPRi-validated enhancer–promoter pairs34 to 
visualize these differences, and show the variety in signal abundance 
across different datasets (Fig. 5c–e). For example, the enhancer that 
regulates the JUND gene (Fig. 5c) has reasonable accessibility and is 
supported by epigenomic marks, including H3K27ac and H3K4me1. 
As expected, all four TSS assays could identify this enhancer. The 
expression levels of enhancers are not necessarily proportional to 
those of epigenomic marks and, for eRNAs whose expression levels 
are lower (for example, the enhancer that regulates FTH1 in Fig. 
5d), assays that are more effective in capturing unstable transcripts 
are more likely to recover them. Finally, for the enhancer regu-
lating TMA16, signals from histone marks are quite minimal but 

GRO-cap still captured clear signals of eRNA transcription at this 
locus, enabling the identification of this enhancer (Fig. 5e).

PINTS web server for exploration and analysis of enhancers. 
To make it easier for biologists to explore the tens of thousands of 
candidate enhancers in our compendium, and to prioritize these 
enhancers for further studies, we constructed an online web server 
(https://pints.yulab.org) where users can query any human genomic 
region of interest in a given biological sample to obtain a compre-
hensive list of candidate enhancers detected by any available TSS 
assays in that sample using any of the eight peak callers (PINTS, 
dREG, dREG.HD, FivePrime, GROcapTSSHMM, HOMER, Tfit 
and TSScall). We have also included detailed annotations for each 
candidate enhancer, including epigenetic features57, core promoter 
elements64, potential transcription factor binding sites65 and the 
presence of population variants and ClinVar mutations66 (Fig. 6). 
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Users can prioritize enhancers by requiring the joint presence of 
specific annotations. For transcription factor binding site analysis, 
our web server will automatically integrate the information from 
available RNA-seq data to include only factors expressed in the 
selected sample.

Furthermore, users can upload their own enhancer calls in a 
human cell line or tissue; our web server will automatically annotate 
all of their enhancer calls with the same pipeline as described above. 
We have integrated epigenomic features and RNA-seq data for 
197 human-derived biosamples from the ENCODE project in our 
web server. For user-uploaded enhancer data in these samples, we 

automatically refine our annotations by reporting only binding sites 
of expressed transcription factors and associating each enhancer 
with epigenomic features specific to the corresponding sample.

Users can explore all annotations of their selected enhancers 
via our integrated genome browser; alternatively, they can readily 
export all annotations in plain text format for downstream analyses.

Discussion
Enhancer RNAs are increasingly recognized as a critical marker 
for active enhancers genome wide5,6; however, the optimal strat-
egy (both experimental assays and their analytical pipelines) for 
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detection of eRNAs and thus identification of enhancer loci has not 
been critically evaluated. In this study we systematically compared 
13 in vivo genome-wide RNA-seq assays in K562 cells and showed 
that TSS assays are in general more sensitive than NT assays in the 
detection of eRNAs, because signals will not be diluted by active 
transcription in gene bodies. One additional and critical advantage 
of TSS assays is that they reveal the precise location of eRNA TSSs, 
allowing for high-resolution detection and delimitation of enhancer 
loci genome wide, as demonstrated in our recent work6. Overall, our 
results show that GRO/PRO-cap has the best overall performance 
in detection of active enhancers in terms of both sensitivity and 
specificity. Thus, for fresh cells and tissue specimens, or in samples 
with high RNA quality, we recommend GRO/PRO-cap based on 
our observations in this study. Because run-on cap assays require 
an enzymatically active RNA polymerase and cap structure, other 
TSS assays (for example, FFPEcap-seq67) or certain NT assays18 may 
perform better on samples where these requirements cannot be met 
(for example, for paraffin-embedded, formalin-fixed samples).

We noticed that, when using current computational tools to 
identify TREs from various RNA sequencing datasets, minor 
changes in sample processing could lead to changes of up to >20% 
in the final results, which brings the robustness of the peak calls into 
question. To address this issue we introduced a computational tool, 
PINTS. Our benchmarks indicate that PINTS achieves the optimal 
balance among robustness, applicability, sensitivity and specificity, 
especially for TSS assays capable of detecting the precise location of 
eRNA TSSs.

In this study we used CRISPR–Cas9- and CRISPRi-validated 
enhancers29–37 as the positive reference set, and MPRA/STARR-seq 
negative segments6,38–44 as non-enhancers. Although these two sets 
show quite different epigenomic profiles (Extended Data Fig. 4a), 
which indicates that our non-enhancer set is depleted of true enhanc-
ers, there may still be a few false negatives in the non-enhancer set. 
This is because, in published MPRA/STARR-seq datasets, only a 
very small number of promoters was used to test all candidate ele-
ments but some enhancers might not work with these promoters. 
Furthermore, some tested elements might be truncated due to either 
synthesis limitations (<200 bp) or random fragmentation of the 
genome. However, such cases are not expected to affect our relative 
ranking of different assays and thus will have minimal impact on 
our conclusions. We also note that the features defining enhancers 
and non-enhancers, both at structural and functional levels, are still 
a work in progress and, while it appears that the vast majority of 
active enhancers are transcribed, an accurate estimation of the frac-
tion of enhancers that can initiate transcription remains unknown.

Furthermore, we provide a detailed, comprehensive human 
enhancer compendium with a unified definition6,7 of enhancers 
based on the detected divergent pairs of eRNA TSSs. Such a robust, 
unified and comprehensive catalog of enhancers across 120 cell 
types and tissues is expected to shine a light on the mechanism of 
gene regulation and architectural details of enhancers in general. 
The precise definition of enhancer element boundaries afforded by 
TSS assays like PRO/GRO-cap would alleviate potential concerns 
regarding whether full-length enhancer elements are selected and 
tested in follow-up functional studies, and thus improve coverage 
of elements by elimination of incomplete or ill-defined candidates. 
Such a well-defined catalog of enhancers also provides an invaluable 
resource for follow-up studies to better understand the similarities 
and key differences in gene regulation across various tissues and 
conditions, and to identify key enhancers whose malfunctions can 
lead to specific disorders.
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Methods
Data preprocessing. All datasets were managed and analyzed with BioQueue68 
(accession numbers for these datasets are available in Supplementary Table 1). 
Raw reads were preprocessed with fastp69 for adapter trimming. Only reads 
>14 bp were kept for downstream analyses. All processed reads from RNA 
assays were aligned using STAR70 to primary assemblies of human reference 
genome hg38 (GCF_000001305.15) together with ribosomal DNA (U13369.1), 
with the parameters as–outSAMattributes All–outSAMmultNmax 1–
outFilterMultimapNmax 50. For studies using Drosophila cells, or other specific 
samples as spike-ins, either the Drosophila reference genome (dm6) or the 
corresponding reference sequences used in the original studies were incorporated 
into the index (details available in Supplementary Table 1). To measure the 
robustness of peak prediction, we also mapped reads to primary assemblies of 
human reference genome hg19 (from the University of California, Santa Cruz 
(UCSC); sequences from alternative loci/haplotypes were removed in the same way 
as for hg38). Reads from DNA assays were aligned and processed using bwa71 and 
samtools72 with default parameters.

Determination of read coverage among reference regions. Sequencing reads 
of replicates for the same assay were merged and downsampled to the same 
sequencing depth (the same number of mappable reads) three times using picard 
with the parameter STRATEGY = Chained. These downsampled data were then 
converted to bed files to calculate the fraction of overlap between sequencing reads 
and reference regions in a strand-specific manner.

Classification of transcription units as stable and unstable units with TT-seq. 
Transcript annotations derived from transient transcriptome sequencing (TT-seq; 
GSE75792 (ref. 47)) were downloaded from the GEO database. Transcription units 
with any missing values were discarded. The 95th quantile of estimated decay rates 
for mRNAs was used as the cutoff between unstable (above the cutoff) and stable 
(below the cutoff) transcription units.

Characterization of the genome-wide distribution of reads. The entire genome 
was classified into four categories based on the annotations in GENCODE v.24 
(ref. 50): exonic and intronic regions were defined as in GENCODE, except that any 
region with overlapping intronic and exonic annotation was considered as exonic; 
the 500-bp regions flanking annotated transcription start sites of protein-coding 
transcripts were annotated as promoters, while all other regions were considered 
as intergenic. Sequencing reads of various assays were assigned to the categories 
of promoters, introns, exons or intergenic regions (in the exact order) if they were 
aligned to the corresponding annotated regions in the genome.

Identification of sequencing reads from splicing intermediates. The exact or 
approximate positions of transcript termini were inferred from the read ends, 
and the abundance of their corresponding transcripts was normalized as reads 
per million (RPM) for this analysis. A list of annotated splice junctions and their 
200-bp flanking regions in the human genome was compiled based on GENCODE 
v.24 (ref. 50). For each assay, we iterated through this list and recorded normalized 
read counts at each position. In Extended Data Fig. 3e, both the average of signals 
and the 95% CI (estimated by bootstrap) of averages are reported.

Compiling the reference sets. The experimentally quantified enhancer activity of 
various DNA elements was collected from previous studies (enhancers: 938 from 
CRISPR31 or CRISPRi29,30,32–37; non-enhancers: 20,941 from STARR-seq6,43,44 and 
17,462 from MPRA38–42). Overlapping elements within the same category were 
merged until the resulting elements overlapped with elements in the other category. 
Non-enhancer loci were excluded in the final set if (1) they were <250 bp; (2) they 
overlapped with PLS or ELS predicted by cCRE57; or (3) they overlapped with 
potential promoters (1-kb regions flanking TSSs in GENCODE). When selecting 
MPRA-38–42 and STARR-seq-6,43–45 identified enhancers in K562, we required 
supporting data from at least two independent studies to ameliorate the inclusion of 
false-positive enhancers resulting from orientation bias (STARR-seq) or promoter 
activity (MPRA). For GM12878, to ameliorate false positives caused by orientation 
bias only orientation-independent enhancer calls from HiDRA were used6,46.

Calculation of FDR for assays. multiBamSummary73 was used to generate tables 
of read counts across the genome in 500-bp bins. For each assay, bins were ranked 
by counts in them, with the top n bins considered as true signals from the assay 
(four cutoffs were tested: 5,000, 10,000, 20,000 and 100,000; Extended Data Fig. 
4d). If a bin overlapped with a locus in the CRISPR-identified enhancer set, that 
bin was considered a true positive (TP); if a bin overlapped with a locus in the 
non-enhancer set, it was considered a false positive (FP). FDR was calculated as:

FDR =

∑

FP
∑

TP +
∑

FP

PINTS. Briefly, read ends were separated based on their mapping directions on the 
reference genome (forward or reverse), and read counts were binned into 100-bp 

windows. Adjacent windows with reads available were merged to avoid splitting 
of potential TRE elements. Within each window, the algorithm first finds peak 
seeds using a prominence-based approach. Then with a maximum-scoring pairing 
strategy28, nearby seeds will be merged as peak candidates if density (D) after 
merging meets the following condition:

Dmerged ≥ α × min({Dseed1, Dseed2})

The default value for α is 1, and PINTS resolution can be further fine-tuned by 
incorporating reference annotations. For example, when the transcript annotation 
is available, PINTS will try to avoid overlap of peak candidates with more than  
one transcript.

Next, to address the increased sparsity of signals when only the read ends 
are taken into account, the expectation-maximization algorithm is used to fit 
zero-inflated Poisson (ZIP) models to both peak candidates and their neighborhood 
regions (λ for read density, π for the proportion of zeros not derived from a Poisson 
process), and the probability mass function of these models has the following form:

Pr (X = x) =

{

π + (1 − π) e−λ , x = 0

(1 − π)e−λ λx
x! , x > 0

Assuming an unobservable latent random variable zi for a window X of I 
observations the complete log-likelihood is proportional to

ln L ∝

I
∑

i=1
[zi ln (π) + (1 − zi) ln (1 − π) + (1 − zi) (−λ + xi ln λ)]

In E-step at the (r + 1)th iteration, zi is estimated by its conditional expectation:

ẑ(r+1)
i =











π̂(r)

π̂(r)+e−λ̂(r)
(

1−π̂(r)
) , xi = 0

0, xi > 0

In M-step, given ẑ(r+1)
i , the estimations of π and λ are updated as follows:

π̂(r+1) =
∑I

i=1 ẑ
(r+1)
i

I

λ̂(r+1)
=

∑I
i=1

(

1−ẑ(r+1)
i

)

xi
∑I

i=1

(

1−ẑ(r+1)
i

)

An IQR-based refinement is applied before fitting ZIP models to neighborhood 
regions. In this case, if certain peak candidates in a local environment are 
considered as outliers by IQR (their densities are >Q3 + 1.5 × IQR, where 
IQR = Q3 − Q1), these candidates will be masked. For libraries with low sequencing 
depth, rather than simultaneously masking all outlier peak candidates in the 
local background, PINTS masks one peak candidate at a time and calculates the 
resulting peak density in the local background. The process is reiterated until 
PINTS either identifies the outlier candidates or reports the nonexistence of such 
outliers. The estimated densities are then used to determine statistically significant 
peaks, which are further categorized into divergent peak pairs (peaks on opposite 
strands and within 300 bp) and unidirectional peaks.

For enhancer-like elements that do not pass the statistical cutoff of PINTS 
but have clear enhancer-related epigenomic marks, PINTS will offer an option to 
include these elements in the output where they will be labeled as ‘marginal’, and 
their corresponding epigenomic marks. To use this feature, the user needs to add 
–epig-annotation <biosample> when running PINTS.

PINTS depends on open-source Python packages including numpy74, scipy75, 
pandas, statsmodels76, pybedtools77, pyBigWig, pysam and biopython78.

Generation of peak calls with existing tools. Peak calls for different assays were 
made using default parameters for other existing peak callers, with the following 
exceptions. For MACS2, –keep-dup all was set so that reads mapped to the 
same loci would be retained. For FivePrime, parameters Dmin, Pmin and Smin were 
optimized according to the sequencing depth of corresponding libraries, and both 
divergent TSS calls and enhancer calls were combined as the final output. All tools 
were allowed to create up to 16 threads/subprocesses if they allowed multithreading 
or parallel computing. For peak callers that do not primarily identify divergent 
peaks, unidirectional peaks were paired providing they were within 300 bp and on 
opposite strands. Maximum memory usage and CPU time (sum of all threads) were 
monitored with help from BioQueue68. UCSC Genome Browser command line 
tools (bedToBigBed, bigBedToBed, bigWigToBedGraph, bedGraphToBigWig and 
bigWigMerge) and bedtools79 were used for the conversion of file formats. All peak 
calls were generated on machines with Intel Xeon Gold 6152 CPU at 2.10 GHz with 
88 cores and 1,006 GB of random-access memory running CentOS 7.6.1810.

Evaluation of the systematic biases of different peak-calling methods. For 
each assay, divergent elements were identified using all applicable peak callers, 
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including PINTS. To accommodate the size difference in these elements as well as 
elements in the CRISPR-identified enhancer set, a 1,000-bp region centered around 
the midpoint of each element was used to evaluate the performance of different 
methods.

Evaluation of the upper bound of peak caller robustness. Sequencing reads 
were aligned to another popular reference genome sequence, hg19, and divergent 
elements were identified accordingly with different peak callers. Peak calls 
generated from both genome releases were cross-lifted using UCSC’s liftover, and 
the average between the two Jaccard indices was considered as the upper bound 
robustness (UBR):

UBR =
1
2
×

(

|Peaks38 ∩ Peaks19→38|

|Peaks38 ∪ Peaks19→38|
+

|Peaks19 ∩ Peaks38→19|

|Peaks19 ∪ Peaks38→19|

)

ROCs. For each assay, any element from the CRISPR-identified and non-enhancer 
sets was filtered out if there were no sequencing reads aligned to both strands 
of the element. The positive set was composed of an equal number of randomly 
sampled promoters (1-kb regions flanking TSSs in GENCODE v.24) from 
expressed genes and filtered enhancers. The negative set was composed of the 
filtered non-enhancers. Receiver operating characteristics (ROCs) were generated 
by calculating the number of divergent elements overlapping with the positive 
and negative sets under different cutoffs of scores: P values of peaks for PINTS 
and MACS2, FDRs for TSScall, output support vector regression (SVR) scores for 
dREG, likelihood ratio scores for Tfit and peak scores for HOMER (findcsRNATSS.
pl and findPeak -style TSS). For dREG.HD, GROcapTSSHMM, FivePrime and 
HOMER (GRO-seq), since there are either no scores or multiple scores returned in 
the final output, sensitivity and specificity were evaluated and reported with their 
default parameters.

PINTS web server. The PINTS web server is powered by the Django web 
framework. dbSNP v.153 (ref. 80) was used for annotation of mutations among 
TREs; JASPAR 2020 (ref. 65) was employed for annotation of transcription factor 
registries, and only TFs expressed in the corresponding biosample (based on 
RNA-seq data from ENCODE) were included (see Supplementary Table 4 for 
a list of datasets used and accession information). cCRE v.254 (ref. 57) was used 
for epigenomic annotation. Core promoter elements were annotated using the 
following strategy: for each major TSS (+1), the portal annotated the elements as 
having either an initiator or an initiator-like element when the sequence of -3~+3 
matches BBCABW, or the sequence of +1~+2 matches YR, respectively. The TATA 
box (−32~−21) and DPR elements (+17~+35) were identified using the previously 
published SVR model64.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Processed TRE calls are publicly accessible via our web portal (https://pints.yulab.
org). Data that support the findings of this study are available within the paper and 
its Supplementary information files. All sequencing data analyzed in this study 
were retrieved from public databases (NCBI GEO and ENCODE portal); lists of 
accessions are available in Supplementary Tables 1 and 4. Source data are provided 
with this paper.

code availability
The source code of PINTS is publicly available at https://github.com/hyulab/
PINTS; scripts and pipelines used to generate results reported in this study can be 
retrieved from https://github.com/hyulab/PINTS_analysis.
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Extended Data Fig. 1 | An extended evaluation of erNA detection sensitivity of different assays. a and c are the extended versions for Fig. 2a,b, 
respectively. a and b show the capability of different assays to capture previously identified enhancers. The color of stacked bars indicates the detection 
of eRNAs originated from either one or both strands of the enhancer loci. The transparency level shows the number of reads for an enhancer locus to be 
considered as covered. The top track in a is derived from the CRISPR or CRISPRi based reference set (n = 803), the bottom track is derived from consensus 
loci validated by STARR-seq and MPRA (n = 550). b, Sensitivity evaluated in the other cell line, GM12878, with orientation-independent enhancers 
identified from previous studies (n = 3,544)6,46. c, Differences in read coverage among stable (n = 13,861) and unstable (n = 6,380) transcripts. The error 
bars in the top track show the extrema of effect sizes (n = 5,000). The center dots, box limits, and whiskers in the bottom track of c denote the median, 
upper and lower quartiles, and 1.5× interquartile range, respectively.
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Extended Data Fig. 2 | effect of technical artifacts on erNA capture. a, A new strategy for evaluating strand specificity without the interference from 
promoter-upstream transcripts (PROMPTs)81. Red and blue colors indicate reads’ mapping direction; the highlighted (yellow) region indicates a previously 
validated82 PROMPT. Only the first exon in green was used for evaluation. b, Strand specificities of three stranded and unstranded RNA-seq libraries 
with our strategy. The p-value was estimated by a two-sided t test; c, Strand specificity for all libraries evaluated with our strategy. Values and error bars 
represent the mean and SD. n = 2 (GRO-cap, CoPRO, csRNA-seq, PRO-seq, GRO-seq, mNET-seq), n = 3 (STRIPE-seq), n = 4 (CAGE and RAMPAGE), 
n = 8 (BruUV-seq, total RNA-seq), n = 9 (Bru-seq). d, Distribution of 3-mers at flush end sites83 for RIP-seq and TGIRT-seq. The dashed red lines stand 
for the frequency of RT3-mers (sequence identical to the last three nts for the RT primer [for RIP-seq] or the 3′ adapter [for TGIRT-seq]) in the genome. 
e, Log odds ratios (LORs) of observed RT3-mer at flushing end sites versus in the genome (top) and internal priming rates (bottom) of assays when the 
internal priming could be detected from the sequencing data. f, The overlap between enhancers in the RppH library (Capped+Uncapped as ‘C + U’) that 
are also covered in the Capped library (C). The x-axis shows the minimum number of reads required for an enhancer locus to be considered as covered. 
g, Difference of log-transformed read counts between the capped (C) and RppH (C + U) libraries. The effect size was measured by Cohen’s d. In the box 
plot, the center dots, box limits, and whiskers denote the median, upper and lower quartiles, and 1.5× interquartile range, respectively. h, Pearson’s r of 
log-transformed reads from promoters of expressed transcripts (TPM > 5) was quantified using PRO-seq and POLR2A ChIP-exo. n = 4,747 (low), n = 
9,058 (medium), and n = 2,470 (high).
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Extended Data Fig. 3 | Analyses of factors affecting assays’ sensitivity in detecting erNAs. a is the extended version for Fig. 3a. b, An example shows 
that divergent transcripts detected by NT-assays can originate from two overlapping genes (MMP23B and SLC35E2B) instead of from a regulatory element. 
Sequencing reads were RPM-normalized. c, Proportion of mappable reads from different assays originated from various abundant RNA families. d, Effects 
of rRNA depletion in eRNA enrichment. For each category, three downsampled libraries were included. BruUV-seq libraries from a previously published 
study84 were used for this analysis. The p-value for rRNA percentage was calculated by two proportions z test (two-sided, p-value: 0); the p-value for 
true enhancer coverage was calculated by McNemar’s test (two-sided, p-value: 2.1 × 10−25). Values and error bars represent the mean and SD. e, The 
distribution of sequencing reads (in RPM) around GENCODE-annotated splicing junction sites. The shaded area indicates the 95% confidence interval of 
mean values estimated via bootstrap.
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Extended Data Fig. 4 | extended evaluations of assays’ specificity. a, Epigenomic and transcription factor binding profiles for the enhancer and 
non-enhancer sets. For H3K27ac and CTCF, the profiles are presented as fold-changes over control; for DHS, the profile is shown as normalized 
sequencing depth. Solid lines represent mean densities, and shades depict the 95% confidence interval of mean values estimated via bootstrap. KE: known 
enhancers; NE: non-enhancers. b Signal-to-noise ratios evaluated in K562. n = 803 for known enhancers, n = 6,777 for non-enhancers. c, Signal-to-noise 
ratios evaluated in GM12878. n = 3,544 (Known enhancers), and n = 153,809 (Non-enhancers). For b and c, 10,000 bootstrapped samples were used 
for calculating the fold enrichment (FE). The center dots, box limits, and whiskers in b and c denote the median, upper and lower quartiles, and 1.5× 
interquartile range, respectively. d, False discovery rates estimated by the overlap between the top 5,000, 10,000, 20,000, and 100,000 genomic bins and 
the true and non-enhancer sets. Downsampled libraries were used (n = 3); values and error bars represent the mean and SD.
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Extended Data Fig. 5 | Assessments of transcript unit prediction and schematic illustration of PiNTS. a, The consistencies vary greatly between 
transcription units annotated in GENCODE (Annot.) and those predicted by different tools58,59,85 (Pred.). Lines in the violin plot indicate the 25th, 
50th, and 75th quartiles, respectively. b, Schematic plot of PINTS. i, Improvement of TSS identification resolution by focusing only on read ends and 
using zero-inflated Poisson (ZIP) models to fit local background to address the substantially increased sparsity of signals. The thin grey lines indicate 
sequencing reads with the 5′ ends highlighted in red. ii, The existence of other potential true peaks (pink) elevates the estimation of read density in the 
local background. iii, A schematic plot shows how IQR-ZIP works. The blue box shows the read density distribution of the local background; the purple dot 
shows the density of the peak to be tested; the pink dot shows the density of a potential true peak close to the peak to be tested, whose read density is a 
clear outlier and thus excluded from local background estimation.
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quartiles ±1.5 × (Q3 − Q1). A table of sample sizes is available in Supplementary Table 5.

NATure BiOTecHNOLOgY | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology


Articles Nature BiotechNology

PIN
TS

dR
EG

HO
ME
R

dR
EG
.HD

TS
Sc
all

Fiv
eP
rim
e

MA
CS
2 Tfi

t

GR
Oc
ap
TS
SH
MM

GRO-cap*

csRNA-seq

CAGE

NET-CAGE

RAMPAGE

STRIPE-seq

csRNA-seq

Technical

Biological

Sa
mp
le
co
r.

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cca
rd
ind
ex

hg19
hg38

b

a

Extended Data Fig. 7 | extended analyses on the robustness of element predictions. a, A previous study showed that the sequences between hg19 and 
hg38 are very similar as hg38 has 0.09% more ungapped non-centromeric sequences than hg19, only 0.17% of ungapped hg19 sequences are not in 
hg3861. Here we show the distribution of sequencing reads in the genome. The read counts of each assay were summarized against their frequency in a 
log scale with hg19 as blue lines and hg38 as orange lines. The p-values were calculated by two-sided Student’s t tests. b, Robustness (Jaccard index) of 
different peak callers when applying them to experimental data with technical and biological replicates. Correlations between alignments (Sample cor.) 
were calculated as Pearson’s r of log-transformed read counts among genomic bins (500 bp).
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Extended Data Fig. 8 | Performance evaluation of peak callers under different sequencing depths. a, Epigenomic patterns of the true positive (enhancers, 
promoters) and true negative (non-enhancers) sets used for ROC calculation for peak calling from GRO-cap. b~d, Sensitivity and specificity of different 
peak callers when analyzing TSS-libraries (n=7) downsampled to 18.9 (b), 15 (c), and 10 (d) million mappable reads. The corresponding shaded areas 
show the 95% confidence interval of the means (via bootstrap). For tools where ROCs cannot be calculated, solid dots represent their performance with 
default parameters. Values and error bars show mean and SD.
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Extended Data Fig. 9 | Profiles of unique distal elements identified by different tools. a, Comparison of the epigenomic signals (fold change over control) 
in elements uniquely identified by PINTS and other tools. b, Enrichment (measured as log odds ratios) of TF-binding motifs in PINTS unique TREs compared 
to other tools. The circles indicate the corresponding p-values (−log2 p, two-sided z tests), and the error bars indicate the 90% confidence interval.
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Extended Data Fig. 10 | A summary of the computational tools compared in this study. The features of different algorithms are summarized and  
grouped by their roles in the peak calling procedure (colored blocks). Features utilized by each tool to call peaks from nascent transcript sequencing  
data are indicated.
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