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The ongoing global COVID-19 pandemic has resulted in 
over 210 million SARS-CoV-2 infections and over 4.4 mil-
lion deaths worldwide1. The coronavirus family of enveloped 

viruses causes respiratory and enteric tract infections in avian and 
mammalian hosts2. Seven well characterized human coronavi-
ruses3–5 exhibit symptoms ranging from mild respiratory illness to 
severe pneumonia and acute respiratory distress syndrome. These 
coronaviruses are either highly transmissible yet generally not 
highly pathogenic (for example HCoV-229E and HCoV-OC43) 
or highly pathogenic but poorly transmissible (SARS-CoV-1 and 
MERS-CoV). Unique from these, SARS-CoV-2 is both highly trans-
missible and capable of causing severe disease with infectivity and 
pathogenesis differing between individuals6,7. While ~25–35% of 
infected individuals experience only mild or minimal symptoms, 
~1–2% of infected patients die primarily from severe respiratory 
failure and acute respiratory distress syndrome8,9. Differences in 
morbidity, hospitalization and mortality among different ethnic 
groups10–15 are not fully explained by cardiometabolic, socioeco-
nomic or behavioral factors, suggesting a role for human genetic 
variation in SARS-CoV-2 pathogenicity. Insights into the evolution 
of SARS-CoV-2, its elevated transmission relative to SARS-CoV-1 
and dynamic range of symptoms have been key areas of interest. 
These traits are likely driven by molecular mechanisms of pathol-
ogy, including interactions between the virus and its host, but spe-
cific causes are yet to be fully characterized.

Networks of protein–protein interactions between pathogens 
and their hosts provide one avenue to understand mechanisms of 
infection and pathology. Viral–human interactome maps have been 
compiled for SARS-CoV-1 (ref. 16), HIV17, Ebola virus18 and Dengue 
and Zika viruses19 among others. Recent, affinity-purification mass 
spectrometry experiments on 29 SARS-CoV-2 proteins identified 
332 viral–human interactions20. Interspecies interactions contrib-
ute to disease progression by facilitating pathogen entry into host 

cells21–26, inhibiting host response proteins and pathways27–29 and 
hijacking cell signaling or metabolism to accelerate cellular (and 
consequentially viral) replication30–32. Structures and dynamics of 
these interactions can provide insights into their roles. For instance, 
the viral–human binding interface between poxvirus chemokine 
inhibitor vCCI and human MIP-1β is shown to occlude domains 
vital to chemokine homodimerization, receptor binding and inter-
actions with GAG, thus explaining the inhibitory effect of poxvirus 
on chemokine signaling29. Additionally, the dynamics of a herpes-
virus cyclin and human CDK2 interaction induce a conformational 
change on CDK2 that matches its interaction with human cyclin A, 
leading to dysregulated cell cycle progression31.

Because protein–protein interactions mediate the majority of 
protein function33–35, targeted disruption by small-molecule inhibi-
tors that compete for the same binding site provide a precise toolkit 
to modulate cellular function33,35–38. For instance, BCL-2 inhibitors 
that displace bound anti-apoptotic BCL-X interactors can treat 
chronic lymphocytic leukemia pathogenesis39. This approach can be 
particularly effective in viral networks and several potent inhibitors 
of key interactions have been developed. Disruption of viral com-
plexes involved in viral replication has been successful in vaccinia 
virus40 and human papilloma virus therapies41,42. Specifically, dis-
ruption of viral–host protein–protein interactions involved in early 
viral infection is an important therapeutic strategy. Discovery that a 
population variant in the membrane protein CCR5 conferred resis-
tance to HIV-1 by disrupting its interaction with the viral envelope 
glycoprotein led to the development of Maraviroc as a US Food and 
Drug Administration-approved treatment for HIV-1 that functions 
by blocking the interface for this interaction23,43.

Here we apply a full-interactome modeling framework to con-
struct a three-dimensional (3D) structural interactome between 
SARS-CoV-2 and human proteins. Our framework first applies 
our previous ECLAIR framework44 to identify interface residues 
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for the whole SARS-CoV-2–human interactome and leverages 
these predictions to guide atomic-resolution interface modeling 
and docking in HADDOCK45,46. We additionally carried out in 
silico scanning mutagenesis in PyRosetta47 to predict the impact of 
mutations on interaction binding affinity and explored the overlap 
between protein–protein and protein–drug binding sites. All results 
from our 3D structural interactome are provided as a user-friendly 
web server allowing exploration of individual interactions or bulk 
download and analysis of the whole dataset. We further explore the 
utility of our 3D interactome modeling approach in identifying key 
interactions undergoing evolution along viral-protein interfaces, 
highlighting population variants on human interfaces that could 
modulate the strength of viral–host interactions to confer protec-
tion from or susceptibility to COVID-19 and prioritizing drug can-
didates predicted to bind competitively at viral–human interaction 
interfaces, some of which could potentially be used for therapeutic 
purposes. Cumulatively these predictions and analyses are intended 
as a resource to facilitate investigation and further characterization 
of SARS-CoV-2–human interactions.

Results
Enrichment of variation on the spike–ACE2-binding interface. 
We highlight the utility of computational and structural approaches 
to model the SARS-CoV-2–human interactome, from the inter-
action between the SARS-CoV-2 spike protein (S) and human 
angiotensin-converting enzyme 2 (ACE2) (Fig. 1a). This interac-
tion mediates viral entry into human cells3 and is among the only 
viral–human interactions solved in both SARS-CoV-1 (ref. 48) and 
SARS-CoV-2 (refs. 49–51). Recent sequence divergences of the S pro-
tein are highly enriched at the S–ACE2 interaction interface (Fig. 1a; 
log2odds ratio (OR) = 2.82, P = 1.97 × 10−5), indicating functional 
evolution around this interaction. We predicted the impact of these 
mutations on the binding affinity (ΔΔG) between the SARS-CoV-1 
and SARS-CoV-2 versions of the S–ACE2 interaction using the 
Rosetta energy function52 (Fig. 1b,c). The negative ΔΔG value of 
−14.66 Rosetta Energy Units (REU) indicates an increased bind-
ing affinity using the SARS-CoV-2 S protein driven by better opti-
mized solvation and hydrogen bonding potential fulfillment. Our 
result is consistent with the hypothesis that increased stability of 
the S–ACE2 interaction contributes to the elevated transmission of 
SARS-CoV-2 (ref. 53). Experimental kinetics assays have confirmed 
that compared to SARS-CoV-1, SARS-CoV-2 S protein binds ACE2 
with 10–20-fold higher affinity54, supporting the conclusions from 
our computational modeling.

A wide range in severity of and susceptibility to SARS-CoV-2 
exists between individuals6,7,55. Genetic predisposition hypoth-
eses explaining this range include both expression-regulating and 
protein-coding variants56,57. For instance, an RNA-sequencing 
analysis suggested higher expression of ACE2 in Asian males could 
facilitate viral entry and explain increased susceptibility among 
this population58. Alternatively, missense population variants in 
ACE2 could strengthen or weaken the S–ACE2 interaction, thereby 
modulating susceptibility to infection. We used a mutation scan-
ning pipeline in PyRosetta59,60 to predict the impact of six missense 
variants reported in gnomAD61 that occur on the S–ACE2 interface 
(Fig. 1d). The three variants with the largest predicted impact on 
S–ACE2 binding affinity (ACE2_E37K (ΔΔG = 1.50), ACE2_M82I 
(ΔΔG = 2.95) and ACE2_G326E (ΔΔG = 5.74)) were consistent 
with previous experimental screens identifying them as putative 
protective variants exhibiting decreased binding of ACE2 to S62,63. 
Our results highlight utility for a 3D structural interactome model-
ing approach in identifying interactions and mutations important 
for viral infection, pathogenesis and transmission.

Constructing the 3D structural SARS-CoV-2–human interac-
tome. To facilitate similar investigation and hypothesis development 

at the full-interactome scale, we next compiled a comprehensive 3D 
structural interactome between SARS-CoV-2 and human proteins 
based on 332 viral–human interactions uncovered in an early inter-
actome screen20. First, we modeled SARS-CoV-2 proteins supple-
menting solved structures from the Protein Data Bank (PDB)64 (16 
of 29 proteins) with homology derived from SARS-CoV-1 templates 
(12 of 29 proteins). Homology models added one new structure for 
nsp14 (Extended Data Fig. 1a), while comparison against the avail-
able SARS-CoV-2 PDB structures from the remaining 11 validated 
the quality of our modeling approach (Extended Data Fig. 1b,c). 
For human interactors all models were obtained from the PDB or 
Modbase65 (Extended Data Fig. 2a). We then predicted the inter-
face residues for each interaction using our ECLAIR framework44. 
In total, our pipeline identified 679 interface residues across 21 
SARS-CoV-2 proteins with an average 18.23 residues per interface 
and 5,790 across 189 human proteins with an average 17.4 residues 
per interface.

To provide structural interaction models for visualiza-
tion and downstream analysis we performed guided docking in 
HADDOCK45,46 using our high-confidence ECLAIR-predicted 
interface residues as restraints to refine the search space. To 
avoid potential biases in interface identification from docking 
low-coverage models (Extended Data Fig. 2b) we only performed 
docking for 138 out of 332 interactions for which either (1) at least 
33% of the full-length proteins were covered by available structures 
or (2) available structures included at least one high-confidence 
ECLAIR prediction to use as docking restraint. In total we report 
1,248 docked interface residues across 15 SARS-CoV-2 proteins 
with an average 33.4 residues per interface and 4,604 across 138 
human proteins with an average 32.4 residues per interface. For all 
analyses, docked interface annotations were prioritized over ini-
tial ECLAIR predictions. The full interface annotations from our 
ECLAIR and docking predictions are available in Supplementary 
Tables 1 and 2, respectively.

Benchmarking ECLAIR and guided docking predictions. Our 
specific applications of ECLAIR (for interspecies interactions) and 
HADDOCK (performing data-driven docking with computational 
rather than experimental priors) are unique from those these tools 
were previously validated for. To ensure the robustness and quality 
of these methods for our interface prediction task, we constructed 
a comprehensive human–pathogen PDB benchmark set consisting 
of 509 interactions between a human protein and a viral or bacterial 
interactor (Fig. 2a). The full list of interactions in this benchmark 
set alongside the PDB sources plus true and predicted interfaces are 
provided in Supplementary Table 3.

To validate ECLAIR’s applicability to interspecies interactions, 
we compared its published performance test set of 200 human–
human interactions to its performance on our human–pathogen 
PDB benchmark set. Both tasks achieved comparable performance 
(receiver operating characteristic area under the curve = 0.69 versus 
0.74), although the intraspecies task slightly outperformed inter-
species (Fig. 2b). We note that feature availability between sets (for 
instance, coevolution features can only be calculated for intraspe-
cies interactions) may confound direct comparisons between dif-
ferent interaction sets. Overall, the evaluation of our benchmark 
conclusively shows that ECLAIR retains predictive power for inter-
species interactions.

To evaluate the benefit of using ECLAIR-predicted interfaces 
as restraints in HADDOCK docking, we compared our ECLAIR 
data-driven protocol against a raw protocol with no restraints. 
From the original 509 interspecies interactions, 153 fit our crite-
ria for docking. We compared interface annotations from each 
protocol based on precision and recall (Fig. 2c). Overall inter-
face quality was comparable between both raw and guided proto-
cols (precision = 0.21 versus 0.19, P = 0.15), however, the guided  
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docking better recovered the total interface (recall = 0.21 versus 0.29, 
P = 5.88 × 10−6). Previous evaluation on the HADDOCK framework 
confirms accurate interface predictions can be achieved even if 
the precise binding orientation is not recovered. While our main 
evaluation of interest is correct identification of interface residues, 
by evaluating the root-mean-square deviation (RMSD) between 
docked and reference structures, we further demonstrate that the 
guided docking better recapitulated the true co-crystal structures 
(Fig. 2d; average RMSD = 9.45 versus 11.79, P = 0.04).

Our aim in performing guided docking based on ECLAIR- 
predicted interfaces was to produce atomic-resolution structures 
that reflected our residue-level predictions for use in downstream 
analyses. However, we also hypothesized that docking would be 

effective in expanding accurate interface annotations to nearby 
residues if ECLAIR only identified a few high-confidence inter-
face residues (Fig. 2e). Comparison of the precision and recall  
between ECLAIR and our guided docking (Fig. 2c) is consistent 
with this hypothesis and clearly demonstrates improvement in 
our guided docking approach over both raw docking and ECLAIR 
predictions.

Depletion of human disease mutation at SARS-CoV-2 interfaces. 
We explored evidence of interface-specific variation by mapping 
gnomAD-reported61 human population variants (Supplementary 
Table 4) and sequence divergences between SARS-CoV-1 and 
SARS-CoV-2 (Supplementary Table 5) onto predicted interfaces. 
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Conserved residues generally cluster along protein–protein inter-
faces66 and an analysis of SARS-CoV-2 structure and evolution 
similarly concluded highly conserved surface residues likely drove 
protein–protein interactions67. Consistent with these previous stud-
ies, we observed significant interactome-wide depletion for both 
viral and human variation along predicted interfaces comparable to 
that observed along solved human–human interfaces (Fig. 3a).

Nonetheless, considering each interaction individually, we iden-
tified 11 interaction interfaces enriched for human population vari-
ants (Fig. 3b) and 4 enriched for recent viral sequence divergences 
(Fig. 3c). Supplementary Table 6 provides the log odds enrichment 
values for each interface. Similar to the S–ACE2 interface, a high 
degree of variation on these viral interfaces may indicate recent func-
tional evolution around specific viral–human interactions. Because 
human evolution is slower, enrichment of population variants  

along the human interfaces is unlikely to be a selective response 
to the virus. Rather, interfaces with high population variation may 
represent edges in the interactome most prone to modulation by 
existing variation between individuals or populations. Alternatively, 
enrichment and depletion of variation along the human–viral inter-
faces could help distinguish viral proteins that bind along existing 
(likely conserved) human–human interfaces from those that bind 
using new interfaces (unlikely to be under selective pressure).

To further explore the functional importance of variations within 
human interactors of SARS-CoV-2, we considered phenotypic 
associations reported in HGMD68, ClinVar69 or the NHGRI-EBI 
GWAS catalog70. Interactors of SARS-CoV-2 were enriched for 
phenotypic variants from each database (Fig. 3d). Notably, several 
of the individual disease categories enriched among interactors,  
were consistent with SARS-CoV-2 comorbidities, including heart 
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disease, respiratory tract disease and metabolic disease12,71 (Fig. 3e 
and Supplementary Table 7). Disruption of native protein–protein 
interactions is one mechanism of disease pathology and disease 
mutations are known to be enriched along protein interfaces72,73. 
Variants on predicted human–viral interfaces matched allele fre-
quency distributions of variants off the interfaces, but were con-
sidered overall to be more deleterious by SIFT74 and PolyPhen75 
(Extended Data Fig. 3). However, while we showed that annotated 
disease mutations were significantly enriched along known human–
human interfaces, enrichment was drastically reduced (HGMD) or 
insignificant (ClinVar) on human–viral interfaces (Fig. 3f). This is 
likely because mutations that disrupt human–viral interfaces would 
not disrupt natural cell function and hence would be unlikely to 
manifest as disease phenotypes. Our finding that disease mutations 
and viral proteins affect human proteins at distinct sites is consistent 
with a two-hit hypothesis of comorbidities whereby proteins whose 
function is already affected by genetic background may be further 
compromised by viral infection.

Binding affinity changes from SARS-CoV-1 to SARS-CoV-2. 
Using a PyRosetta pipeline47,59,60 we predicted the impact of sequence 
divergences between SARS-CoV-2 and SARS-CoV-1 on the bind-
ing energy (ΔΔG) of 138 viral–human interactions amenable  

to docking. Although the binding energy for most interactions 
was unchanged, we note that the divergence from SARS-CoV-1 to 
SARS-CoV-2 was biased toward a decreased binding energy (that is 
more stable interaction) (Fig. 4a and Supplementary Table 8). The 
outliers in these ΔΔG predictions may help pinpoint key differ-
ences between the viral–human interactomes of SARS-CoV-1 and 
SARS-CoV-2.

To further explore and validate the biological relevance of 
these predicted changes, we performed yeast two-hybrid (Y2H) 
screens to test 30 human interactors against both SARS-CoV-1 
and SARS-CoV-2 baits. Our Y2H experiments reconstituted 
six of these interactions (20%) using the SARS-CoV-2 bait. 
Extensive previous studies across many species and hundreds of 
well-validated interactions show inherent limits in assay sensitiv-
ity for all high-throughput interaction assays (detection rates span 
15–25%)76–79. This is due in part to inability to match native expres-
sion, proper folding or post-translational modifications under assay 
conditions. Our 20% reproducibility rate (in line with expected 
sensitivity of the Y2H system) indicates good quality of the pub-
lished interactome. In each of the six reproduced interactions we 
predicted no changes in binding affinity between SARS-CoV-2 
and SARS-CoV-1. Consistent with this prediction, each interaction  
was also detected using the SARS-CoV-1 bait (Fig. 4c). Docked 
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Fig. 3 | enrichment of sequence divergences and disease mutations across all SARS-CoV-2–human interaction interfaces. a, enrichment across 
332 human genes interacting with SArS-CoV-2 for viral sequence divergence or human population variants along viral–human (V:H, log2Or = −0.91, 
P = 2.41 × 10−10 by two-sided z-test) human–viral (H:V, log2Or = −0.38, P = 7.92 × 10−13 by two-sided z-test) or human–human (H:H, log2Or = −0.14, 
P = 9.98 × 10−4 by two-sided z-test) interfaces. Data are presented as log2Or ± s.e.m. b,c, Individual enrichments (sorted from most depleted to most 
enriched) for human population variants and viral sequence divergences, respectively on all 332 SArS-CoV-2–human interaction interfaces. Interfaces 
with statistically significant log2Or (by two-sided z-test) are labeled and shown as bars, the remainder are plotted as a line. Data are presented as 
log2Or ± s.e.m. Clusters of SArS-CoV-2 enrichments involving the nsp4 interactions with IDe, NUP210, DNAJC11, TIMM29, TIMM9 and TIMM10 
and nsp2 interactions with GIGYF2, FKBP15, WASHC4, eIF4e2, POr and SLC27A2 were labeled as a group for legibility. d, Percentage of human genes 
that interact with (green, n = 332) or do not interact with (orange, n = 20,018) SArS-CoV-2 that contain disease annotations in HGDM (log2Or = 0.57, 
P = 1.70 × 10−4 by two-sided z-test), ClinVar (log2Or = 0.64, P = 1.05 × 10−4 by two-sided z-test) and GWAS (log2Or = 0.89, P = 4.54 × 10−5 by two-sided 
z-test), respectively. Genes targeted by SArS-CoV-2 proteins were significantly more likely to harbor disease mutations than non-interactors by log odds 
enrichment test. Data presented as percentage ± s.e.m. e, Sample of individual disease terms enriched in human genes targeted by SArS-CoV-2. Full 
results are reported in Supplementary Table 6. Data are presented as log2Or ± s.e.m. f, Comparison of the enrichment of HGDM- or ClinVar-annotated 
mutations on human–viral interfaces or human–human interfaces for 332 genes interacting with SArS-CoV-2. Disease mutations were enriched on 
human–human interfaces (HGMD, log2Or = 0.84, P < 1 × 10−20 by two-sided z-test; ClinVar, log2Or = 0.25, P = 2.9 × 10−3 by two-sided z-test), whereas 
human–viral interfaces showed no or marginal enrichment (HGMD, log2Or = 0.31, P = 0.048 by two-sided z-test; ClinVar, log2Or = 0.15, P = 0.39 by 
two-sided z-test). GWAS category was excluded from this analysis because most lead GWAS single-nucleotide polymorphisms occur in noncoding 
regions. Data are presented as log2Or ± s.e.m.
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models for these interactions suggest sequence divergences between 
SARS-CoV-1 and SARS-CoV-2 occurred away from the interface 
and would be unlikely to affect binding (Fig. 4c).

We additionally performed co-immunoprecipitation (co-IP) 
assays for the interaction between human DNA Primase Subunit 
2 (PRIM2) and SARS-CoV-2 nsp1 (Fig. 4b and Source Data Fig. 4;  
predicted ΔΔG = −17.3 REU). Several deviations in nsp1 were pre-
dicted to cumulatively stabilize this interaction near the edges of 
its interface. Results from co-IP validated our prediction showing 
that SARS-CoV-2 nsp1 was more effective at pulling down human 
PRIM2 than was SARS-CoV-1 nsp1. Moreover, a follow-up quanti-
tative mass spectrometry comparison of SARS-CoV-2, SARS-CoV-1 
and MERS-CoV80 included five interactions that we predicted to be 
more stable in SARS-CoV-2. Consistent with our predictions three 
of these (RNF41-nsp15, PRIM2-nsp1 and SNIP1-N) showed inter-
action preferences for the SARS-CoV-2 protein. Specifically, the 
interaction between RNF41 and nsp15 was exclusively detected 
in SARS-CoV-2. Overall, these independent experimental results 
together with our co-IP result thoroughly validate the accuracy of 
our 3D interactome modeling approach and demonstrate its util-
ity in identifying functional differences between SARS-CoV-1 and 
SARS-CoV-2.

Impact of population variants on binding affinity. We hypothe-
sized the dynamic range of patient responses and symptoms reported 
for SARS-CoV-2 infection can be explained in part by missense 
variations and their impact on viral–human interactions. This is 
consistent with previous reports that up to 10.5% of missense popu-
lation variants can disrupt native protein–protein interactions81 and 
that underlying genetic variation can explain up to 15% of variation 
in patient response and viral load in other viruses, including HIV82. 
To explore this hypothesis we employed a previously benchmarked 
scanning mutagenesis protocol provided through PyRosetta47,59 to 
identify candidate binding energy hotspot mutations for all docked 
interfaces. Out of 2,023 population variants on eligible interfaces, 
we identify 90 (4.4%) as predicted disruptive hotspots and 51 (2.5%) 
as predicted stabilizing hotspots (Fig. 4d).

To validate our predictions for the impact of population variants, 
we generated a Ras GTPase-activating protein-binding protein 2 
(G3BP2) variant, G3BP2_P121T (rs1185000405) using site-directed 
mutagenesis as described previously83. We annotated this variant as 
strongly disruptive (predicted ΔΔG = 10.3 REU) and had confirmed 
earlier that the interaction between N and wild-type G3BP2 could 
be recapitulated using Y2H. Comparing the Y2H results between 
wild-type and mutant G3BP2 confirmed complete disruption of the 
G3BP2–N protein interaction by G3BP2_P121T (Fig. 4e). Analysis 

of the docked models suggests that this disruption is driven by ste-
ric clashes between the mutated residue in G3BP2 and Glu-323 and 
Thr-325 of the N protein. The unfavorable polar interaction and ste-
ric bulk from the hydroxyl side chain of the threonine variant was 
also predicted to induce a rotation in the Trp-330 of N, disrupting 
hydrophobic interaction with Trp-282.

G3BP2 is implicated in cardiovascular diseases84, potentially 
linking this interaction to known comorbidities. Moreover, G3BP2 
alongside G3BP1 is an important target in viral etiology; sequestra-
tion of both proteins by SARS-CoV-2 N protein results in an inhi-
bition of stress granule formation and suppression of host innate 
immune responses85,86. Therefore, the existence of naturally occur-
ring variation disrupting this interaction is of particular interest. 
Although the G3BP2_P121T variant is rare (AF = 0.00043%), it 
may affect SARS-CoV-2 progression in roughly 30,000 individuals 
who carry it worldwide. Overall, our computational and experi-
mental work concretely shows that human population variants 
can modulate the SARS-CoV-2–human interactome network and 
that our interface and energy modeling predictions can help iden-
tify such variants. The full predicted impact of all 2,023 population 
variants along SARS-CoV-2 interaction interfaces is provided in 
Supplementary Table 9 and may inform future studies investigating 
genetic contribution to COVID-19.

Comparing binding sites of drugs and SARS-CoV-2 proteins. 
Drugs that directly interfere with viral–host interactions (for 
instance by competing for the same binding site) could provide 
promising clinical leads to target viral infection or replication. On 
this basis we consider potential for our 3D interactome modeling 
approach to inform drug repurposing strategies. We aimed to fur-
ther prioritize a current candidate set including 76 expert-reviewed 
drugs targeting one or more of the 332 identified human interactors 
of SARS-CoV-2 (ref. 20) on the basis of the potential for competi-
tive binding. We performed protein–ligand docking using smina87 
to identify drug binding sites for 30 out of 76 candidate drug–target 
pairs that have available human receptor structures (Supplementary 
Table 10). Smina, a fork of the widely used AutoDock Vina, com-
petes competitively in pose prediction challenges87 and is validated 
by us to robustly identify the true binding site from the full pro-
tein surface on a published benchmark set of 4,399 experimentally 
solved protein–ligand complexes (Fig. 5a)88.

We compared the overlap of predicted drug binding sites with 
the corresponding docked viral–human interaction interface for 
16 cases with both predictions available. Overall drug binding sites 
were significantly enriched at the interaction interface compared to 
the rest of the protein surface (Fig. 5b; log2OR = 1.38, P = 2.1 × 10−7). 

Fig. 4 | Predicted impact of sequence divergences on the binding affinity of SARS-CoV-2–human interactions. a, Predicted impact of SArS-CoV-1 to 
SArS-CoV-2 sequence divergences on binding affinity from docked structure for 83 applicable SArS-CoV-2–human interactions sorted from largest 
decrease (most stabilized relative to SArS-CoV-2) to largest increase (most destabilized relative to SArS-CoV-1) (mean = −0.57 reU, s.d. = 5.78 reU). 
Interaction labels shown wherever predicted ΔΔG exceeds mean ± (1 × s.d.). b, representative cropped western blots (among three replicates) from co-IP 
comparing the interaction between human PrIM2 with SArS-CoV-1 or SArS-CoV-2 nsp1. More efficient PrIM2 pulldown with SArS-CoV-2 bait validates 
the PrIM2-nsp1 ΔΔG prediction (ΔΔG = −17.3 reU, z score = −2.9). Docked structure for PrIM2 with SArS-CoV-2 nps1 (green and blue cartoon, 
respectively) (bottom). SArS-CoV-1 to SArS-CoV-2 sequence divergences are represented as spheres. Interface residues are colored relative to overall 
ΔΔG contribution ranging from blue (more stabilizing in SArS-CoV-2) to white (little impact on ΔΔG), to red (more stabilizing in SArS-CoV-1). residue 
side chains are shown as sticks in regions with high local ΔΔG. c, representative Y2H results (among three replicates) confirming that six interactions 
with no predicted ΔΔG values can be detected using either SArS-CoV-2 or SASr-CoV viral protein as bait. The docked structure (visualized as in b) for 
human GFer with SArS-CoV-2 nsp10 (ΔΔG = −0.06) is shown to highlight that sequence divergences in these six interactions did not localize near the 
interface. d, Distribution of the predicted changes in binding affinity from scanning mutagenesis for all 2,023 human population variants on SArS-CoV-2–
human interfaces. Values were z score-normalized across each residue type and on each interface. Shaded regions indicate putative interface binding 
energy hotspots annotated as strongly disruptive (z score ≥2, 48 total variants), disruptive (1 ≤ z score <2, 42 total variants), stabilizing (−2 < z score ≤−1, 
25 total variants) or strongly stabilizing (z score ≤−2, 26 total variants). Interior box plot represents the distribution quartiles with whiskers representing 
the most extreme non-outlier values. e, Docked structure between SArS-CoV-2 N protein and human G3BP2, alongside expanded interface views 
comparing the wild-type interface (left) with a predicted strongly disruptive (ΔΔG = 10.3 reU, z score = 2.3) population variant, G3BP2_P121T (right). 
Yeast two-hybrid results confirmed that the G3BP2_P121T variant completely disrupts the G3BP2–N interaction (bottom).
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Individually, we further prioritized eight drugs that exhibited sig-
nificant overlap between the drug- and viral-protein-binding sites 
(Fig. 5c), several of which have been explored by recent indepen-
dent studies. A retroactive association study identified previous 
treatment with metformin as an independent factor associated 
with reduced mortality in diabetic patients89, although a precise  

mechanism was not explored at the time. Ongoing phase 2 and 
phase 4 clinical trials are being conducted or are planned for sil-
mitasertib and valproic acid, respectively (ClinicalTrials.gov identi-
fiers NCT04668209 and NCT04513314).

As an example, we highlight orf9b-MARK3 interaction  
whose interface we predicted could be blocked by ZINC95559591 
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(MRT-68601 hydrochloride) (Fig. 5d,e). MARK3 is a serine/
threonine protein kinase involved in microtubule organization 
with implicated roles in modulating gene expression by activat-
ing histone deacetylation proteins. Our models suggest that both 
ZINC95559591 and orf9b bind and make several polar contacts 
with MARK3 (for example one with Tyr-134) near its active ATP 
site. Consistent with its known role as an inhibitor of MARK3  
(ref. 90) our model shows that ZINC95559591 binds deep within 
the ATP active site of MARK3. By contrast the N-terminal tail of 
orf9b forms looser contact, only entering the periphery of the active 
pocket. Therefore, we suspect that ZINC95559591 may outcompete 
orf9b for this pocket; thus making it a prime candidate to explore 
targeted disruption of SARS-CoV-2–human protein–protein inter-
actions through drug repurposing.

While this example fits our criteria for prioritized drug repur-
posing and competitive binding, it does raise further questions to 
consider. Namely, the functional role of a SARS-CoV-2–human 
interaction (whether the viral protein co-opts versus disrupts native 

human protein function or whether interaction is part of an immune 
response against the virus) is needed to inform potential clinical utility 
of drug repurposing. As both orf9b and ZINC95559591 bind within 
the same MARK3 active site, both may induce an inhibitory effect and 
ZINC95559591 could be counterproductive; even if it outcompetes 
orf9b, it may replace a harmful viral inhibitor with a more potent 
chemical one. In this scenario, exploration of the predicted binding 
sites of SARS-CoV-2 proteins could still help to uncover an inhibitory 
role in viral etiology. Moreover, it may be possible to design analogs of 
inhibitor drugs that retain high binding affinity to their receptor but 
lose their inhibitor activity. Therefore, while these factors may compli-
cate the prospects of drug repurposing, we are optimistic that our 3D 
interactome modeling approach can facilitate understanding of viral 
mechanisms and may aid development of new treatments.

The SARS-CoV-2–human 3D structural interactome web server. 
We constructed the SARS-CoV-2–human 3D interactome web 
server (http://3D-SARS2.yulab.org) to provide our computational 
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predictions and modeling as a comprehensive resource to the pub-
lic. All results and analyses described herein are directly available 
for bulk download or users can quickly navigation through the 
reported interactome to see a summary of our analyses for specific 
interactions of interest (Fig. 6).

The interface comparison panel (Fig. 6 top left) visualizes the 
interface annotation along a linear sequence and provides com-
parison against all other known or predicted interfaces from the 
same protein. This comparison may reveal biologically meaning-
ful insights about the interface overlap and possible competition 
between viral and human interactors.

The mutations panel (Fig. 6 top right) presents information on 
variation within each interaction partner; divergences from the 
SARS-CoV-1 or gnomAD population variants. We provide a log 
odds enrichment or depletion of variation along the interface which 
can help highlight interactions undergoing functional evolution for 
further characterization.

For interactions amenable to docking, the ΔΔG Information panel 
(Fig. 6 bottom left) compiles the predicted impact of all possible  
mutations across the docked interface on binding affinity. Individual 

mutations are colored by their z score normalized ΔΔG prediction 
and can be toggled to only show the impacts of known variants. On 
the viral side, a cumulative ΔΔG value compares binding affinity 
between the SARS-CoV-1 and SARS-CoV-2 versions of the protein.

Finally, the drug panel (Fig. 6 bottom right) describes any drugs 
known to target human proteins and provides information for 
each drug alongside display options for visualizing predicted bind-
ing conformations. The overlap between the drug binding site and 
interface with the viral protein is reported.

The SARS-CoV-2–human 3D structural interactome web server 
currently includes 332 viral–human interactions20. We will continue 
support for the web server with periodic updates as additional inter-
actome screens between SARS-CoV-2 and human are published. As 
we update, a navigation option to select between the current or pre-
vious stable releases of the web server will be provided.

Discussion
Our 3D SARS-CoV-2–human interactome provides a compre-
hensive resource to supplement ongoing and future investigations 
into COVID-19. The analyses provided and discussed throughout  

Fig. 6 | 3D-SARS2 structural interactome browser overview. Overview of the main results page for exploring a given interaction in our 3D-SArS2 structural 
interactome browser. The main display contains information for both the SArS-CoV-2 and human proteins, including structural displays for either the 
docked or single crystal structures as well as a table summarizing the interface residues for both proteins. Interface residues are colored dark blue and dark 
green for the viral and human proteins, respectively. By default, the page will display the docked structure if available. The display can be toggled between 
docked structures and single structures using the button in the bottom middle. When a single structure display is selected residues will instead be colored 
based on the initial eCLAIr interface definition. Four categories of expandable panels containing additional analyses are provided. The interface view shows 
a linear representation of the protein sequence with interface residues annotated in dark blue or dark green (top left). Interfaces for other interactors of 
the protein are shown underneath for easy comparison. The mutations panel summarizes either human population variants or viral sequence divergences 
on the protein (top right). Mutations on the interface are labeled. The ΔΔG information panel summarizes the results from in silico mutagenesis scanning 
along the interface (bottom left). results for each mutation are z score-normalized relative to the rest of the interface and colored blue (negative ΔΔG, 
stabilizing) to yellow (minimal impact) to red (positive ΔΔG, destabilizing). The heat map can be filtered to show only values corresponding to known 
mutations on the interface. The candidate drugs panel shows docking information for any known drug targets of the human protein (bottom right).
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highlight potential applications of these predictions to inform 
structure-based hypotheses regarding the roles of individual inter-
actions and prioritize further functional characterization of evolu-
tionarily relevant interactions, causal links connecting population 
variation with differences in response to infection and drug candi-
dates that may interfere with interaction-mediated disease pathol-
ogy. Our observation that perturbation from underlying disease 
mutations and viral protein binding occur at distinct sites on human 
proteins may warrant further investigation into whether the com-
bined role of these two sources of perturbation is clinically relevant 
to mechanisms of comorbidities.

Although we have experimentally validated several of our pre-
dictions, we emphasize that further experimental characterization 
should be conducted to corroborate any hypotheses derived from 
individual predictions. Moreover, these predictions are not with-
out limitation. Interface predictions may not be applicable to some 
published human targets identified by mass spectrometry20 if they 
represent indirect complex associations rather than direct binary 
interactions76. Further, while structural coverage from SARS-CoV-2 
proteins was robust, per-residue coverage of the human proteome 
is less complete (Extended Data Fig. 2). Though we only performed 
molecular docking for low-coverage structures when strong prior 
ECLAIR interface restraints were available, coverage restrictions can 
nonetheless introduce bias and may prohibit identification of true 
interface residues. Recent advances in protein-folding predictions91–93 
may ameliorate this restriction in the future. In the meantime, initial 
ECLAIR interface annotations (not susceptible to structural cover-
age limitations) may provide orthogonal value to docked models.

Additionally we caution that direct quantitative interpretation 
of Rosetta-predicted ΔΔG values is often difficult. In particular, 
relative importance of scoring function terms may differ between 
proteins and interactions of varying sizes and compositions. For 
these reasons, we only evaluate normalized predictions to compare 
the relative qualitative differences from our scanning mutagenesis 
results. Moreover, because mutated structure optimization focuses 
only on side-chain repacking, our analysis is limited to mutations at 
or near the interface where side-chain repacking can have a direct 
effect. We expect mutations that substantially impact binding affin-
ity through refolding or other allosteric effects exist but cannot be 
captured by our method.

Notably, users can tailor the use of our raw predictions to their 
own interests; thus expanding upon the concepts and applications 
our analyses explore. For instance, we limited investigation of drug-
gable interactions to repurposing known drugs that overlap and 
might disrupt viral–host interactions which we hypothesized would 
elicit the most promising clinical responses. However, this approach 
reduces the scope of the SARS-CoV-2–human interactome to only 
a few interactions that already have known drug candidates. An 
alternative application could prioritize candidate druggable inter-
faces throughout the whole SARS-CoV-2–human interactome by 
overlapping our interface annotations with predictions of druggable 
protein surfaces using recent deep-learning approaches94 with the 
aim of designing new protein–protein interaction inhibitors.

Overall, we believe that our 3D structural SARS-CoV-2–human 
interactome web server (http://3D-SARS2.yulab.org) will prove to 
be a key resource in informing hypothesis-driven exploration of 
the mechanisms of SARS-CoV-2 pathology and host response. The 
scope and potential impacts of our web server will continue to grow 
as we incorporate the results of ongoing and future interactome 
screens between SARS-CoV-2 and human data. Finally, we note our 
3D structural interactome framework can be rapidly deployed to 
analyze future viruses.
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Methods
Generation and validation of SARS-CoV-2 homology models. Homology-based 
modeling of all 29 SARS-CoV-2 proteins was performed in Modeller95 using 
a multiple template modeling procedure consistent with previous high-profile 
homology modeling resources96. In brief, candidate template structures for each 
query protein were selected by running BLAST97 against all sequences in the PDB64 
retaining only templates with at least 30% identify. Remaining templates were 
ranked using a weighted combination of percent identity and coverage described 
previously96. The final set of overlapping templates to use was first seeded with the 
top-ranked template with additional templates being added iteratively if (1) overall 
coverage increase from the template was at least 10% and (2) percent identify of 
the new template was no less than 75% the identity of the initial seed template (that 
is, if the template seed showed 80% identity, additional templates with percent 
identity as low as 60% could be included). Query-template pairwise alignments 
were generated in Modeller using default settings and were manually trimmed to 
remove large gaps (five or more gaps in a ten-residue window). Finally, modeling 
was carried out using the Modeller automodel function.

This approach generated homology models for 18 out of 29 proteins. Based 
on manual inspection of the template quality and sources, homology models 
were further filtered to 12 models for which a high-quality template from a 
SARS-CoV-1 homolog was available. Moreover, during revision of this manuscript, 
newly deposited PDB structures for many SARS-CoV-2 proteins (https://rcsb.org/
covid19) allowed independent validation of homology model quality based on the 
RMSD following alignment and refinement in PyMol98. Visual representations of 
these alignments between modeled and solved structures are provided in Extended 
Data Fig. 1. For all analyses SARS-CoV-2 PDB structures were prioritized where 
available and only the homology model for nsp14 was retained.

Interface prediction using ECLAIR. Interface predictions for all 332  
interactions reported previously20 were made in two phases. In phase one, we 
leveraged our previously validated ECLAIR framework44 to perform initial 
residue-level predictions across all interactions. ECLAIR compiles five sets of 
features: biophysical, conservation, coevolution, structural and docking. In 
brief, biophysical features are compiled using a windowed average of several 
ExPASy ProtScales99, conservation features are derived from the Jensen–Shannon 
divergence100,101 from known homologs for each protein, coevolution features 
between interacting proteins are derived from direct coupling analysis102 and 
statistical coupling analysis103 among paired homologs, structural features are 
obtained by calculating the solvent-accessible surface area of available PDB64 
or ModBase65 models using NACCESS104 and docking features are the average 
interchain distance and surface occlusion per residue from a consensus of 
independent Zdock105 trials.

Slight alterations were made to accommodate SARS-CoV-2–human 
predictions. First, construction of multiple sequence alignment (MSA) for 
statistical coupling analysis and direct coupling analysis calculations require at 
least 50 species containing homologs of both interacting proteins. Therefore, 
coevolution features could not be calculated for interspecies interactions. Second, 
MSAs for conservation features typically only allow one homolog per species. 
Because viral species classifications are less precise and are often subdivided 
into unique strains (and because all higher-order ECLAIR classifiers require 
protein conservation features) we modified the MSAs for viral proteins to include 
homologs from various strains in a single species. The initial prediction results 
from ECLAIR are provided in Supplementary Table 1.

Interface prediction using guided HADDOCK docking. Interface predictions 
for all 332 interactions reported previously20 were made in two phases. In phase 
two, we leveraged high-confidence interface predictions from ECLAIR to 
perform guided docking in HADDOCK45,46. An introduction to protein–protein 
docking in HADDOCK is provided at https://www.bonvinlab.org/education/
HADDOCK-protein-protein-basic/.

In brief, HADDOCK is designed to perform data-driven docking using 
(traditionally experimentally derived) priors about the interface. These data (for 
example scanning mutagenesis) often indicate sets of residues involved in the 
interface but no pairwise information linking interface residues between each 
protein. These residues (termed active residues) are used in conjunction with any 
neighboring surface residues (termed passive residues) to drive rigid body docking, 
by introducing a scoring penalty for any active residue on one protein not in 
proximity of an active or passive residue on the other. This approach is formalized 
as a set of ambiguous interaction restraints (AIRs) that evaluate the distances 
of each active residue to the active or passive residues on the other protein. 
The approach ensures that experimental priors about interface composition 
are enforced, but leaves the exact orientation and pairing of residues flexible to 
HADDOCK’s energy-based scoring function.

To incorporate computational interface predictions from ECLAIR we use 
the standard HADDOCK protein–protein docking framework. Active residues 
are encoded as all high-confidence ECLAIR predictions at the surface (≥15% 
solvent-accessible surface area (SASA)). Passive residues are identified as all surface 
residues (≥40% SASA) within 6 Å of an active residue. For definition of surface 
residues, the 15% SASA cutoff provides consistency with our definition of interface 

residues, whereas the 40% SASA cutoff provides consistency with the typical 
recommendation in HADDOCK. All SASA calculations were carried out using 
NACCESS104 and neighboring residues were selected using PyMol98. Following 
HADDOCK recommendations to reduce computational burden from using many 
restraints, we defined our AIRs using only the α-carbons and increased the upper 
distance limit for from 2 Å to 3 Å. All other HADDOCK run parameters were left 
at the default. In total, 1,000 rigid body docking trials were performed and the  
top-200-scored orientations were retained for subsequent iterations, refinement 
and analysis.

For each interaction we identified available PDB or homology model structures 
to determine whether the interaction should be eligible for docking. Previous 
benchmark evaluations show that HADDOCK performs well using homology 
models, but that performance drops off for models produced from low sequence 
identity templates106. In all cases PDB models were prioritized over homology 
models. We next evaluated risks of using low-coverage structures for protein–
protein docking; using structure fragments that completely exclude the true 
interface residues will produce false interface predictions. We aimed to minimize 
this risk while maximizing the dockable interactome by setting two conditions 
for determining structure eligibility. First, protein structures covering at least 
33% of the total protein length were considered sufficiently large for docking. 
Second, protein structures at least 50 residues in length and containing at least 
one high-confidence ECLAIR-predicted interface residue to use as an active 
residue were made eligible. Inclusion of an ECLAIR-defined active residue gives 
us reasonable confidence that part of the interface is covered and therefore, true 
docked interface predictions should be possible. When multiple structures were 
available for one protein, ranking was based on the sum of ECLAIR scores for all 
residues covered by each structure; we always selected the available structure most 
likely to include the true interface.

In total we performed guided HADDOCK docking on 138 out of 332 
interactions. The remaining 194 interactions did not have reliable 3D models for 
both interactors. The top-scored docked conformation from each HADDOCK 
run was retained. The final docked interface annotations are provided in 
Supplementary Table 2.

Definition of interface residues. We annotated interface residues from 
atomic-resolution docked models, using an established definition for interface 
residues44. The SASA for both bound and unbound docked structures was 
calculated using NACCESS104. We defined an interface residue as any residue that 
is both (1) at the surface of a protein (defined as ≥15% relative accessibility) and 
(2) in contact with the interacting chain (defined by a ≥1.0 Å2 decrease in absolute 
accessibility).

Human–pathogen co-crystal structure benchmark set. We constructed a 
benchmark set of experimentally determined co-crystal structures to evaluate 
the performance of both our ECLAIR and guided HADDOCK docking interface 
predictions on interspecies interactions (Fig. 2a). First, we parsed 165,567 PDB 
structures, identified all interacting chains by interface residue calculation and 
mapped PDB chains to UniProt protein IDs using SIFT74 to identify a total of 
33,242 unique protein–protein interactions. Using taxonomic lineages from 
UniProt we filtered this set to 7,738 interactions involving human proteins, of 
which 6,256 represented human–human intraspecies interactions and 1,482 
represented interspecies interactions between humans and some other species. 
Finally, to provide the most relevant set of interactions that would be biologically 
similar to SARS-CoV-2–human interactions, we considered only interactions 
between human and viral proteins (346) or between human and bacterial proteins 
(163). We refer to this collective set of 509 co-crystal structures as our human–
pathogen PDB benchmark set. The full list of structures and interface annotations 
for this benchmark set is provided in Supplementary Table 3.

To validate performance of ECLAIR predictions on the human–pathogen PDB 
benchmark, ECLAIR predictions were run as described above for SARS-CoV-2–
human interactions. Evaluation of raw prediction probabilities was performed by 
AUROC in Python using scikit-learn and was compared against ECLAIR’s original 
test set containing 200 intraspecies interactions44. Precision and recall metrics 
were calculated based on ECLAIR’s binary definition for high-confidence versus 
non-interface predictions.

To validate HADDOCK guided docking performance using our 
human–pathogen PDB benchmark, we compared performance with a raw 
HADDOCK docking protocol. Guided docking was performed as described for 
SARS-CoV-2–human interactions. No PDB protein chains from the human–
pathogen benchmark were used during docking. For raw HADDOCK docking 
no experimental constraints (AIRs) were provided and the ranair and surfrest 
parameters in the run.cns were set to true. Using these parameters, each rigid dock 
generates one random AIR between one surface residue from each protein A and B, 
which is used to ensure that the two protein chains slide together during docking. 
Overall performance of protocols was evaluated based on precision and recall of 
the true interface (Fig. 2c). Secondary evaluation was conducted based on RMSD 
in PyMol before refinement between the docked and co-crystal structures (Fig. 2d). 
When multiple co-crystal structures were used to define the interfaces, the RMSD 
was reported as the average RMSD against all co-crystal structures.
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Compilation of sequence variation sets. For analysis of genetic variation that may 
impact the viral–human interactome, two sets of mutations were compiled:  
(1) viral mutations and (2) human population variants.

For viral mutations, we identified sequence divergences between SARS-CoV-1 
and SARS-CoV-2 versions of each protein based on alignment. Representative 
sequences for 16 SARS-CoV-1 proteins were obtained from UniProt (Proteome 
ID UP000000354)107,108. Sequences for 29 SARS-CoV-2 proteins were reported 
previously20 and based on GenBank accession code MN985325 (refs. 109,110). 
Notably, UniProt accession codes for the SARS-CoV-1 proteome report two 
sequences for the uncleaved ORF1a and ORF1a-b, which correspond to NSP1 
through NSP16 in SARS-CoV-2. Sequence divergences were reported after pairwise 
Needleman Wench alignment111,112 (using Blosum62 scoring matrix, gap open 
penalty of 10 and gap extension penalty of 0.5) between the corresponding protein 
sequences from each species. A total of 1,003 missense variants were detected 
among 23 SARS-CoV-2 proteins. No suitable alignment form a SARS-CoV-1 
sequence was available for orf3b orf8 or orf10. Additionally orf7b, nsp3 and nsp16 
were excluded because they were not involved in any viral–human interactions. The 
full list of SARS-CoV-2 mutations is reported in Supplementary Table 5.

We obtained human population variants for all 332 human proteins interacting 
with SARS-CoV-2 proteins from gnomAD61. We used gnomAD’s graphQL API 
to run programmatic queries to fetch all missense variants per gene. Details on 
performing gnomAD queries in this manner are available at https://github.com/
broadinstitute/gnomad-browser/tree/master/projects/gnomad-api. We used the 
Ensembl Variant Effect Predictor113 to map gnomAD DNA-level single-nucleotide 
polymorphisms (SNPs) to equivalent protein-level UniProt annotations. After 
Variant Effect Predictor mapping, variants were parsed to ensure the reported 
reference amino acid and position agree with the UniProt sequence and roughly 
4.4.6% of variants that did not match were dropped from our dataset because they 
could not reliably be mapped to UniProt coordinates. In total 127,528 human 
population variants were curated. The full list of human population variants from 
gnomAD is reported in Supplementary Table 4.

Log odds enrichment calculations. To determine enrichment or depletion, ORs 
were calculated as described previously.114

OR =

a/c
b/d

Where, a, b, c and d describe values in a contingency table between case and 
exposure criteria. For a particular application, where we are interested in the 
enrichment of viral mutations or human population variants (case, variant versus 
nonvariant) along predicted interaction interfaces (exposure, interface versus 
non-interface), we would have:

a = number of variant interface residues

b = number of nonvariant interface residues

c = number of variant noninterface residues

d = number of nonvariant noninterface residues

Statistical tests for enrichment or depletion were performed by calculating 
the z-statistic and corresponding two-sided P value for the OR (unadjusted for 
multiple hypothesis testing).

z =

lnOR
√

1
a +

1
b +

1
c +

1
d

All reported ORs were log2 transformed to maintain interpretable symmetry 
between enriched and depleted values. To avoid arbitrary OR inflation or depletion 
from missing data, in all cases where the interface residues were predicted by 
molecular docking, the OR was altered to only account for positions that were 
included in the structural models used for docking.

Curation of disease-associated variants. To explore whether human proteins 
interacting with SARS-CoV-2 proteins were enriched for disease or trait-associated 
variants, three datasets were curated: HGMD68, ClinVar69 and the NHGRI-EBI 
GWAS catalog70. Disease annotations for HGMD and ClinVar were downloaded 
directly from these resources and mapped to UniProt. To calculate enrichment 
of individual disease terms, we reconstructed the disease ontology from NCBI 
MedGen term relationships (https://ftp.ncbi.nlm.nih.gov/pub/medgen/MGREL.
RRF.gz) and propagated counts up through all parent nodes up to a singular root 
node. A meaningful subset of significantly enriched terms were reported using the 
most general term with no more significant ancestor term (Supplementary Table 
7, sheet 1). Raw enrichment values for all terms are also provided (Supplementary 
Table 7, sheet 2).

For curation of disease and trait associations from the NHGRI-EBI GWAS catalog 
(http://www.ebi.ac.uk/gwas/)70, lead SNPs (P value <5 × 10−8) for all diseases/traits 

were retrieved on 16 June 2020. Proxy SNPs in high linkage disequilibrium (LD) 
(parameters, R2 > 0.8; pop, ‘ALL’) for individual lead SNPs were obtained through 
programmatic queries to the LDproxy API115, which used phase 3 haplotype data 
from the 1000 Genomes Project as reference for calculating pairwise metrics of LD. 
Both lead SNPs and proxy SNPs were filtered to retain only missense variants.

In silico scanning mutagenesis and ΔΔG estimation. To explore the importance 
of each SARS-CoV-2–human interface residue and the impact of all possible 
mutations along the interface, we performed in silico scanning mutagenesis. We 
used a setup provided by the PyRosetta documentation (https://graylab.jhu.edu/
pyrosetta/downloads/scripts/demo/D090_Ala_scan.py) designed around an 
approach previously benchmarked to correctly identify nearly 80% of interface 
hotspot mutations59. For consistency, we replaced the PyRosetta implementation’s 
definition of interface residues (≤ 8.0 Å away from partner chain), with our 
definition described above.

We encourage reference to the original well-documented demo for details, 
but in brief, we considered all interface residue positions and began by estimating 
the wild-type binding energy for the interaction. The complex state energy is 
calculated following a PackRotamersMover operation to optimize the side chains 
of residues within 8.0 Å of the interface residue to be mutated. The chains are 
separated 500.0 Å to eliminate any interchain energy contributions and energy for 
the unbound state is calculated the same way. The difference between these two 
values provides the binding energy for the wild-type (WT) structure.

ΔGWT = Ecomplex − Eunbound

To estimate the binding energy for all 19 amino acid mutations possible at the 
given position, each mutation is made iteratively and the ΔGMut is as above using 
the mutated structures. Finally, the change in binding energy from each mutation 
is the difference between these two binding energies.

ΔΔG = ΔGMut − ΔGWT

The scoring function used for these calculations is as described previously59 
using the following weights: fa_atr = 0.44, fa_rep = 0.07, fa_sol = 1.0, hbond_bb_
sc = 0.5, hbond_sc = 1.0. To account for stochasticity of the PackRotamersMover 
optimization between trials, all ΔΔG values are reported from an average of ten 
independent trials. To test whether a mutation had a significantly nonzero impact 
on binding energy, a two-sided z-test between the ten independent trials was 
performed. To account for average impact of other same amino acid mutations at 
other positions along the interface, each average ΔΔG was z-normalized relative to 
the rest of the interface and outliers were called at ≥1 × s.d. away from the mean. 
Mutations that passed both criteria were identified as interface binding affinity 
hotspots. No adjustments were made for multiple hypothesis corrections.

Predicting ΔΔG from SARS-CoV-1 and SARS-CoV-2 divergences. Estimates of 
the overall impact of the cumulative set of mutations between SARS-CoV-1 and 
SARS-CoV-2 were made based on the in silico mutagenesis framework modified 
to introduce multiple mutations at a time. We generated interaction models using 
the SARS-CoV-1 protein by applying all amino acid substitutions between the two 
viruses to initial docked models containing the SARS-CoV-2 protein. A minority of 
mutations that comprised insertions or deletions could not be modeled under this 
framework. The ΔΔG calculation here was identical to the single mutation ΔΔG 
described above, except that side-chain rotamer optimization involved all residues 
within 8.0 Å of any of the mutated residues. The ΔΔG values were calculated 
considering the SARS-CoV-1 as the wild-type such that a negative ΔΔG indicates 
that the interaction is more stable (lower binding energy) in the SARS-CoV-2 
version of the interaction compared to the SARS-CoV-1 version of the interaction:

ΔΔG = ΔGSARSCoV2 − ΔGSARSCoV1

To account for stochasticity between trials for these predictions (which notably 
had a larger impact likely due to the decreased constraints on rotamer optimization 
in these cases), this set of ΔΔG values was reported as an average of 50 trials. 
Outliers for overall binding affinity change from SARS-CoV-1 to SARS-CoV-2 
were called based on similar criteria to the individual mutations, except the z score 
normalization was performed relative to all other interactions.

Protein–ligand docking using smina. To further prioritize 76 previously 
reported candidate drugs targeting human proteins in the SARS-CoV-2–human 
interactome20, we performed protein–ligand docking for, 30 interaction–drug 
pairs (involving 25 unique drugs) that were amenable to docking. For docking, we 
excluded any human protein targets whose structures were below 33% coverage. 
To prep for docking, 3D structures for all ligands were first generated using Open 
Babel116 and the command:

obabel -:”[SMILES_STRING]”--gen3d -opdb -O [OUT_FILE] 
-d

Protein–ligand docking was executed using smina87 with the following 
parameters. The autobox_ligand option was turned on and centered around the 
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receptor PDB file with an autobox_add border size of 10 Å. To increase the number 
of independent stochastic sampling trajectories and increase the likelihood of 
identifying a global minimum, the exhaustiveness was set to 40 and the num_
modes was set to retain the top 1,000 ranked models. To reduce real wall time, each 
docking process was run using five CPU cores (no impact on net CPU time). The 
final smina command used was as follows:

smina -r [RECEPTOR] -l [LIGAND] --autobox_
ligand [RECEPTOR] --autobox_add 10 -o [OUT_FILE] 
--exhaustiveness 40 –num_modes 1000 --cpu 5 --seed 
[SEED]

Each protein–ligand docking command was repeated ten times (essentially 
the same as one trial with exhaustiveness set to 400) with a unique seed to saturate 
the ligand binding search space as thoroughly as possible. We note that a single 
run with exhaustiveness ranging from 30–50 is considered sufficient for most 
applications87. To retain candidate poses covering different low-energy binding 
sites, a final set of up to ten of the best-scoring poses with centers at least 1 Å away 
from one another was selected. Results described in this manuscript are reported 
based the top-ranked pose. Protein residues involved in drug binding sites were 
annotated using the same criteria used to define interface residues. The record type 
for all ligand atoms was first manually changed from HETATM to ATOM because 
NACCESS otherwise excluded ligand atoms from the solvent-accessible surface 
area calculations.

Validation of smina docking to identify drug binding sites. Past evaluation 
of smina shows competitive performance across numerous Community 
Structure-Activity Resources87,88. However, traditional docking evaluation tasks, 
focus on sampling and correctly scoring docked conformations within a single 
known binding site and may frequently restrict the docking space to a few 
angstroms bounding box around the known ligand conformation. The focus is 
on recovering precisely how a ligand orients within a binding site rather than 
identifying the binding site from the whole protein surface.

Because this performance metric may not provide sufficient confidence in 
smina’s ability to identify a binding site from scratch (our application in this 
manuscript) we re-benchmarked smina’s performance using an established drug 
docking benchmark set containing 4,399 protein–ligand complexes representing 
95 protein targets88. We defined true ligand binding site residues from the available 
crystal structure and evaluated the fraction correctly recovered by smina’s 
top-ranked dock across the full protein surface.

Docking was performed as above and evaluated based on both re-docking 
(ligand docked back into the exact receptor structure it came from) and 
cross-docking (ligand docked into an alternate conformation of the receptor it 
came from) conditions. Because the conformation of the binding pocket from an 
alternate receptor may not perfectly accommodate the ligand, cross-docking is 
considered more difficult, but also more representative of real conditions when 
making new predictions.

To provide a reference for whether smina selectively recovered the true binding 
site we calculated a baseline random expectation. Artificial binding sites were 
defined by selecting a single surface residue and its N nearest neighbors, where N is 
the number of binding site residues in the true binding site. The average recovery 
of the true binding site from all such artificial binding sites was used as the null 
expectation for each drug–target pair.

Construction of plasmids for Y2H and co-IP. Clones of all human proteins tested 
were picked from the hORFeome 8.1 library117. Clones for all SARS-CoV-1 and 
SARS-CoV-2 proteins tested were designed to match GenBank entries AY357076 
and MN908947, respectively. To construct plasmids for testing by Y2H, viral genes 
were PCR amplified and cloned into pDEST-AD and pDEST-DB vectors (for Y2H). 
For co-IP, Gateway LR reactions were used to transfer bait SARS-CoV-2 nsp1 
protein into a pQXIP (ClonTech, 631516) vector modified to include a Gateway 
cassette featuring a carboxy-terminal 3× FLAG.

Yeast two-hybrid screens. Y2H experiments were carried out as previously 
described76,81,118 to (1) confirm that SARS-CoV-2–human interactions previously 
detected by IP–mass spectrometry could be recapitulated in Y2H, (2) compare 
the occurrence of interactions using SARS-CoV-1 versus SARS-CoV-2 viral baits 
and (3) profile the disruption of SARS-CoV-2–human interactions by human 
population variants. In brief human and viral clones were transferred into Y2H 
vectors pDEST-AD and pDEST-DB by Gateway LR reactions then transformed 
into MATa Y8800 and MATα Y8930, respectively. For comparisons of interest, 
the viral–human interactions were screened in both orientations; namely viral 
DB-ORF MATα transformants were mated against corresponding human 
AD-ORF MATa transformants and vice versa. All DB-ORF yeast cultures were 
also mated against MATa yeast transformed with an empty pDEST-AD vector 
to screen for autoactivators. Mated transformants were incubated overnight at 
30 °C, before being plated onto selective Synthetic Complete agar medium lacking 
leucine and tryptophan (SC-Leu-Trp) to select for mated diploid yeast. After 
another overnight incubation at at 30 °C, diploid yeast were plated onto two sets 

of SC-Leu-Trp agar selection plates; one lacking histidine and supplemented with 
1 mM of 3-amino-1,2,4-triazole (SC-Leu-Trp-His+3AT), the other lacking adenine 
(SC-Leu-Trp-Ade). After overnight incubation at 30 °C, plates were replica-cleaned 
and incubated again for 3 d at 30 °C for final interaction calling.

Cell culture, co-immunoprecipitation and western blotting. HEK 293T cells 
(ATCC, CRL-3216) were maintained in complete DMEM supplemented with 
10% FBS. Cells were seeded onto six-well dishes and incubated until 70–80% 
confluency. Cells were then transfected with 1 µg of either empty vector, 
SARS-CoV-1 nsp1 or SARS-CoV-2 nsp1, respectively and combined with 10 µl of 
1 mg ml−1 PEI (Polysciences, 23966) and 150 µl OptiMEM (Gibco, 31985-062). 
After 24 h incubation, cells were gently washed three times in 1× PBS and then 
resuspended in 200 µl cell lysis buffer (10 mM Tris-Cl, pH 8.0, 137 mM NaCl, 1% 
Triton X-100, 10% glycerol, 2 mM EDTA and 1× EDTA-free Complete Protease 
Inhibitor tablet (Roche)) and incubated on ice for 30 min. Extracts were cleared by 
centrifugation for 10 min at 16,000g at 4 °C. For co-IP, 100 µl cell lysate per sample 
was incubated with 5 μl EZ view Red Anti-FLAG M2 Affinity Gel (Sigma, F2426) 
for 2 h at 4 °C under gentle rotation. After incubation, bound proteins were washed 
three times in cell lysis buffer and then eluted in 50 μl elution buffer (10 mM 
Tris-Cl pH 8.0, 1% SDS) at 65 °C for 10 min. Cell lysates and co-IP samples were 
then treated in 6× SDS protein loading buffer (10% SDS, 1 M Tris-Cl, pH 6.8, 50% 
glycerol, 10% β-mercaptoethanol and 0.03% bromophenol blue) and subjected to 
SDS–PAGE. Proteins were then transferred from gels onto PVDF (Amersham) 
membranes. Anti-FLAG (Sigma, F1804) and anti-PRIM2 (abcam, ab241990) at 
1:3,000 dilutions were used for immunoblotting analysis.

Cloning human population variants through site-directed mutagenesis. Mutant 
clones containing human population variants were generated using site-directed 
mutagenesis as described previously83. In brief, wild-type G3BP2 was picked from 
the hORFeome 8.1 library117 and used as a template for site-directed mutagenesis. 
Site-specific mutagenesis primers (Eurofins) for mutagenesis were designed using 
the webtool primer.yulab.org. To minimize sequencing artifacts, PCR was limited 
to 18 cycles using Phusion polymerase (NEB, M0530). PCR products were digested 
overnight with DpnI (NEB, R0176) then transformed into competent bacteria 
cells to isolate single colonies. To confirm successful mutagenesis single colonies 
were then hand-picked, incubated for 21 h at 37 °C under constant vibration and 
submitted for Sanger sequencing to ensure the desired single base-pair mutation 
(and no other mutations) had been introduced.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Protein–protein interaction sets and drug–target candidate pairs were obtained 
from data reported previously20. Protein sequences were obtained from UniProt 
and GeneBank. Population variants were mined from gnomAD using their batch 
query API (https://gnomad.broadinstitute.org/api). Disease and phenotypic 
variations were downloaded directly from HGMD, ClinVar and the NHGRI-EBI 
GWAS catalog. The data from these resources were modified and reformatted 
by some post-processing using custom Python scripts. Wherever restrictions on 
relevant data did not apply (for example, HGMD is restricted access) the formatted 
data are provided in the Supplementary Tables accompanying this manuscript or 
through the downloads page for our SARS-CoV-2–human interactome browser 
(http://3D-SARS2.yulab.org/downloads). Homology modeling for SARS-CoV-2 
proteins was performed through a custom script using Modeller (based on their 
multiple templates modeling example https://salilab.org/modeller/manual/node21.
html). Protein structures either presented as raw structures or used as templates in 
homology modeling were obtained from the PDB. Homology models for human 
proteins were obtained from ModBase. Guided protein–protein docking and in 
silico mutagenesis were performed in HADDOCK and PyRosetta respectively 
using these structures. Relevant analysis summaries for these experiments are 
provided in the supplemental tables that accompany this manuscript. Raw.pdb files 
for the original undocked structures and for all docking trials are provided through 
our downloads page (http://3D-SARS2.yulab.org/downloads). We believe that all 
data have been described; however, should any additional piece of data supporting 
the findings of this study later become of interest, the authors will strive to make it 
available upon request. Please address any additional requests or clarifications to 
S.D.W. (sdw95@cornell.edu) and H.Y. (haiyuan.yu@cornell.edu). Source data are 
provided with this paper.

Code availability
Scripts used for guided docking and relevant analyses are available on GitHub 
(https://github.com/hyulab/3D_SARS2) and Zenodo (https://zenodo.org/
record/4987957#.YXAaZRzTVQI). Source data are provided with this paper.
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Extended Data Fig. 1 | Homology modeling for SARS-CoV-2 proteins. a, Homology models for SArS-CoV-2 nsp14 modeled from a high-quality template 
for from SArS-CoV-1 nsp14 (PDB 5C8S:D). The nsp14 homology model was retained and used in downstream computational predictions. b, Quality 
assessment on 11 SArS-CoV-2 models generated using the same method as the nsp14 model. For these 11 proteins solved crystal-structures for the 
SArS-CoV-2 protein were deposited into the PDB during submission and revision of this manuscript and validated the quality of the homology modelling. 
Assessment is based on the on root-mean-square deviation (rMSD) following alignment of the homology model and PDB structure using PyMol. c, Visual 
representation of the alignment between all homology models (magenta) against their available PDB structure (light blue). PDB IDs and chains used for 
both the homology template and the reference PDB structure are indicated.
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Extended Data Fig. 2 | Source and coverage of available protein structures. a, Breakdown of the source of all structures available for the 332 human 
interactors of SArS-CoV-2 as being either a experimentally solved structure from the Protein Data Bank (n = 144) a homology model from Modbase 
(n = 182), or no available structure (n = 6). b, Analysis of the coverage of all available structures for both human (green) and viral (blue) proteins. The 
fraction of structures retained with coverage greater than or equal to a range of coverage thresholds is shown. For our purposes, all available structures 
were used for solvent accessibility feature calculations for eCLAIr predictions, but structures were only retained for docking if either 1) total coverage was 
at least 33% of 2) the structure covered at least one high-confidence interface prediction from eCLAIr.
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Extended Data Fig. 3 | Summary of human population variant frequency and deleteriousness. a, b, Summary of allele frequency for human population 
variants either on (n = 2,925) or off (n = 118,042) the predicted human–viral interface presented as either a raw distribution or a cumulative density 
respectively. Variants in either category had roughly identical allele frequency distributions. Interior boxplots represent the distribution quartiles with 
whiskers representing the most extreme non-outlier values. c, d, equivalent plots to a and b for the distribution of the SIFT deleteriousness scores for 
the same human population variant sets. Plots are colored based on the split between SIFT tolerated and deleterious categories. Population variants 
on the interface were significantly more likely to be classified deleterious by two-sample Kolmogorov-Smirnov test. e, Pie chart breakdown of SIFT 
categories. Pie chart outlines distinguish interface (green) from non-interface (orange). f, g, equivalent plots to a and b for the distribution of the PolyPhen 
deleteriousness scores for the same human population variant sets. Plots are colored based on the split between PolyPhen benign, possibly damaging, 
and probably damaging categories. Population variants on the interface were significantly more likely to be classified deleterious by two-sample 
Kolmogorov-Smirnov test. h, Pie chart breakdown of PolyPhen categories as in e. All p-values based on two-sided two-sample Kolmogorov-Smirnov test.
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