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Abstract
Coronavirus	disease	2019	(COVID-	19)	 is	especially	severe	 in	aged	patients,	defined	
as	65	years	or	older,	for	reasons	that	are	currently	unknown.	To	investigate	the	un-
derlying	basis	for	this	vulnerability,	we	performed	multimodal	data	analyses	on	 im-
munity,	 inflammation,	 and	 COVID-	19	 incidence	 and	 severity	 as	 a	 function	 of	 age.	
Our	analysis	leveraged	age-	specific	COVID-	19	mortality	and	laboratory	testing	from	
a	large	COVID-	19	registry,	along	with	epidemiological	data	of	~3.4 million individu-
als,	large-	scale	deep	immune	cell	profiling	data,	and	single-	cell	RNA-	sequencing	data	
from	aged	COVID-	19	patients	across	diverse	populations.	We	found	that	decreased	
lymphocyte	count	and	elevated	inflammatory	markers	(C-	reactive	protein,	D-	dimer,	
and	 neutrophil–	lymphocyte	 ratio)	 are	 significantly	 associated	 with	 age-	specific	
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1  |  INTRODUC TION

Coronavirus	disease	2019	(COVID-	19),	a	global	pandemic	caused	
by	 severe	 acute	 respiratory	 syndrome	 coronavirus	 2	 (SARS-	
CoV-	2),	 has	 been	 diagnosed	 in	 more	 than	 284	 million	 people	
globally,	with	 5.4	million	 deaths	 since	December	 2019	 (data	 on	
December	30,	2021).	Although	a	 serious	 risk	 at	 any	age,	 SARS-	
CoV-	2	infection	is	particularly	debilitating	and	deadly	for	aged	pa-
tients,	defined	in	this	study	as	65	years	and	older	(Channappanavar	
&	Perlman,	2020;	Clay	et	al.,	2014;	Davies	et	al.,	2020;	O'Driscoll	
et	al.,	2021).	The	molecular	basis	of	this	aging-	related	vulnerabil-
ity	 is	an	 important	area	of	 investigation	as	 it	 is	currently	poorly	
understood.

Impaired	 and	 dysregulated	 host	 immunities,	 including	 both	
innate	 and	 adaptive	 immunities,	 have	 been	 hypothesized	 as	
age-	based	 factors	 in	 COVID-	19	 disease	 severity	 (Brodin,	 2021;	
Channappanavar	&	Perlman,	2020).	Compared	to	younger	individu-
als	with	COVID-	19,	aged	individuals	show	disrupted	antigen-	specific	
adaptive	immunity	to	SARS-	CoV-	2,	such	as	reduced	coordination	of	
CD4-	CD8	T-	cell	responses	(Rydyznski	Moderbacher	et	al.,	2020).	In	
addition,	aged	individuals	typically	produce	a	less	robust	type	I	in-
terferon	(IFN)	response	to	flu	virus	infections	(Molony	et	al.,	2017),	
indicating	compromised	cellular	antiviral	defense	 in	 innate	 immu-
nity.	Indeed,	13%	of	aged	patients	with	life-	threatening	COVID-	19	
display	 inborn	 errors	 in	 autoantibodies	 against	 type	 I	 IFN	 immu-
nity	 (Bastard	 et	 al.,	 2020).	 In	 addition,	 aberrant	 immunosenes-
cence	 and	 inflammation	 also	 play	 crucial	 roles	 in	 age-	medicated	
COVID-	19	morbidity	 and	mortality	 (Domingues	 et	 al.,	 2020).	 For	
example,	senescent	cells	become	hyper-	inflammatory	in	response	
to	pathogen-	associated	molecular	patterns,	and	senolytics	reduce	
COVID-	19	mortality	 in	 aged	mice	 (Camell	 et	 al.,	 2021).	Based	on	
these	findings,	we	sought	to	systematically	identify	whether	there	
are	specific	immuno-	inflammatory	determinants	that	promote	age-	
associated	COVID-	19	severity.

2  |  RESULTS

2.1  |  Severe outcomes in aged COVID- 19 patients

To	 begin,	 we	 investigated	 the	 prevalence	 of	 COVID-	19	 disease	
among	 different	 age	 groups	 with	 9	 months	 of	 data	 collection.	
Analysis	of	U.S.	Centers	for	Disease	Control	(CDC)	epidemiological	
data	 from	March	 to	December	 2020	 (Tables	 S1–	S3)	 revealed	 that	
80.5%	of	fatal	cases	occurred	in	aged	patients.	Strikingly,	this	rate	
was	 4.1	 times	 higher	 than	 in	 18–	64	 years	 old	 (19.5%),	 and	 1653	
times	 higher	 than	 in	 0–	17	 years	 old	 (0.05%,	 Figure	 1a).	 Fatality	
prevalence	was	influenced	by	sex	in	both	older	and	younger	groups	
(Figure	1b).	Interestingly,	we	found	that	average	fatal	percentage	in	
aged	COVID-	19	patients	 is	16%	higher	 than	 that	of	 influenza	 (Flu)	
(Table	S2),	 indicating	 that	COVID-	19	 is	more	hazard	 for	aged	 indi-
viduals than Flu.

Next,	we	used	odds	ratio	(OR)	adjusted	for	confounding	factors	
to	 further	 evaluate	 the	 association	 between	 aging	 and	 four	 types	
of	 COVID-	19	 outcomes:	 hospitalization,	 intensive	 care	 unit	 (ICU)	
admission,	 ICU	mechanical	 ventilation,	 and	 death.	 Specifically,	we	
analyzed	 sex-		 and	 race-	adjusted	 OR	 values	 in	 3,417,930	 COVID-	
19-	positive	cases	(n =	2,369,919	in	young	individuals,	20–	49	years	
old)	 and	 n =	 1,048,011	 in	 aged	 individuals	 (>60	 years	 old)	 (see	
Method;	Table	S3)	from	the	U.S.	CDC	database.	Here,	aged	individ-
uals	showed	significantly	increased	likelihood	of	COVID-	19-	related	
hospitalization	 (OR	=	9.07,	95%	confidence	 interval	 [CI]	9.99–	9.15;	
Figure	1c),	ICU	admission	(OR	=	9.24,	95%	CI	9.01–	9.48),	and	death	
(51.15,	95%	CI	49.86–	52.47;	Figure	1c).

To	further	account	for	disease	comorbidities,	we	next	computed	
OR	across	different	age	groups	using	a	large	COVID-	19	registry	da-
tabase	with	12,651	aged	(≥65	years)	and	32,426	younger	individuals	
(20–	55	 years	 old)	 (Figure	 1c,	 Table	 S4,	 see	Methods).	 Specifically,	
we	 tested	 the	OR	Model-	2,	which	 is	adjusted	 for	 sex,	 race,	 smok-
ing,	and	five	common	disease	comorbidities	(Guan	et	al.,	2020;	Yang,	

COVID-	19	severities.	We	identified	the	reduced	abundance	of	naïve	CD8	T	cells	with	
decreased	expression	of	antiviral	defense	genes	(i.e.,	IFITM3 and TRIM22)	in	aged	se-
vere	COVID-	19	patients.	Older	individuals	with	severe	COVID-	19	displayed	type	I	and	
II	 interferon	deficiencies,	which	 is	 correlated	with	SARS-	CoV-	2	viral	 load.	Elevated	
expression	of	SARS-	CoV-	2	entry	factors	and	reduced	expression	of	antiviral	defense	
genes	(LY6E and IFNAR1)	in	the	secretory	cells	are	associated	with	critical	COVID-	19	in	
aged	individuals.	Mechanistically,	we	identified	strong	TGF-	beta-	mediated	immune–	
epithelial	cell	interactions	(i.e.,	secretory-	non-	resident	macrophages)	in	aged	individu-
als	with	critical	COVID-	19.	Taken	together,	our	findings	point	to	immuno-	inflammatory	
factors	that	could	be	targeted	therapeutically	to	reduce	morbidity	and	mortality	 in	
aged	COVID-	19	patients.

K E Y W O R D S
aging,	cellular	immunology,	COVID-	19,	molecular	biology	of	aging,	SARS-	CoV-	2



    |  3 of 18HOU et al.

F I G U R E  1 Epidemiological	data	analysis	between	aged	and	younger	COVID-	19	patients.	(a)	The	percentage	of	fatal	cases	of	COVID-	19	
and	flu	across	three	age	groups.	Data	source	from	U.S.	CDC.	The	upper	panel	shows	the	percentage	of	fatal	cases	of	COVID-	19	in	the	United	
States.	Each	dot	in	the	boxplot	represents	one	state.	The	lower	panel	shows	the	percentage	of	fatal	cases	of	flu	from	2010	to	2020.	Each	
dot	in	the	boxplot	represents	one	flu	season.	Statistical	p-	value	was	computed	by	two-	tailed	paired	t	test.	For	details	about	CDC	dataset,	
see	Tables	S1	and	S2.	(b)	Sex	differences	in	the	percentage	of	fatal	cases	of	COVID-	19	across	three	age	groups.	(c)	Odds	ratio	(OR)	analysis	
of	U.S.	CDC	and	COVID-	19	registry	datasets.	U.S.	CDC	dataset,	“Younger”	is	defined	as	20	to	49	years	of	age	(n =	2,369,919),	and	‘aged’	is	
defined	as	>60	years	old	(n =	1,048,011);	COVID-	19	registry	dataset,	“Younger”	is	defined	as	18	to	55	years	of	age	(n =	12,651),	and	‘aged’	is	
defined	as	≥65	years	old	(n =	32,426).	OR	>1	indicates	aged	COVID-	19	patients	with	increased	likelihood	of	hospitalization,	ICU	admission,	
and	death.	Two	colors	denote	OR	models	with	different	adjusted	confounders.	Features	of	the	COVID-	19	registry	dataset	are	shown	in	Table	
S3.	(d)	and	(e)	Boxplot	show	the	lab	testing	values	of	five	inflammatory	markers	between	aged	(>65	years,	n =	1405)	and	younger	(18	to	
55	years,	n =	970)	individuals.	Adjusted	p-	value	[q]	was	computed	by	Mann–	Whitney	U	test	with	Benjamini–	Hochberg	(BH)	multiple	testing	
correction
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Zheng,	et	al.,	2020)	(hypertension,	diabetes,	coronary	artery	disease	
[CAD],	 asthma,	 chronic	 obstructive	 pulmonary	 disease	 [COPD],	
and	 emphysema).	Here,	we	 again	 found	 that	 aged	 individuals	 had	
significantly	greater	 likelihood	of	COVID-	19-	related	hospitalization	
(OR	=	3.10,	95%	CI	2.55–	3.77),	 ICU	admission	(OR	=	2.39,	95%	CI	
1.78–	3.22)	(Figure	1c),	and	death	(OR	=	40.35,	95%	CI	19.80–	82.24).	
Subsequent	 Kaplan–	Meier	 analysis	 further	 revealed	 an	 elevated	
cumulative	 hazard	 for	 hospitalization	 (p <	 0.0001,	 log-	rank	 test;	
Figure	S1a),	including	longer	duration	of	hospitalization	(average	du-
ration =	8.9	days;	p = 1.4 × 10−15,	Mann–	Whitney	U	test;	Figure	S1b),	
in	COVID-	19	patients.	Taken	together,	our	findings	confirm	an	ele-
vated	likelihood	of	severe	outcomes	in	aged	COVID-	19	patients	has	
compared	with	younger	patients,	even	when	adjusted	for	all	possible	
confounding	factors.

2.2  |  Elevated inflammatory responses in aged 
COVID- 19 patients

As	 severe	 COVID-	19	 patients	 have	 been	 reported	 to	 have	 lower	
lymphocyte	 count	 (Yang,	 Liu,	 et	 al.,	 2020)	 and	 higher	 C-	reactive	
protein	 (CRP)	 (Manson	 et	 al.,	 2020),	 we	 examined	 the	 Cleveland	
Clinic	COVID-	19	 registry	 for	differences	 in	 inflammatory	biomark-
ers	as	a	function	of	aging.	Here,	we	found	lower	peripheral	lympho-
cytes	(adjusted	p-	value	[q]	<2.0 × 10−16,	Mann–	Whitney	U test with 
Benjamini–	Hochberg	multiple	test	correction;	Figure	1d)	and	higher	
circulating	 neutrophils	 in	 hospitalized	 aged	 COVID-	19	 patients	
(q =	 0.004;	 Figure	 1d),	 compared	with	 younger	 patients.	We	 also	
found	that	the	neutrophil–	lymphocyte	ratio	(NLR),	a	marker	of	sys-
temic	inflammation	(Cai	et	al.,	2021),	was	elevated	in	aged	COVID-	19	
patients	(q < 2.0 × 10−16;	Figure	1d).	 In	addition,	the	 inflammatory	
markers	D-	dimer	(q < 2.0 × 10−16;	Figure	1e)	and	C-	reactive	peptide	
(CRP)	 (q = 2.7 × 10−10;	Figure	1e)	were	also	significantly	 increased	
in	 hospitalized	 aged	 patients	 compared	 with	 hospitalized	 young	
COVID-	19	patients.	Those	 findings	motivate	us	 to	 inspect	hetero-
geneities	of	immune	cells	using	large-	scale	immune	cell	phenotypic	
profiles	and	single-	cell	transcriptomics	datasets	under	a	multimodal	
genomic	analytic	framework.

2.3  |  Elevated pro- inflammatory cytokine 
expression in aged COVID- 19 patients

We	next	examined	peripheral	immune	cell	profiles	(Takahashi	et	al.,	
2020)	of	hospitalized	aged	and	younger	COVID-	19	patients	by	que-
rying	a	publicly	available	dataset	of	12	major	immune	cell	types	(%	
peripheral	 blood	 mononuclear	 cells	 [PBMCs])	 and	 32	 T-	cell	 sub-
types	 (%	CD3,	Table	S5,	 see	Methods).	All	markers	 and	 cell	 type/
subtype	 definitions	 are	 provided	 in	 the	 original	 study	 (Takahashi	
et	al.,	2020).	There	was	no	difference	in	abundance	of	the	major	im-
mune	cell	types	(e.g.,	T	cells,	B	cells,	natural	killer	cells,	and	plasma-
cytoid	dendritic	cells	[pDC])	between	aged	and	young	hospitalized	
COVID-	19	 patients,	 including	 those	 in	 the	 ICU	 (Figure	 2a,c	 and	
Figure	S2a).	However,	both	young	and	aged	COVID-	19	patients	with	
ICU	admission	had	a	lower	proportion	of	T	cells	(younger,	q = 0.001; 
older,	q =	 0.003)	 and	 pDC	 (younger,	q =	 0.009;	 older,	q =	 0.004)	
(Figure	2a,c),	as	well	as	an	elevated	proportion	of	non-	classic	mono-
cytes	 (ncMono)	 (younger,	 q =	 0.003;	 older,	 q =	 0.014;	 Figure	 2c),	
compared	with	non-	ICU	patients.	Further	analysis	of	deep	pheno-
typing	T-	cell	data	revealed	significantly	fewer	naïve	CD8	T	cells	 in	
hospitalized	aged	COVID-	19	patients	(q = 1.7 × 10−11;	Figure	2b,d).	
Naïve	CD8	T-	cell-	mediated	homeostasis	is	an	important	component	
of	antiviral	defense	 (Kaech	&	Cui,	2012),	and	the	naïve	CD8	T-	cell	
receptor	 repertoire	 is	negatively	 correlated	with	age	 in	COVID-	19	
patients	(Ren	et	al.,	2021).	Thus,	reduced	abundance	of	naïve	CD8	T	
cells	may	be	associated	with	COVID-	19	severities	in	aged	individuals.

We	 next	 turned	 to	 investigate	 the	 ratio	 of	 naïve	 vs.	 other	 T-	
cell	 subsets	 and	 natural	 killer	 T	 (NKT)	 vs.	 natural	 killer	 (NK)	 cells	
(Figure	2e).	We	found	that	the	ratio	of	CD8	naïve	T	cell	with	multiple	
CD8	T-	cell	subsets	was	significantly	decreased	in	aged	ICU	individ-
uals	compared	with	younger	patients	(Figure	2e).	The	ratio	of	CD8	
naïve	T	cell	with	memory	CD8	T	cell	(Tem	and	Tcm)	was	significantly	
reduced	 in	 aged	 COVID-	19	 patients	 in	 both	 ICU	 and	 non-	ICU.	 In	
particular,	the	ratios	of	CD8	naïve	T	cell	with	PD1-	TIM3-	CD8	T	cell	
and	CD38-	HLA-	DR	CD8	T	cell	were	significantly	decreased	in	aged	
COVID-	19	patients	compared	with	younger	patients	 in	 ICU,	not	 in	
non-	ICU.	The	gene	PD1	and	TIM3	are	makers	for	CD8	T-	cell	exhaus-
tion,	and	an	elevated	PD1	in	exhausting	T	cells	was	highly	associated	

F I G U R E  2 Deep	immune-	profiling	of	aged	and	younger	patients	with	COVID-	19.	(a)	and	(f)	Scatterplots	show	the	differential	immune	cell	
type	(a)	and	cytokines	(f)	between	ICU	(n =	39	samples,	aged	n =	26,	younger	n =	13)	versus	non-	ICU	(105	samples,	aged	n =	68,	younger	
n =	37)	COVID-	19	patients.	The	cell	flow	and	cytokine	profiling	datasets	were	collected	from	a	recent	study	(Takahashi	et.al,	2020)	(see	
Method).	Y-	axis	and	X-	axis	show	the	log2(Fold	Change	[FC])	in	younger	and	aged	subpopulations.	The	pairwise	comparison	group	is	ICU	vs.	
non-	ICU	patients	with	COVID-	19.	Solid	green	dots	denote	significantly	different	cell	types	or	cytokines	in	both	younger	and	aged	patients.	
Solid	blue	and	orange	dots	denote	significantly	different	cell	types	or	cytokines	in	younger	and	aged	patients,	respectively.	(b)	and	(g)	
Scatterplots	show	the	differential	immune	cell	type	(b)	and	cytokines	(g)	in	aged	(n =	94	samples)	versus	younger	(50	samples)	COVID-	19	
patients.	Y-	axis	and	X-	axis	show	the	log2FC	in	ICU	and	non-	ICU	subpopulations.	The	pairwise	comparison	group	is	aged	vs.	younger	patients	
with	COVID-	19.	Solid	red	dots	denote	significantly	different	cell	types	or	cytokines	in	both	ICU	and	non-	ICU	patients.	Solid	purple	dots	
denote	significantly	different	cell	types	or	cytokines	in	non-	ICU	patients.	(c)	The	abundance	of	major	immune	cell	types	in	PBMC	and	(d)	
subtypes	of	CD8+	T	cells	in	all	CD3-	positive	cells.	Statistical	adjusted	p-	value	(q)	was	computed	by	Mann–	Whitney	U	test	with	BH	multiple	
testing	correction	(e)	Heatmap	showing	the	ratio	of	naïve	vs	memory	lymphocytes.	Gradient	color	indicated	the	log2	fold	change	in	average	
ratio	between	aged	and	younger	in	non-	ICU	or	ICU	subgroup,	respectively.	Black	circle	indicates	q <	0.05.	(h)	The	abundance	of	four	
cytokines	changes	between	younger	and	aged	COVID-	19	patients	in	hospital,	ICU,	and	non-	ICU	groups
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with	severe	COVID-	19	(Neidleman	et	al.,	2021).	CD38	and	HLA-	DR	
are	markers	for	CD8	T-	cell	activation,	and	an	accumulated	activation	
of	HLA-	DR	 is	 associated	with	 severe	COVID-	19	 (Neidleman	et	al.,	
2021;	Quinn	et	al.,	2018).	Altogether,	reduced	ratio	of	naïve	CD8	T	
cells	and	CD8	memory	T	cell	in	severe	COVID-	19	(Figure	2e)	could	
be	explained	by	non-	specific	memory	T-	cell	activation	and	dysfunc-
tional	immune	responses	(de	Candia	et	al.,	2021)	in	aged	individuals.	
Yet,	the	ratio	of	CD4	naïve	T	cells	with	other	CD4	T	sub-	cell	 type	
and	NKT	with	NK	has	no	significant	difference	between	aged	and	
younger	patients	in	both	ICU	and	non-	ICU.

Next,	 we	 compared	 the	 plasma	 profile	 of	 71	 cytokines	 and	
chemokines	 (Takahashi	 et	 al.,	 2020)	 between	 hospitalized	 aged	
and	 younger	COVID-	19	 patients	 (Table	 S5).	Historically,	 increased	
IL-	6,	 IL-	8,	 IL-	10,	and	 IL-	27	 levels	have	been	associated	with	severe	
COVID-	19	 (Del	Valle	et	al.,	2020;	Lu	et	al.,	2021).	Here,	we	found	
that	 elevated	 expression	 of	 IL-	8	 (also	 named	CXCL8)	 and	 IL-	27	 in	
aged	 COVID-	19	 patients	 (q =	 0.013;	 Figure	 2h).	 As	 IL-	8	 is	 a	 pro-	
inflammatory	 cytokine	 via	 recruiting	 and	 activating	 neutrophils	
(Bickel,	1993),	 its	elevation	is	consistent	with	our	previously	noted	
elevated	neutrophil	count	and	NLR	in	hospitalized	aged	COVID-	19	
patients	(Figure	1d).	Furthermore,	younger,	but	not	aged,	COVID-	19	
ICU	patients	also	showed	elevated	IL-	10	(Figure	2h),	a	key	feature	of	
cytokine	storm	(Huang	et	al.,	2020;	Zhao	et	al.,	2020).	 In	addition,	
elevated	IL-	6	was	observed	in	both	younger	(q =	0.020)	and	aged	ICU	
patients,	 (q =	0.002),	compared	with	non-	ICU	patients	 (Figure	2h).	
Altogether,	severe	COVID-	19	patients	show	distinct	age-	related	cy-
tokine	profiles:	 (a)	Aged	COVID-	19	patients	in	hospitalization	have	
elevated	level	of	IL-	6,	IL-	8,	and	IL-	27,	while	(b)	younger	patients	with	
ICU	have	elevated	IL-	6	and	IL-	10	expression.	These	results	indicate	
that	 heterogeneous	 inflammatory	 cytokine	 expression	 between	
aged	and	younger	COVID-	19	patients	may	mediate	age-	related	hos-
pitalization	and	ICU	admission.

2.4  |  Reduced naïve CD8 T cells in aged severe 
COVID- 19 patients

Because	we	observed	loss	of	CD8	naïve	T	cells	and	T	effector	mem-
ory	cells	in	hospitalized	aged	COVID-	19	patients	(Figure	2	b,	d),	we	
examined	 a	 publicly	 available	 single-	cell	 transcriptomic	 dataset	 of	
CD8	T	cells	from	25	severe/critical	COVID-	19	patients	(aged	n = 12; 
younger n =	 13)	 (Stephenson	 et	 al.,	 2021)	 in	 order	 to	 search	 for	
aging-	related	molecular	mechanisms	in	a	cell	type-	specific	manner.	
Uniform	Manifold	Approximation	and	Projection	(Becht	et	al.,	2019)	
(UMAP)	analysis	revealed	five	distinct	CD8	sub-	clusters	(Figure	3a	
and	Figure	S3)	based	on	biomarkers	provided	from	the	original	 lit-
erature	(See	Method,	Stephenson	et	al.,	2021),	including	naïve	CD8,	
T	central	memory	(Tcm),	Tem,	CD8	proliferation,	and	CD8	terminal	
effector	T	cell	(also	designated	as	TEMRA,	Thome	et	al.,	2014).	We	
found	that	aged	and	younger	patients	with	severe	COVID-	19	showed	
age-	dependent	immune	pathway	profiles	across	five	CD8	subtypes.	
For	example,	type	I	and	II	IFN	signaling	showed	decreased	effect	in	
CD8	naïve	T	cells,	CD8	Tem,	and	CD8	proliferation	T	cells	isolated	

from	PBMC	 in	aged	severe	COVD-	19	patients,	not	 in	younger	pa-
tients	(Figure	3b).	In	addition,	the	antigen	processing	and	presenta-
tion	pathway	showed	decreased	effect	in	CD8	Tem	and	CD8	TEMRA	
in	aged	patients	as	well.	Our	finding	indicates	that	type	I	and	II	IFN	
signaling and antigen processing and presentation pathways are 
age-	related	 immune	 pathways	 associated	 with	 COVID-	19	 disease	
severity.	Yet,	Th17	cell	differentiation	pathway	of	CD8	TEMRA	and	
exhaustion	consensus	of	CD8	T	proliferation	cells	were	activated	in	
both	aged	and	younger	patients	with	severe	COVID-	19.

We	 next	 turned	 to	 investigate	 the	molecular	 network	 in	 CD8	
naïve	T	 cells.	Comparing	 to	 severe	 young	COVID-	19	patients,	 up-	
regulated	genes	(q <	0.05,	log-	fold	change	>0.1)	in	CD8	naïve	T	cells	
from	aged	patients	formed	a	network	module	(the	largest	connected	
component)	 in	the	human	protein–	protein	 interactome	(Figure	3c).	
This	age-	specific	network	module	was	significantly	enriched	in	sev-
eral	pathways,	including	apoptosis	(q =	0.013),	human	T-	cell	leukemia	
virus	1	infection	(q =	0.013),	and	TNF	signaling	(q =	0.014;	Figure	3c).	
In	particular,	the	apoptosis	gene	cathepsin	D	(Cocchiaro	et	al.,	2016)	
(CTSD)	was	highly	expressed	in	naïve	CD8	T	cells	from	aged	severe	
COVID-	19	patients	 (q < 2.0 × 10−16).	Down-	regulated	genes,	 such	
as	interferon-	stimulated	genes	IFITM3 and TRIM22,	in	CD8	naïve	T	
cells	from	aged	COVID-	19	patients	were	enriched	in	type	I	and	II	IFN	
signaling	pathways	(Figure	3c).	 In	addition,	the	transcription	factor	
STAT1,	an	important	downstream	factor	in	type	I	and	II	IFN	signaling	
pathways	(Hu	&	Ivashkiv,	2009),	was	down-	regulated	in	CD8	naïve	
T	cells	 in	aged	COVID-	19	patients	 (Figure	3c).	Notably,	 the	SARS-	
CoV-	1	NSP1	protein	impedes	type	I	and	II	IFN	signaling	(Matsuyama	
et	al.,	2020)	by	attenuating	STAT1	phosphorylation	(Wathelet	et	al.,	
2007).	Thus,	IFN	deficiencies	in	CD8	naïve	T	cells	may	contribute	to	
increased	severity	of	COVID-	19	disease	in	aged	patients.

2.5  |  Interferon deficiencies correlate with SARS- 
CoV- 2 viral load in aged patients

To	 further	 investigate	 the	 relationship	 between	 viral	 load	 and	
COVID-	19	 disease	 severity,	we	 analyzed	 bulk	 RNA-	seq	 data	 from	
nasopharyngeal	 samples	 (Lieberman	 et	 al.,	 2020)	 (see	 Methods).	
Consistent	with	our	findings	in	naïve	CD8	T	cells,	expression	levels	
of	 IFNα	genes	 (IFNA1,	 IFNA5,	 IFNA7,	and	 IFNA8)	were	significantly	
decreased	in	aged	patients	with	high	viral	load	(Figure	4a).	In	addi-
tion,	the	expression	of	IFNG was decreased in aged patients with low 
viral	 load	 (Figure	S4a).	Notably,	we	 found	 that	 the	 IFN-	stimulated	
antiviral	genes	(Sadler	&	Williams,	2008),	including	IFIT1 and OAS1 
(2'-	5'-	oligoadenylate	synthetase	1),	were	down-	regulated	in	aged	pa-
tients	with	a	higher	viral	load	(Figure	4b).	Next,	we	performed	gene	
set	enrichment	analysis	 (GSEA,	 see	Methods)	 for	differentially	ex-
pressed genes in aged vs. younger individuals with a higher viral load 
and	found	downregulation	of	genes	in	the	innate	immune	pathways	
(q <	0.05;	Figure	4b)	of	RIG-	I	like	receptor	signaling,	Toll-	like	recep-
tor	 signaling,	 and	 NOD-	like	 receptor	 signaling	 in	 aged	 COVID-	19	
patients.	 RIG-	I-	like	 receptors	 senses	 SARS-	CoV-	2	 RNA	 and	 sub-
sequently	 type	 I	 IFN	production	 (Onomoto	et	al.,	2010);	however,	
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F I G U R E  3 Single-	cell	transcriptome	of	CD8	T	cells	in	aged	COVID-	19	patients.	(a)	UMAP	plot	displays	five	identified	CD8	T-	cell	
subpopulations.	The	single-	cell	transcriptomic	dataset	(25	of	Severe\Critical	COVID-	19	patients,	aged	n =	12,	younger	n =	13)	was	collected	
from	a	recent	study	(Stephenson	et	al.,	2021)	(Table	S1	and	Method).	(b)	Pathway	enrichment	analysis	across	five	CD8	T-	cell	subtypes.	Black	
circle indicates q <	0.05.	(c)	A	highlighted	protein–	protein	interaction	subnetwork	for	age-	biased	differentially	expressed	genes	in	CD8	naïve	
T	cells	from	patients	with	critical	COVID-	19.	The	colors	for	nodes	and	edges	represent	different	immune	pathways
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SARS-	CoV-	2	has	evolved	several	mechanisms	to	blunt	IFN	induction,	
including	the	direct	targeting	of	MDA5	(melanoma	differentiation-	
associated	protein	5),	a	RIG-	I-	like	receptor,	by	the	viral	papain-	like	
protease	(PLpro)	(Liu	et	al.,	2021).	Furthermore,	IFN	potently	inhib-
its	IL-	8	expression	(Aman	et	al.,	1993)	in	viral	infection,	and	we	also	
showed	 that	 aged	 COVID-	19	 patients	 with	 high	 viral	 load	 exhibit	
elevated	plasma	IL-	8	(p =	0.005,	Mann–	Whitney	U	test;	Figure	4c).	
Notably,	 up-	regulated	 genes	 in	 aged	 patients	 with	 high	 viral	 load	
were	not	enriched	in	immune	pathways	(Figure	4b	and	Figure	S4b),	
indicating	decreased	immune	ability	in	response	to	SARS-	CoV-	2	in-
fection.	Taken	together,	our	data	show	that	IFN	deficiency	is	associ-
ated	with	elevated	SARS-	CoV-	2	viral	load	in	aged	patients.

2.6  |  Age- dependent increased expression of 
SARS- CoV- 2 entry factors

We	 next	 investigated	 age-		 and	 cell	 type-	specific	 expression	 of	
SARS-	CoV-	2	entry	factors	using	a	single-	cell	RNA-	sequencing	data-
set	(Chua	et	al.,	2020)	(scRNA-	seq,	see	Methods)	from	nasal	tissue	
of	 critical	 (n =	 11)	 and	 moderate	 COVID-	19	 patients	 (n =	 8,	 see	
Methods).	 In	total,	the	scRNA-	seq	dataset	contained	115,895	cells	
across	15	well-	annotated	cell	types	within	two	main	cell	populations:	
epithelial	cells	(six	cell	types)	and	immune	cells	(nine	cell	types).

We	 found	 that	 secretory	 and	 ciliated	 cells	 in	 aged	 COVID-	19	
patients	 display	 reduced	 abundance	 of	 angiotensin-	converting	
enzyme-	2	 (ACE2),	 a	 key	SARS-	CoV-	2	docking	 receptor	 (Yan	et	 al.,	
2020)	 (Figure	 4d).	 However,	 the	 more	 recently	 identified	 SARS-	
CoV-	2	docking	receptor	basigin	(Wang	et	al.,	2020)	(BSG	or	CD147)	
was	expressed	in	95%	of	secretory	cells	 in	aged	patients	with	crit-
ical	 COVID-	19	 (Figure	 4d	 and	 Table	 S6);	 furthermore,	 BSG	 and	
CD147	showed	elevated	expression	 in	Treg	 (regulatory	T	cell)	 and	
CD8	T	cells	(Figure	4d)	as	well.	We	also	found	that	the	S	protein	prim-
ing	proteases	TMPRSS2	 (Hoffmann	et	al.,	2020)	and	FURIN	 (Zhao	
et	al.,	2020)	were	highly	expressed	in	epithelial	cells	 in	critical	and	
moderate	COVID-	19,	with	no	differences	between	aged	and	young	
patients	 (Figure	4d	and	Table	S6).	However,	FURIN	levels	were	 in-
creased	in	several	immune	cell	types,	including	Treg	and	CD8	T	cells,	
in	aged	patients	with	critical	COVID-	19	(Figure	4d).	Taken	together,	
our	 results	 suggest	 that	 elevated	 expression	 of	 two	 SARS-	CoV-	2	
factors	(BSG	and	FURIN)	in	Treg	and	CD8	T	cells	may	contribute	to	
the	increased	susceptibility	of	aged	patients	to	COVID-	19.

2.7  |  Increased immune– epithelial cell interactions 
in aged COVID- 19 patients

To	 further	 investigate	 the	 immunological	 mechanisms	 underlying	
age-	associated	 COVID-	19	 outcomes,	 we	 performed	 Gene-	set	 en-
richment	analysis	(GSEA)	to	explore	transcriptomic	signatures	on	22	
immune	pathways	across	15	cell	types	derived	from	nasal	tissue	(see	
Methods).	Here,	we	observed	distinct	 immune	responses	between	
older	and	younger	 individuals	with	critical	or	moderate	COVID-	19	
(Figure	 S6)	 in	 epithelial	 and	 immune	 cell	 types.	We	 further	 used	
CellphoneDB	 (Efremova	 et	 al.,	 2020)	 to	 quantify	 ligand–	receptor	
interactions	between	epithelial	and	 immune	cells	and	found	an	el-
evated	number	of	significant	 ligand–	receptor	 interactions	 involved	
in	 immune–	epithelial	 interactions	 (q <	0.05,	permutation	test	with	
BH	multiple	testing	correction	(Benjamini	&	Hochberg,	1995),	Table	
S7)	in	aged	patients	with	critical	COVID-	19	(Figure	5a).	In	addition,	
we	also	found	a	stronger	immune–	epithelial	cell	interaction	network	
in	aged	patients.	In	particular,	we	noted	that	secretory-	non-	resident	
macrophages	 (nrMa)	 displayed	 the	 highest	 connection	 with	 other	
cell	types	in	aged	patients	with	critical	COVID-	19	(Figure	5a).

We	 next	 analyzed	 ligand–	receptor	 interactions	 of	 secretory/
ciliated– immune cells in aged and younger patients with critical 
COVID-	19	 (Figure	 5b).	 We	 found	 elevated	 expression	 of	 TGF-	β 
genes	(TGFB1,	TGFB2,	and	TGFB3)	and	their	interacting	partners	(i.e.,	
TGFBR2 and TGFBR3,	q <	0.05;	Figure	S7	and	Table	S7)	in	nrMa	cells	
and	Treg.	Of	note,	TGF-	β has previously been shown to regulate the 
chronic	 immune	response	 to	SARS-	CoV-	2	 in	severe	COVID-	19	pa-
tients	 (Ferreira-	Gomes	 et	 al.,	 2021).	 Thus,	 TGF-	β-	mediated	 strong	
secretory and nrMa cell interaction may explain the longer duration 
of	hospitalization	in	aged	COVID-	19	patients	(Figure	S1b).

We also observed distinct immune– epithelial cell interactions 
in	younger	COVID-	19	patients.	For	example,	secretory	and	CD8	T	
cells	expressed	high	levels	of	several	ligand–	receptor	pairs,	including	
HLA-	B–	KIR3DL2,	TNF–	RIPK1,	and	TNF–	PTPRS	(q <	0.05,	permuta-
tion	test),	and	secretory	and	Neu	cells	highly	co-	expressed	CXCL2/3	
and	CXCR2	(q <	0.05,	permutation	test).	In	addition,	we	found	that	
secretory/ciliated–	CD8	T	 cells	 showed	a	 similar	 IFNG–	IFNGR	pat-
tern,	while	 the	 expression	 level	 in	 aged	 patients	was	much	 lower	
(Figure	5b).	In	particular,	secretory/ciliated–	CD8	T-	cell	interaction	in	
younger	patients	showed	strong	IFNG–	IFNGR	interaction	compared	
to	aged	patients	with	moderate	COVID-	19	(Figure	S6).	In	summary,	
these observations revealed that immune– epithelial cell interactions 

F I G U R E  4 Analysis	of	SARS-	CoV-	2	viral	load	and	related	entry	gene	expression	in	nasal	tissues.	(a)	Volcano	plot	showing	the	differential	
genes	of	bulk	RNA-	sequencing	data	in	aged	versus	younger	patients	in	high	viral	load	nasal	tissues.	A	publicly	available	bulk	RNA-	seq	dataset	
of	147	nasal	samples	(Lieberman	et	al.,	2020)	was	used,	including	61	aged	patients	(high	[n =	27]	and	low	[n =	34]	viral	load)	and	86	younger	
patients	(high	[n =	46]	and	low	[n =	40]	viral	load).	(b)	Gene-	set	enrichment	analysis	(GSEA)	of	22	immune	pathways	for	differential	genes	of	
aged	vs.	younger	in	high	or	low	viral	load	subgroups.	The	gradient	color	bar	shows	the	NES	score	(see	Method).	NES	score	>0 and q < 0.05 
indicate	that	up-	regulated	differential	expressed	genes	(DEGs)	in	aged	vs.	young	are	significantly	enriched	in	immune	pathways,	while	NES	
score <0 and q <	0.05	indicate	down-	regulated	DEGs	in	aged	vs.	young	are	significantly	enriched	in	immune	pathways.	Black	dots	denote	
q <	0.05.	(c)	Boxplot	showing	the	lab	testing	data	changes	in	aged	and	younger	COVID-	19	patients	with	high	(>4.5	log10	RNA	copies/ml)	and	
low	(<4.5	log10	RNA	copies/ml)	viral	load(Pekosz	et	al.,	2021;	Yang,	Jiang,	et	al.,	2020).	(d)	SARS-	CoV-	2-	related	entry	gene	expression	profile	
across	15	cell	types	of	nasal	tissue	between	aged	and	younger	patients.	The	size	of	dot	denotes	the	percentage	of	the	positive	cell	which	
expressed	the	tested	genes.	The	gradient	color	bar	represents	the	z-	score	scaled	average	expression	of	genes	in	each	cell	type
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F I G U R E  5 Distinct	epithelial-	immune	cell	interaction	profile	in	aged	and	younger	patients	with	critical	COVID-	19.	(a)	Heatmap	showing	
the	total	log-	scaled	interaction	number	between	epithelial–	immune	cells	in	critical	COVID-	19	disease.	Aged	group,	n =	3	patients,	younger	
group,	n =	5	patients.	The	cell–	cell	interaction	network	depicted	all	significant	cell	pairs	in	which	the	number	of	ligand–	receptor	interaction	
>50	(permutation	test	with	BH	multiple	testing	correction,	q <	0.05).	Edge	size	denotes	the	number	of	significant	ligand–	receptor	
interactions	between	two	cell	types.	Different	colors	indicate	the	immune	or	epithelial	cell	types.	(b)	Dot	plot	showing	significant	ligand–	
receptor	interactions	between	epithelial–	immune	cell	interaction	in	critical	COVID-	19	disease.	The	circle	size	indicates	-	log10(q),	and	gradient	
color	bar	shows	the	log2-	scaled	means	of	average	expression	of	interacted	cell	pair
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are	associated	with	critical	COVID-	19	in	aged	patients.	In	particular,	
reduced	expression	of	IFNR	signaling	is	associated	with	greater	se-
verity	of	COVID-	19	in	aged	individuals	(Figure	4a).

3  |  DISCUSSION

This	 study	 provides	 a	 comprehensive	 analysis	 of	 immune	 profiles	
in	aged	and	younger	COVID-	19	patients	using	large,	electronic	pa-
tient	data	from	the	CDC	and	the	Cleveland	Clinic	Registry	database.	
Previous	epidemiologic	studies	have	identified	age	as	an	important	
risk	factor	for	severe	COVID-	19	(O'Driscoll	et	al.,	2021;	Williamson	
et	al.,	2020;	Wingert	et	al.,	2021),	and	our	large	COVID-	19	registry	
data	further	confirmed	the	elevated	likelihood	of	severe	COVID-	19	
in	 aged	 individuals	 even	 after	 adjusting	 for	 sex,	 race,	 smoking,	
and	multiple	disease	 comorbidities	 (Figure	1c).	Using	 the	available	
laboratory	 testing	 data	 at	 the	Cleveland	Clinic	 COVID-	19	 registry	
database,	 we	 found	 that	 aged	 severe	 COVID-	19	 patients	 showed	
elevated	levels	of	D-	dimer,	CRP	(Figure	1d),	and	NLR	(Figure	1e).	D-	
dimer,	CRP,	and	NLR	are	inflammatory	markers	associated	with	se-
verity	and	death	in	COVID-	19	(Cai	et	al.,	2021;	Xu	et	al.,	2020).	These	
new	findings	that	the	increased	incidence	and	severity	of	COVID-	19	
are	significantly	associated	with	elevated	inflammation	motivate	us	
to	 further	 identify	 age-	related	 immune	 cell	 subpopulations	 using	
large-	scale,	 single-	cell	 transcriptomics	data	 from	the	patients	with	
varying	degrees	of	biology	and	clinical	characteristics	of	COVID-	19.

Currently,	Delta	 is	 the	dominant	variant	of	SARS-	CoV-	2	 in	 the	
United	States.	Thus,	we	further	 inspected	the	odds	ratio	of	hospi-
talization	in	COVID-	19	patients	who	carried	different	variants	from	
children	to	aged	populations	using	the	CDC	dataset	since	1	January	
2021	(Figure	S1c).	We	found	that	younger	COVID-	19	patients	carried	
Delta	variant	were	significantly	associated	with	the	increased	likeli-
hood	of	hospitalization.	However,	we	observed	no	significant	differ-
ence	on	hospitalization	rate	of	COVID-	19	patients	in	both	children	
and	aged	groups	during	the	Delta	variant	prevalence	period.	There	
are	several	possible	explanations.	Fully	vaccinated	rate	of	≥65	years	
aged	individuals	(85.8%)	is	15%	higher	than	that	of	younger	individ-
uals	 (70.3%)	 since	11	November	2021	 (https://covid.cdc.gov/covid	
-	data-	track	er/#vacci	natio	ns_vacc-	total	-	admin	-	rate-	total).	 Children	
under	 10	 years	 have	 much	 lower	 incidence	 of	 COVID-	19	 (Irfan	
et	al.,	2021).	Further	investigation	of	unique	immune	mechanisms	of	
children	under	the	resilience	of	COVID-	19	may	provide	novel	age-	
specific	mechanisms	in	the	future.

Via	deep	immune	cell	profiling	data	analysis,	we	identified	dis-
tinct	 immune	responses	 in	younger	and	aged	COVID-	19	patients	
(Figure	6).	For	example,	both	younger	and	aged	COVID-	19	patients	
showed	 increased	 ncMono	 cells	 and	 elevated	 IL-	6	 (Figure	 2	 and	
Figure	6),	while	only	aged	COVID-	19	patients	displayed	elevated	
plasma	 IL-	8	 and	 IL-	27	 (Figure	 2h).	 IL-	6	 is	 a	 potential	 therapeutic	
target	since	it	is	a	critical	mediator	of	cytokine	storm	in	COVID-	19	
(Zhang,	Wu,	et	al.,	2020).	However,	a	recent	phase	III	clinical	trial	
(NCT04320615)	showed	no	reduced	mortality	in	severe	COVID-	19	
patients	 treated	 with	 the	 anti-	IL-	6R	 monoclonal	 antibody	

tocilizumab	 (Rosas	 et	 al.,	 2021).	 Younger	 COVID-	19	 patients	 in	
the	ICU	also	showed	significantly	higher	IL-	10	(Figure	2h).	Our	ob-
servations	suggest	 that	 targeting	 IL-	10	might	 reduce	mortality	 in	
younger	patients	with	severe	COVID-	19.	Furthermore,	an	anti-	IL-	8	
drug	 (BMS-	986253)	 is	 under	 testing	 for	 COVID-	19	 patients	 in	 a	
Phase	2	clinical	trial	 (ClinicalTrials.gov	Identifier:	NCT04347226).	
Therefore,	our	findings	suggested	that	age	is	an	important	biolog-
ical	variable	in	evaluation	of	clinical	benefits	of	anti-	IL-	8	interven-
tion trials.

We	 also	 found	 reduced	 lymphocytes	 in	 hospitalized	 aged	
COVID-	19	patients	(Figure	1d).	In	particular,	the	abundance	of	naïve	
CD8	T	cells	was	decreased	in	aged	patients	with	severe	COVID-	19	
(Figure	2d).	Reduction	of	naïve	CD8	T	cell	is	a	hallmark	of	immunose-
nescence	 in	 older	 individuals	 (Goronzy	 et	 al.,	 2015),	 and	 through	
scRNA-	seq	data	analysis,	we	observed	significant	enrichment	of	up-	
regulated	apoptosis	genes	in	CD8	naïve	T	cells	from	aged	COVID-	19	
patients.	Mechanistically,	the	apoptosis	driver	gene	CTSD	(Cocchiaro	
et	al.,	2016)	is	significantly	elevated	in	naïve	CD8	T	cells	from	aged	
severe/critical	COVID-	19	patients	compared	with	younger	patients	
(q < 2.0 × 10−16).	Thus,	modulation	of	CD8	naïve	T-	cell	dysfunction,	
especially	targeting	apoptosis	pathway	(Chu	et	al.,	2021),	may	pro-
vide	a	new	treatment	strategy	for	severe	COVID-	19	in	aged	patients.

IFN-	mediated	immunity	provides	initial	rapid	protection	against	
viral	infection	(McNab	et	al.,	2015),	and	about	3.5%	of	patients	with	
life-	threatening	 COVID-	19	 show	 genetic	 aberrations	 in	 the	 type	 I	
IFN	pathway	(Zhang,	Bastard,	et	al.,	2020).	A	recent	genetic	study	
in	European	ancestry	revealed	that	the	cis-	protein	quantitative	trait	
loci	 (pQTL,	rs4767027)	 in	OAS1	 (an	IFN-	stimulated	gene)	were	sig-
nificantly	associated	with	decreased	likelihood	of	COVID-	19	suscep-
tibility	and	severity	(Zhou	et	al.,	2021).	Herein,	we	found	that	aged	
individuals	with	severe	COVID-	19	show	reduced	expression	of	type	I	
IFN	genes	(Figures	3b,c,	4a,	and	5b).	Notably,	aged	patients	with	high	
SARS-	CoV-	2	viral	load	show	reduced	expression	of	OAS1 and IFNA1,	
IFNA5,	and IFNA7	 (Figure	4a)	compared	with	younger	patients.	On	
the	 contrary,	 aged	 patients	with	 high	 SARS-	CoV-	2	 viral	 load	 have	
elevated	expression	of	the	pro-	inflammatory	cytokine	IL-	8	and	de-
creased	lymphocyte	cell	counts	in	plasma	(Figure	4c),	demonstrating	
dysregulation	of	cytokine	responses	that	has	been	well	described	for	
COVID-	19	(Acharya	et	al.,	2020).	Of	note,	the	dysregulated	cytokine	
response	is	likely	the	effect	of	a	variety	of	immunomodulatory	strat-
egies	employed	by	SARS-	CoV-	2	that	are	used	to	manipulate	specific	
signaling	pathways	that	lead	to	cytokine	induction	such	as	the	RIG-	I-	
like	receptor	pathway.	Now,	there	are	more	than	40	ongoing	clinical	
trials	(https://clini	caltr	ials.gov/)	to	test	 interferon-	related	therapies	
for	potential	 treatment	of	COVID-	19.	Our	 findings	 suggested	 that	
interferon-	related	therapies	may	provide	more	clinical	benefits	for	
older	individuals	with	COVID-	19.

Although	aged	adults	show	 increased	susceptibility	 to	SARS-	
CoV-	2	infection	compared	to	children	(Davies	et	al.,	2020),	we	did	
not	find	differences	in	SARS-	CoV-	2	viral	load	in	the	upper	airways	
between	younger	and	aged	patients	(Figure	S8).	Using	large-	scale	
scRNA-	seq	 data	 analysis,	 we	 did	 find,	 however,	 that	 the	 SARS-	
CoV-	2	 entry	 genes	 (ACE2,	 BSG,	 TMPRSS2,	 FURIN,	 and	 NPR1)	

https://covid.cdc.gov/covid-data-tracker/#vaccinations_vacc-total-admin-rate-total
https://covid.cdc.gov/covid-data-tracker/#vaccinations_vacc-total-admin-rate-total
https://clinicaltrials.gov/
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showed	 cell	 type-	specific	 expression	 profiles	 in	 both	 aged	 and	
younger	 individuals.	 In	aged	patients	with	critical	COVID-	19,	 the	
expression	of	BSG	was	 increased	 in	 secretory,	 nrMa	 and	CD8	T	
cells,	 and	 elevated	 expression	 of	 FURIN	was	 found	 in	 Treg	 and	
CD8	T	 cells.	 Thus,	 cell	 type-	specific	 host	 factor	 expression	may	
play	an	important	role	in	age-	mediated	disease	susceptibility	and	
severity	in	COVID-	19.

We	 also	 identified	 age-	specific	 increases	 in	 immune–	epithelial	
cell	 interactions.	 For	 example,	 we	 found	 strong	 TGF-	β-	mediated	
immune–	epithelial	 cell	 interactions	 in	 aged	 severe	 COVID-	19	 pa-
tients	(Figure	5b	and	Figure	S7).	TGF-	β plays a crucial role in pulmo-
nary	fibrosis	(Khalil	et	al.,	1991;	Lee	et	al.,	2001),	which	is	a	common	
complication	 in	 severe	 COVID-	19	 patients	 (Leeming	 et	 al.,	 2021).	
The	 nucleocapsid	 protein	 of	 SARS-	CoV-	1	 also	 upregulates	 TGF-	β 
expression	(Zhao	et	al.,	2008).	Thus,	TGF-	β-	targeted	therapies	may	
provide	 better	 clinical	 benefits	 for	 aged	 patients	 with	 COVID-	19.	
We	 additionally	 identified	 receptor-	interacting	 serine/threonine	
kinase	1	 (RIPK1)-	mediated	 immune–	epithelial	 cell	 interactions	 (se-
cretory/ciliated–	CD8	 T-	cell	 pairs)	 in	 younger	 patients	with	 critical	
COVID-	19.	RIPK1	 is	a	key	mediator	of	 inflammation	 (Mifflin	et	al.,	
2020),	and	a	RIPK1	inhibitor	(SAR443122)	has	been	tested	in	a	phase	

I	 clinical	 trial	 (ClinicalTrials.gov	 Identifier:	 NCT04469621)	 to	 treat	
tissue	damage	resulting	from	inflammation	in	severe	COVID-	19	pa-
tients.	Altogether,	RIPK1	inhibitors	(Riebeling	et	al.,	2021)	may	offer	
a	potential	treatment	for	young	COVID-	19	patients,	such	as	COVID-	
19-	related	multisystem	inflammatory	syndrome	in	children	(MIS-	C)	
(Rowley,	2020).

Lastly,	 we	 acknowledge	 the	 potential	 limitations	 of	 our	 study.	
Although	 we	 inspected	 omics	 data	 from	 multiple	 tissues,	 includ-
ing	PBMCs,	 plasma,	 and	nasal	 tissues,	 additional	 analysis	 of	 other	
COVID-	19	and	aging	relevant	tissues,	such	as	lung	and	brain,	should	
be	 investigated	 in	 the	 future.	 In	 addition,	our	COVID-	19	database	
and	omics	data	were	generated	from	acute	COVID-	19	patients,	and	
identification	of	the	underlying	genetic	and	molecular	basis	of	aging	
differences	 for	 long-	haul	 COVID-	19	 patients	will	 be	 an	 important	
area	 of	 future	 investigation	 (Sudre	 et	 al.,	 2021).	 As	 the	 inconsis-
tent	 correlation	 between	 RNA	 expression	 and	 protein	 expression	
(Buccitelli	 &	 Selbach,	 2020),	 further	 investigation	 of	 differential	
protein	 expression	 of	 ACE2,	 BSG	 receptors,	 and	 the	 TGF-	β using 
proteomics	 data	 is	 highly	warranted	 in	 the	 future	 studies.	 Finally,	
investigation	 of	 COVID-	19	 vaccine	 responses	 between	 aged	 and	
young	patients	is	also	warranted	in	the	future.

F I G U R E  6 Proposed	mechanistic	models	for	age-	biased	COVID-	19	severity	in	aged	individuals.	Several	age-	related	pathophysiologic	
immune	responses	are	associated	with	disease	susceptibility	and	severity	in	COVID-	19:	a)	decreased	lymphocyte	count	and	elevated	
inflammatory	markers	(C-	reactive	protein	[CRP],	D-	dimer,	and	neutrophil–	lymphocyte	ratio);	b)	elevated	pro-	inflammation	cytokines	IL-	8,	
IL-	27,	and	IL-	6	in	aged	COVID-	19	patients;	c)	reduced	abundance	of	naïve	CD8	T	cells	with	decreased	expression	of	antiviral	defense	genes	
(i.e.,	IFITM3 and TRIM22)	in	aged	individuals	with	severe	COVID-	19;	d)	type	I	interferon	deficiency	is	associated	with	SARS-	CoV-	2	viral	load	
in	aged	individuals;	e)	elevated	expression	of	SARS-	CoV-	2	entry	factors	(BSG and FURIN)	and	reduced	expression	of	antiviral	defense	genes	
(IFNAR1,	OAS1,	IFIT1)	in	the	secretory	cells	of	critical	COVID-	19	in	aged	individuals;	f)	strong	TGF-	beta-	mediated	immune–	epithelial	cell	
interactions	(i.e.,	secretory—	nrMa)	in	aged	individuals	with	critical	COVID-	19
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4  |  E XPERIMENTAL PROCEDURES

“Younger”	was	defined	as	18	to	55	years	of	age,	and	“aged”	was	de-
fined	as	≥65	years	old.

4.1  |  U.S. CDC COVID- 19 epidemiological data

Publically	accessible	COVID-	19	death	counts	 in	54	states	and	 ter-
ritories	in	United	States	were	downloaded	from	the	CDC	Web	site	
(https://data.cdc.gov/NCHS/Provi	siona	l-	COVID	-	19-	Death	-	Count	
s-	by-	Sex-	Age-	and-	S/9bhg-	hcku/data)	on	23	December	2020	(Table	
S1).	 Publically	 accessible	 statistics	 of	 influenza	 mortality	 across	
10	flu	seasons	(November	2010–	2020)	in	United	States	was	down-
loaded	 from	 CDC	 Web	 site	 (https://catal	og.data.gov/datas	et/
death	s-	from-	pneum	onia-	and-	influ	enza-	pi-	and-	all-	death	s-	by-	state	
-	and-	regio	n-	natio	nal-	center-	)	on	20	June	2020.	Both	COVID-	19	and	
influenza	datasets	 include	 three	age-	stratified	groups:	0–	17	years,	
18–	64	years,	65	years,	and	older.	These	datasets	were	used	for	epi-
demiological	prevalence	analysis	of	COVID-	19	and	influenza.

We	collated	U.S.	COVID-	19	Case	Surveillance	Public	Use	Data	
from	 the	 CDC	 website	 (https://healt	hdata.gov/datas	et/covid	
-	19-	case-	surve	illan	ce-	publi	c-	use-	data)	 from	December	 2019	 to	 28	
December	2020.	This	dataset	includes	age-	stratified	COVID-	19	case	
counts	 in	hospitalization,	 ICU	admission,	death,	 sex,	 and	 race.	We	
extracted	 two	 age	 subgroups	 from	 all	 laboratory-	confirmed	 cases	
using	the	following	criteria:	i)	the	age	range	of	younger	group	from	
20	to	49	years	and	the	age	range	of	older	group	over	than	60	years	
(Table	S2);	ii)	deletion	of	all	cases	in	which	sex	and	race	information	
was	missing.	In	total,	the	younger	subgroup	includes	2,369,919	cases,	
with	 94,161	 in	 hospitalization,	 9138	 in	 ICU	 admission,	 and	 6469	
death	cases.	The	older	subgroup	has	1,048,011	cases	in	total,	with	
243,109	 in	 hospitalization,	 29,671	 in	 ICU	 admission,	 and	 124,566	
death	cases.	This	dataset	was	used	to	determine	OR	analysis.

4.2  |  COVID- 19 registry database

We	 used	 institutional	 review	 board–	approved	 COVID-	19	 registry	
data,	including	45,077	individuals	(12,651	aged	patients	and	32,426	
younger	 patients;	 Table	 S3)	 tested	 during	 March	 to	 December,	
2020	from	the	Cleveland	Clinic	Health	System	in	Ohio	and	Florida.	
All	 tested	 samples	 were	 pooled	 nasopharyngeal	 and	 oropharyn-
geal	 swab	 specimens.	 Infection	 with	 SARS-	CoV-	2	 was	 confirmed	
by	 RT-	PCR	 in	 the	 Cleveland	 Clinic	 Robert	 J.	 Tomsich	 Pathology	
and	Laboratory	Medicine	 Institute.	 In	 total,	12,304	patients	 (aged	
n =	3559,	younger	n =	8745)	tested	COVID-	19	positive	by	the	end	of	
December	2020.	All	SARS-	CoV-	2	testing	was	authorized	by	the	Food	
and	Drug	Administration	under	an	Emergency	Use	Authorization,	in	
accord	with	 the	guidelines	established	by	 the	Centers	 for	Disease	
Control	and	Prevention.

The	 data	 in	 COVID-	19	 registry	 include	 COVID-	19	 test	 re-
sults,	 baseline	 demographic	 information,	 and	 all	 recorded	 disease	

conditions	(Table	S3).	We	conducted	a	series	of	retrospective	studies	
to	test	the	association	of	aging	with	COVID-	19	outcomes,	including	
hospitalization,	 ICU	 admission,	 mechanical	 ventilation,	 and	 death.	
Data	were	extracted	from	electronic	health	records	(EPIC	Systems),	
and	 patient	 data	 were	 managed	 using	 REDCap	 electronic	 data	
capture	tools.	To	ensure	data	quality,	a	study	team	trained	on	uni-
form	sources	for	the	study	variables	manually	checked	all	datasets.	
Statistical	 analysis	 for	 smoking,	 hypertension,	 diabetes,	 coronary	
artery	disease	asthma,	and	emphysema	and	COPD	was	calculated	
after	missing	value	deletion.

4.3  |  Clinical outcome analysis

The	OR	was	used	 to	measure	 the	 association	between	COVID-	19	
outcomes	and	aging	based	on	logistic	regression.	An	OR	>1 indicates 
that	aged	patients	are	associated	with	a	higher	likelihood	of	the	out-
come.	To	reduce	the	bias	from	confounding	factors,	we	employed	OR	
analysis	in	two	datasets.	For	U.S.	CDC	datasets,	the	OR	model	was	
adjusted	by	sex	and	race,	due	to	 limited	 information	of	other	con-
founding	factors.	However,	 in	 the	COVID-	19	registry,	we	adjusted	
for	sex,	race,	smoking,	hypertension,	diabetes,	coronary	artery	dis-
ease,	 asthma,	 emphysema,	 and	COPD.	The	Kaplan–	Meier	method	
was	 used	 to	 estimate	 the	 cumulative	 hazard	 of	 hospitalization	 of	
COVID-	19	patients	across	age	groups.	For	hospitalization	outcome,	
the	time	was	calculated	from	the	start	date	of	COVID-	19	symptoms	
to	hospital	admission	date.	Log-	rank	test	was	used	for	comparison	
across	 different	 age	 groups	with	 Benjamini	 and	Hochberg	 adjust-
ment	 (Benjamini	 &	 Hochberg,	 1995).	 Cumulative	 hazard	 analysis	
was	performed	using	the	Survival	and	Survminer	packages	in	R	3.6.0	
(https://www.r-	proje	ct.org).

4.4  |  Public available COVID- 19 multi- omics 
datasets used in this study

Detailed	information	of	the	list	datasets	shown	in	Table	S1.

4.5  |  Two single- cell sequencing datasets

In	this	study,	we	used	two	COVID-	19	single-	cell	datasets	(Table	S1).	
1)	The	CD8+	T-	cell	dataset	(Stephenson	et	al.,	2021)	is	a	sub-	dataset	
from	original	PBMC	single-	cell	data.	We	re-	analyzed	59,815	single-	
cell	 transcriptomes	 of	 CD8	 T	 cells,	 which	 revealed	 5	 distinct	
CD8	sub-	clusters	 (Figure	3a),	 including	CD8	naïve	 (CCR7+,	 LEF1+),	
Tcm	(GZMK+,	LTB+,	CCR7−),	Tem	(GZMK+,	CCR7−),	CD8	proliferation	
(MKI67),	and	CD8	T	terminal	effector	cell	(also	named	CD8	TEMRA	
(Thome	 et	 al.,	 2014),	 HLA-	DRB1+,	 GZMB+,	 GNLY+,	 LAG3+).	
Based	on	our	aging	criteria,	 the	critical/severe	COVID-	19	patients	
were	grouped	to	aged	(n =	12)	and	younger	patients	(n =	13).	2)	A	
single-	cell	dataset	from	nasal	tissues	(Chua	et	al.,	2020)	 (European	
Genome-	phenome	 Archive	 repository:	 EGAS00001004481)	 was	

https://data.cdc.gov/NCHS/Provisional-COVID-19-Death-Counts-by-Sex-Age-and-S/9bhg-hcku/data
https://data.cdc.gov/NCHS/Provisional-COVID-19-Death-Counts-by-Sex-Age-and-S/9bhg-hcku/data
https://catalog.data.gov/dataset/deaths-from-pneumonia-and-influenza-pi-and-all-deaths-by-state-and-region-national-center
https://catalog.data.gov/dataset/deaths-from-pneumonia-and-influenza-pi-and-all-deaths-by-state-and-region-national-center
https://catalog.data.gov/dataset/deaths-from-pneumonia-and-influenza-pi-and-all-deaths-by-state-and-region-national-center
https://healthdata.gov/dataset/covid-19-case-surveillance-public-use-data
https://healthdata.gov/dataset/covid-19-case-surveillance-public-use-data
https://www.r-project.org
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from	 COVID-	19-	positive	 patients	 (11	 critically	 ill	 patients	 and	
8	moderately	ill	patients).	Based	on	our	aging	criteria,	we	extracted	
a	 subpopulation	 from	 the	original	 cohort.	 The	 final	COVID-	19	 co-
hort	 used	 in	 this	 study	 included	8	 critically	 ill	 patients	 (5	 younger	
and	3	older	patients)	and	7	moderately	 ill	patients	 (4	younger	and	
3	 older	 patients).	 As	 the	 original	 dataset	 supplied	 cell	 type	 infor-
mation,	additional	analysis	was	based	on	cell	type	annotation.	The	
dataset	contained	115,895	cells	across	15	cell	 types	 (B	cell,	Basal,	
Ciliated,	Ciliated-	diff,	CD8	T	cell,	moDC,	Neu,	NKT,	NKT-	p,	nrMa,	
rMa,	Secretory,	Secretory-	diff,	Squamous,	and	Treg).

4.6  |  Bulk RNA- sequencing dataset in nasal tissue 
(Lieberman et al., 2020)

The	 dataset	 was	 publically	 available	 from	 NCBI	 GEO	 database	
(GSE152075).	 Based	 on	 original	 meta-	information,	 we	 extracted	
COVID-	19-	positive	sample	data	with	high	or	low	viral	load,	deleting	
samples	 in	which	 sex	 and	 age	 information	were	missing.	 147	bulk	
RNA-	seq	samples	were	used	in	this	study,	including	61	aged	patients	
(high	viral	load	n =	27,	low	viral	load	n	=34)	and	86	younger	patients	
(high	viral	load	n =	46,	low	viral	load	n =	40).

4.7  |  SARS- CoV- 2 viral load dataset (Fajnzylber et 
al., 2020)

We	quantified	 SARS-	CoV-	2	 RNA	 load	 from	5	 specimen	 types,	 in-
cluding	 upper	 airway	 specimens	 (oropharyngeal	 swab	 [detectable	
percentage	was	67%],	nasopharyngeal	 [detectable	percentage	was	
50%],	 sputum	 [detectable	 percentage	 was	 85%]),	 plasma	 [detect-
able	 percentage	was	 27%],	 and	 urine	 [detectable	 percentage	was	
10%]).	We	selected	hospitalized	patients	with	at	least	one	COVID-	
19-	positive	test	among	upper	airway	or	plasma	specimens.	Finally,	
72	patients	were	used	for	correlation	analysis	between	age	and	viral	
loading.	43	patients	(older	patients	n =	18,	younger	patients	n =	25)	
with	SARS-	CoV-	2	RNA	detectable	testing	in	upper	airway	were	used	
to	analyze	the	change	of	clinical	inflammatory	variables	in	both	aged	
and	 younger	 groups.	 In	 our	 study,	 54	 patients	 tested	 positive	 for	
plasma	SARS-	CoV-	2	RNA,	 including	21	patients	with	 SARS-	CoV-	2	
RNA	(aged	patients	n =	13).	There	were	35	SARS-	CoV-	2	RNA	unde-
tectable	patients	(aged	patients	n =	7).

4.8  |  Circulating cell flow cytometry datasets 
(Takahashi et al., 2020)

This	dataset	 included	12	major	 immune	cell	 types	as	a	percentage	
of	PBMC	and	32	T-	cell	 subtypes	 as	 a	 percentage	of	CD3-	positive	
cells	through	flow	cytometry	(Table	S5).	It	also	detected	the	plasma	
concentration	 of	 71	 cytokines	 through	 cytokine	 array.	 Based	 on	
our	 age	 criteria,	 the	 dataset	 included	 81	 hospitalized	 patients,	 40	
with	longitudinal	data.	When	the	second	follow-	up	time	of	a	patient	

was	 greater	 than	7	 days,	 it	was	 recorded	 as	 two	 samples.	Hence,	
114	samples	were	analyzed,	which	included	94	older	samples	(non-	
ICU	n =	 66,	 ICU	=	 26)	 and	50	 younger	 samples	 (non-	ICU	n =	 37,	
ICU	=	13).

4.9  |  Single- cell sequencing data analyses

All	 single-	cell	 data	 analyses	 and	 visualizations	 were	 performed	
with	 the	 R	 package	 Seurat	 v3.1.4	 40.	 The	 data	 quality	 filtering	
was	 strictly	 followed	 by	 the	 original	 literature	 (Chua	 et	 al.,	 2020;	
Ren	et	 al.,	 2021).	 “NormalizeData”	was	used	 to	normalize	 the	data.	
“FindIntegrationAnchors”	and	“IntegrateData”	functions	were	used	to	
integrate	cells	from	different	samples.	Principal	component	analysis	
(PCA)	and	Uniform	Manifold	Approximation	and	Projection	(UMAP)	
with	15	principal	components	were	used.	A	resolution	of	0.5	was	used	
in	 “FindClusters()”	 step.	 “FindAllMarkers”	 function	 with	 the	MAST	
test	was	employed	as	the	finding	maker	method	for	each	cell	type.

4.10  |  Cell– cell interaction analysis

Cell–	cell	 interaction	 analysis	was	 based	 on	 normalized	 expression	
data	of	known	ligand–	receptor	pairs	in	15	cell	types	of	nasal	single-	
cell	sample.	The	analysis	was	performed	by	CellPhoneDB	(Efremova	
et	al.,	2020)	v2.1.4	(https://github.com/Teich	lab/cellp	honedb)	based	
on	 the	python	3.7	platform.	Statistical	 analysis	mode	was	used	 to	
identify	significant	ligand–	receptor	pairs	in	each	cell	number.	A	per-
mutation	test	 (1000	randomizations)	with	BH	multiple	 testing	cor-
rection	was	used	to	evaluate	the	significance.

4.11  |  Bulk RNA- sequencing data analysis

All	 bulk	 RNA-	sequencing	 data	 analysis	 started	 from	 raw	 counts	
value.	R	package	edgeR	 (Robinson	et	al.,	2010)	v3.12	was	used	 to	
analyze	differentially	expressed	genes	in	older	vs.	younger	groups.	
Correction	 for	 sex	 and	 batch	 effects	was	 added	 into	 the	 formula	
of	design	model.	Statistical	significance	p-	values	were	adjusted	by	
BH	 (q	 value)	method	 (Benjamini	&	Hochberg,	 1995).	Differentially	
expressed	genes	were	 identified	as	adjusted	p-	value	(q)	<0.05 and 
log-	fold	change	>0.5.

4.12  |  Immune gene set enrichment analysis

To	 evaluate	 the	 immune	 pathway	 profiles	 in	 young	 and	 aged	
COVID-	19	patients,	GSEA	was	 conducted	 as	previously	described	
(Subramanian	 et	 al.,	 2005).	 Immune	 gene	 profiles	 were	 retrieved	
from	 the	 KEGG	 database	 (Kanehisa	 et	 al.,	 2017).	We	 selected	 22	
immune-	related	 pathways	 and	 1241	 genes	 from	 KEGG	 belonging	
to	 the	 immune	system	subtype.	For	each	cell	 type,	we	performed	
a	GSEA	on	the	list	of	differential	expressed	genes	(DEGs)	ranked	by	

https://github.com/Teichlab/cellphonedb
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the log2FC.	The	normalized	enrichment	score	(NES,	Equation	1)	was	
calculated	for	22	immune	pathways	in	young	and	aged	specific	gene	
sets	(Figure	4b),

in	which	ES	(Subramanian	et	al.,	2005)	denotes	enrichment	score.	
Normalization	of	the	enrichment	score	reduced	the	effect	of	the	
differences	 in	 gene	 set	 size	 and	 in	 correlations	 between	 gene	
sets	and	 the	expression	dataset.	NES	score	>0 and q < 0.05 in-
dicate	that	up-	regulated	DEGs	in	aged	vs.	young	are	significantly	
enriched	in	immune	pathways,	while	NES	score	<0 and q < 0.05 
indicate	down-	regulated	DEGs	in	aged	vs.	young	are	significantly	
enriched	in	immune	pathways.	Permutation	test	(1000	times)	was	
performed	 to	 evaluate	 the	 significance.	 All	 analyses	 were	 per-
formed	 with	 the	 prerank	 function	 in	 GSEApy	 package	 (https://
gseapy.readt	hedocs.io/en/maste	r/index.html)	 on	 Python	 3.7	
platform.

4.13  |  Statistical analysis

Statistical	 tests	 for	 assessing	 categorical	 data	 through	 chi-	square	
test	 and	 the	 two-	tailed	Mann–	Whitney	U test were used to com-
pare	 the	 difference	 in	 continuous	 variable	 by	 aged	 vs.	 younger.	
Spearman's	ρ	was	assessed	for	correlation	between	two	variables.	
Statistical	 significance	 level	was	 set	 at	q < 0.05 and corrected by 
Benjamini–	Hochberg	 (false	 discovery	 rate)	 method.	 All	 statistical	
analysis	was	performed	by	SciPy	Statistics	 (https://docs.scipy.org/
doc/scipy/	refer	ence/stats.html#modul	e-	scipy.stats).
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