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Abstract
Bolstered by recent methodological and hardware advances,
deep learning has increasingly been applied to biological
problems and structural proteomics. Such approaches have
achieved remarkable improvements over traditional machine
learning methods in tasks ranging from protein contact map
prediction to protein folding, prediction of protein–protein
interaction interfaces, and characterization of protein–drug
binding pockets. In particular, emergence of ab initio protein
structure prediction methods including AlphaFold2 has revo-
lutionized protein structural modeling. From a protein function
perspective, numerous deep learning methods have facilitated
deconvolution of the exact amino acid residues and protein
surface regions responsible for binding other proteins or small
molecule drugs. In this review, we provide a comprehensive
overview of recent deep learning methods applied in structural
proteomics.
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Introduction
Proteins carry out a majority of their essential molecular
functions by way of direct interactions with other pro-

teins. Considerable effort and resources have been
dedicated to constructing human protein interactome
networks describing these interactions [1,2]. Although
protein-level interactome networks have helped attain
insights into the fundamentals of biology, direct
www.sciencedirect.com
elucidation of molecular function has been limited in
part because of insufficient availability of solved pro-
tein structures.

High-resolution 3D protein structures are instrumental

in understanding protein functions. While experimental
methods such as X-ray crystallography, NMR, and cryo-
EM can determine protein structures, they are time-
consuming and expensive. Therefore, the vast majority
of the protein structures remain unsolved. Computa-
tional homology modelling and related approaches can
help bridge the gap [3], but are themselves severely
limited by the small portion of proteins that have tem-
plates available [4].

Due to these limitations, machine learning, especially

deep learning, approaches have gained considerable
attention because they can recognize hidden patterns
from available experimental data for particular tasks and
efficiently apply the identified patterns to unseen in-
stances at a low cost. In this review, we discuss deep
learning-based approaches for several proteomic research
questions in Figure 1, and some representative methods
for each research area are summarized in Table 1.
Protein contact map prediction
Since native contacts dictate the global topology of
protein structures and provide essential information for
successful protein structure reconstruction, accurate
intra-protein residueeresidue contact prediction has
become one of the most fundamental problems in
computational protein folding [5].

To date, much effort has been devoted to developing
contactmappredictionmethods.The existing approaches
can be broadly categorized into two groups: evolutionary
coupling analysis (ECA)-based and machine learning-
based methods. The ECA-based methods include
CCMPred [6], FreeContact [7], plmDCA [8,9], PSICOV
[10], and GREMLIN [11] and are based on the premise
that within multiple sequence alignments (MSAs) mu-
tations in contacting residues should be correlated to
ensure proper folding and function. For instance, residues

forming a hydrogen bond may undergo corresponding
mutations to swap the hydrogen bond donor and acceptor.
However, the performance of suchmethods severely relies
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Figure 1
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Research areas of proteomics and their relationship with one of the most common deep learning approaches.
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on the depth and quality of MSAs [11]. In contrast, ma-
chine learning-based methods have shown significant
performance in recent Critical Assessment of protein
Structure Prediction (CASP) competitions, even for pro-
teins with few homologs. Deep-learning approaches have
seen the most dramatic improvements compared to
traditional methods including support vector machine

[12], random forest [13], and hiddenMarkov model [14].
The strong representation learning ability of deep learning
enables it to capture underlying relationships in original
input features, including coevolutionary information ob-
tained by ECA-based approaches.

Recent deep learning-based methods have employed a
wide array of architectures including Residual Neural
Network (ResNet) [15e25], Convolutional Neural
Network (CNN) [26e28], Generative Adversarial
Network (GAN) [29,30], Deep Belief Network (DBN)

[31,32], Deep Feedforward Network (DFN) [33,34],
Recursive Neural Network [35], and a combination of
ResNet and Bidirectional Residual Long Short-Term
Memory (Bidirectional-ResLSTM) [36]. Some repre-
sentatives that ranked top in recent CASP competitions
are tFold [15], TripletRes [16,17], ResTriplet [16],
DeepPotential [18], and RaptorX-Contact [19]. tFold
consists of two ResNet-based sub-networks. The first,
tFold-DistNet, performs MSA-based distance prediction
while the second, tFold-RefineNet, refines distance
predictions with structural decoys. tFold ranked top in

CASP14. Other successful models are TripletRes and
ResTriplet. They construct an ensemble of three raw
Current Opinion in Structural Biology 2022, 73:102329
coevolutionary features by two complementary ResNet-
based strategies. Both methods ranked top in CASP13,
and an updated version of TripletRes [17] released by
the same group ranked top in CASP14. Also ranking high
in CASP14, DeepPotential combines two complemen-
tary coevolution features coupling with ResNet.
RaptorX-Contact integrates both evolutionary coupling

and sequence conservation information through ResNet,
and it ranked top in both CASP12 and CASP13. Some
other representative methods are InterpretContactMap
[20] and ContactGAN [29]. InterpretContactMap
combines ResNet with the attention mechanism to
improve the interpretability of the deep learning model.
ContactGAN is a GAN-basedmodel to refine the contact
maps predicted by other methods.

For proteins without homologous structures, the
residueeresidue contact map prediction has been crit-

ical to facilitate protein structure prediction. It is worth
noting that most of the methods ranked top in the
recent CASP competitions have been developed based
on ResNet, which has been discussed in Ref. [5] as well.

Ab initio protein structure prediction
Building upon earlier contact map predictions, several
recent works [37e39] have shown that predictions of

the pairwise distances between residues rather than just
contacting pairs can convey more information about
protein structures. These predicted pairwise distance
matrices have in turn been incorporated into deep
learning models for protein structure prediction.
www.sciencedirect.com
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Table 1

Summary of representative computational approaches for 3D structural proteome and interactome modeling.

Categories Names Webservers/Softwares Underlying Models References

Protein contact map
prediction

CCMpred https://github.com/soedinglab/ccmpred ECA [6]
FreeContact https://rostlab.org/owiki/index.php/FreeContact ECA [7]
plmDCA https://github.com/magnusekeberg/plmDCA ECA [8,9]
PSICOV http://bioinf.cs.ucl.ac.uk/downloads/PSICOV ECA [10]
GREMLIN http://gremlin.bakerlab.org ECA [11]
tFold https://drug.ai.tencent.com/console/en/tfold ResNet [15]
TripletRes https://zhanggroup.org/TripletRes ResNet [16,17]
ResTriplet – ResNet [16]
DeepPotential – ResNet [18]
RaptorX-Contact http://raptorx.uchicago.edu/ContactMap ResNet [19]
InterpretContactMap https://github.com/jianlin-cheng/InterpretContactMap ResNet [20]
ContactGAN https://github.com/kiharalab/ContactGAN GAN [29]

Protein structure
prediction

AlphaFold https://github.com/deepmind/deepmind-research/
tree/master/alphafold_casp13

ResNet [38]

RaptorX-
3DModeling

https://github.com/j3xugit/RaptorX-3DModeling ResNet [40]

RGN https://github.com/aqlaboratory/rgn LSTM [41]
Likelihood-RGN https://github.com/SchniedersLab/likelihood-rgn LSTM [42]
RGN2 – Transformer [43]
AlphaFold2 https://github.com/deepmind/alphafold Transformer [44]
RoseTTAFold https://github.com/RosettaCommons/RoseTTAFold Transformer [45]

Protein Interface
Prediction

BIPSPI https://bipspi.cnb.csic.es xgBoost [47]
ECLAIR http://interactomeinsider.yulab.org Random Forest [48]
Complex

Contact
http://raptorx2.uchicago.edu/ComplexContact ResNet [51]

DLPred http://qianglab.scst.suda.edu.cn/dlp RNN [50]
DELPHI http://github.com/lucian-ilie/DELPHI RNN and CNN [49]
Fout. et al. https://github.com/fouticus/pipgcn GCN [52]
Liu. et al. – GCN and CNN [54]
SASNet https://dataverse.harvard.edu/dataset.xhtml?

persistentId=doi:10.7910/DVN/H93ZKK
3D CNN [53]

PINet https://github.com/FTD007/PInet PointNet [55]
Protein Feature

Embedding
UniRep https://github.com/churchlab/UniRep mLSTM [58]
MaSIF https://github.com/LPDI-EPFL/masif Geodesic CNN [59]
dMaSIF https://github.com/FreyrS/dMaSIF Geodesic CNN [60]
DeepDrug3D https://github.com/pulimeng/DeepDrug3D 3D CNN [61]
LigVoxel – CNN [62]
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AlphaFold [38] is one of the most successful and famous
models that relies on coevolutionary information. It
consists of hundreds of convolutional neural network
layers. AlphaFold first predicts the distances and tor-
sions between Cb atoms of residue pairs. Then, the

distribution of predicted distances is engaged to
construct a protein-specific statistical potential func-
tion, i.e., potential of mean force, from which the
gradient is calculated to optimize the model to approach
the native structure. In CASP13, AlphaFold achieved
the best performance.

However, one of themost telling indicators of the strength
of deep-learning approaches in protein folding is their
success in directly inferring sequence to structure re-
lationships in the absence of higher order features such as

coevolution. Xu et al. [40] showed that ResNet-based
models can predict structures of correct folds from pri-
mary sequences without coevolution. Another method is
www.sciencedirect.com
Recurrent Geometric Network (RGN) [41] that in-
corporates local and global protein structure with subtly
designed geometric units and folds protein sequences by a
joint optimization function from input to output. Ongoing
augmentations to the base RGN model are in develop-

ment to improve the rate of convergence inmodel training
[42] and to remove the dependency of MSAs [43] when
preparing sequence protein features. While these
coevolution-irrespective deep learning methods are not
fully competitive with the best coevolution-based ap-
proaches, the direct sequence to structure learning may
better conceptually represent the biological problem of
protein folding. Moreover, they provide important com-
plementary approaches that may perform best for protein
design applications or folding orphan proteins where ho-
mologous sequences are not available.

Although Coevolution-dependent approaches may
outperform the coevolution-irrespective deep learning
Current Opinion in Structural Biology 2022, 73:102329
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methods, they heavily rely on homologous structures.
For example, AlphaFold has low atomic accuracy when
no homologous structures are available. To overcome
this limitation, DeepMind, the developer of AlphaFold,
presented AlphaFold2 [44], which is a Transformer-like
deep learning network. AlphaFold2 not only jointly
embeds MSAs and pairwise features with a trunk of
networks but also incorporates physical and geometric

constraints into the learning process with a structure
module that allows more flexible refinement of the
entire structure simultaneously. Using this approach,
AlphaFold2 combines the innovations of both
coevolution-dependent and coevolution-irrespective
approaches, and won CASP14. Motivated by Alpha-
Fold2, Baek et al. [45] extended the AlphaFold2
framework and proposed a three-track model, RoseT-
TAFold, which transforms and integrates protein se-
quences (1D), residue pairing distances (2D), and
structure coordinates of residues (3D) to provide better

predictions. In addition to protein structure prediction,
RoseTTAFold can also solve the challenges of x-ray
crystallography and cryoeelectron microscopy modeling
and has shown some promise in transferability to
proteineprotein complex structures.

Accurate prediction of protein structure is crucial to un-
derstand fundamental protein functions as thepredictions
can be used for some downstream tasks such as
proteineprotein docking andprotein interfaceprediction.

Protein interface prediction
Accurate annotation of protein interfaces can provide
insights into molecular functions. For example, mapping
diseasemutations onto knownprotein interfaces can help
dissect the molecular mechanisms underlying disease.
However, experimental determination of 3D complex
structures is resource-intensive and time-consuming.
Although some computational methods such as
proteineprotein docking [46] and homology modeling

[3] can predict protein interfaces, they suffer from the
limitations of available structures and cannot be applied
to full-interactome scales. Various machine learning
modelsdsuch as XGBoost [47] and Random Forests
[48]dhavepreviously been developed to overcome these
shortcomings. Moreover, several recently proposed deep
learning-based methods have been shown to achieve
greater success. These deep learning approaches can
roughly be split based on features used: sequence-based
[49e51] and structure-based models [52e55].

Sequence-based models solely rely on the protein
sequence information. Specifically, they use sequence-
based features such as hydropathy and evolutionary
conservation to represent each amino acid. With these
sequence features, various deep learning architectures
Current Opinion in Structural Biology 2022, 73:102329
have been employed. ComplexContact [51] is built on
RaptorX-Contact [19], which is a ResNet-based contact
map prediction model. ComplexContact accepts the
concatenated MSAs of two interacting proteins as input
to identify interfaces. Their test result shows that
ComplexContact outperforms existing pure co-
evolution methods such as Gremlin-Complex [56].
Recurrent Neural Networks (RNNs) have also been

used with sequence-based features. DLPred [50] is a
bidirectional RNN model with a novel RNN cell,
simplified LSTM (SLSTM). The authors removed and
simplified particular processes in the LSTM cell. As
SLSTM cell has fewer parameters than the LSTM cell,
DLPred could avoid overfitting with better computa-
tional efficiency. DELPH [49] is another RNN-based
model where RNN is combined with CNN. Although
both deep learning models accept the same sequence
input, each architecture produces its own feature em-
beddings which when integrated together achieve more

comprehensive representations for prediction.

Structure-based models utilize structure information in
addition to sequence-based features. In interface pre-
diction, structural information is critical as by most
definitions, buried residues inherently cannot be part of
the interface. BIPSPI [47] and ECLAIR [48] empiri-
cally showed the importance of structural features based
primarily on solvent accessibility. Some deep learning
models are capable of retaining protein shape informa-
tion in their structural features. For example, GCN and

3D CNN take as input graph and voxel representations
of protein structures, respectively. Fout et al. [52] pro-
posed Graph Convolutional Network (GCN)-based
methods. The authors represented a protein structure as
a graph where each node indicates a residue with fea-
tures and an edge denotes an adjacent neighbor. This
GCN was also integrated with 2D CNN [54]. The in-
tegrated model extracts residue features from both
structures and sequences of two interacting proteins.
Another deep learning architecture for 3-dimensional
protein structures is 3D CNN. Townshend et al. [53]
proposed SASNet which treats voxelized protein struc-

tures as 3-dimensional images. Point cloud is another
way to represent 3-dimensional protein structures. Dai
et al. [55] developed PInet that is rooted in the
framework of PointNet [57]. PointNet is a deep learning
model for shape classification and segmentation that
takes point clouds as input.

Although proteineprotein interactions from the
network studies have provided valuable information for
understanding the molecular functions of proteins, ac-
curate prediction of protein interface made possible by

advances in deep learning will help achieve key func-
tional insights.
www.sciencedirect.com
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Molecular characterization and
protein–drug binding pocket prediction
Protein sequence and structure can provide a rich vein of
information. While it is often difficult to construct
meaningful hand-crafted features, deep learning auto-
matically transforms raw data such as protein sequences
and structures into numerical features that preserve
important information in the original data. UniRep [58]
is a Multiplicative LSTM (mLSTM)-based model that
takes in unlabeled protein sequences and distills the
fundamental features of the input into statistical repre-
sentations. MaSIF [59] uses a geometric deep learning
approach to extract features from protein surfaces. These

learned protein features can be meaningfully applied to
downstream prediction tasks for predictions of ligand or
protein binding surfaces. Sverrisson et al. [60] further
developed the geometric deep learning approach by
taking raw 3D atomic coordinates with a novel geometric
convolutional layer and presented dMaSIF.

Similarly, several applications such as DeepDrug3D [61]
and LigVoxel [62] have been applied to extract features
from protein pockets. DeepDrug3D employs a 3D
voxel-based CNN to classify known binding pockets

based on the type of ligand that binds them. LigVoxel
presents a CNN-based end-to-end framework for the
generation of ligand property fields given the structure
of a protein binding site. One important benefit of these
methods is that the meaningful information being
learned from the deep models can be readily visualized.
Conclusion
The advancement of deep learning has led to substantial
progress in various proteomic research areas. In most
applications, deep learning-based methods have
outperformed other traditional machine learning models.
The most noticeable achievement could be found in
protein structure prediction because the advent of
AlphaFold2 was glorified as the solution to the protein
folding problem, a 50-year-old challenge in biology.

Despite the remarkable success of deep learning, some
limitations still make it less accessible and narrow its
scope of application. Specifically, training deep learning
models requires optimization of up to millions of pa-
rameters, and therefore requires a massive amount of
data. Sufficiently large training datasets may not be
readily available in general, making overfitting a long-
standing concern for deep learning. As a result, deep
learning is considered the most expensive machine
learning approach. In the context of biological applica-

tions, problems in which acquisition of training data is
dependent on extensive experiments are likely to remain
intractable for deep learning models. Moreover, deep
learning models usually do not allow easy interpretation
of their architectures and individual model parameters.
Thus, alternative methods may be preferable in
www.sciencedirect.com
applications where understanding the relationship be-
tween input and output is of scientific interest more than
simply producing a working model. However, in light of
the growth in experimental data and computing tech-
nology, machine learning, especially deep learning, ap-
proaches are still expected to play a crucial role in
structural proteomics.
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Deep learning for proteomics Lee et al. 7
Accurate prediction of protein structures and interactions
using a three-track neural network. Science 2021, 373:
871–876.

It extends the AlphaFold2 framework and proposes a three-track model
to transform and integrate protein sequences (1D), residue pairing
distances (2D), and structure coordinates of residues (3D) to provide
better predictions. In addition to protein structure prediction, RoseT-
TAFold can also solve the challenges of x-ray crystallography and
cryo–electron microscopy modeling and has shown some promise in
transferability to generating e protein–protein complex structures.
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combines a CNN and a RNN model shows outstanding performance.
In addition to model and performance, the authors reported a strong
correlation between predicted interface prediction score and degree of
evolutionary conservation.
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teractions for protein interface prediction. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining; 2020:679–687.

By combining GCN and CNN, the proposed method utilizes the topo-
logical information of protein structures while preserving the original
www.sciencedirect.com
sequence information. The novel feature, High-Order Pairwise In-
teractions, effectively incorporates the impact of both in- and cross-
protein pairwise interactions.
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In contrast to other methods, the authors formulate the protein interface
prediction problem as a semantic segmentation of interacting proteins.
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efficiently performed by considering both local and global protein sur-
face features.
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The authors present a geometric deep learning framework that embeds
the chemical and geometric features from local protein surface patches
as interaction “fingerprints.” The approach is particularly impactful
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consideration on the underlying sequence, 2) learned embeddings can
be more sophisticated than “handcrafted” manually optimized surface
features, and 3) the embeddings can be employed and further opti-
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