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Abstract

Phosphorylation is one of the most dynamic and widespread post-
translational modifications regulating virtually every aspect of
eukaryotic cell biology. Here, we assemble a dataset from 75
independent phosphoproteomic experiments performed in our
laboratory using Saccharomyces cerevisiae. We report 30,902 phos-
phosites identified from cells cultured in a range of DNA damage
conditions and/or arrested in distinct cell cycle stages. To generate
a comprehensive resource for the budding yeast community, we
aggregate our dataset with the Saccharomyces Genome Database
and another recently published study, resulting in over 46,000
budding yeast phosphosites. With the goal of enhancing the identi-
fication of functional phosphorylation events, we perform compu-
tational positioning of phosphorylation sites on available 3D
protein structures and systematically identify events predicted to
regulate protein complex architecture. Results reveal hundreds of
phosphorylation sites mapping to or near protein interaction inter-
faces, many of which result in steric or electrostatic “clashes”
predicted to disrupt the interaction. With the advancement of
Cryo-EM and the increasing number of available structures, our
approach should help drive the functional and spatial exploration
of the phosphoproteome.
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Introduction

Post-translational modification of proteins by phosphorylation

controls virtually every cellular process. Regulatory mechanisms

based on phosphorylation have been widely explored and

characterized. In classical approaches, phosphorylation sites are

often biochemically identified on substrate proteins of interest and

then mutated to either prevent or constitutively mimic a phosphory-

lation event. The phenotypes associated with these “phosphomu-

tant” proteins inform on the biological purpose of phosphorylation

at that site. In the last 15 years, technological advances in mass

spectrometry, along with the development of enrichment methods

for phosphorylated peptides (Ficarro et al, 2002; Gruhler et al, 2005;

Larsen et al, 2005; Bodenmiller et al, 2007), have greatly expanded

our ability to identify phosphorylation events, leading to large phos-

phoproteomic datasets (Aebersold & Mann, 2003; Olsen et al, 2006;

Olsen et al, 2010; Swaney et al, 2013; Sharma et al, 2014; Bastos de

Oliveira et al, 2015; Hu et al, 2019). However, our ability to probe

the biological relevance of the identified phosphorylation events still

relies on low-throughput methods. As a consequence, the functional

importance of most cataloged phosphorylation events has not yet

been determined (Needham et al, 2019). Notably, given the over-

whelming number of identified phosphorylation events, over

100,000 in the case of a human cell (Hornbeck et al, 2019; Ochoa

et al, 2020), and the likely promiscuity in kinase actions, it is debat-

able whether all of these events are functionally relevant (Lienhard,

2008; Landry et al, 2009). In many cases where attempts have been

made to investigate the role of specific phosphorylation events, the

results are often negative (Dephoure et al, 2013), consistent with

the notion that many phosphorylation events may be extensively

redundant in nature or, perhaps, not functional (Landry et al, 2009;

Levy et al, 2012). These issues highlight the necessity for strategies

to predict functional phosphorylation sites from large phosphopro-

teome datasets. While guidelines for interpreting phosphoproteomic

datasets to identify candidate sites for mutational analysis are

available (Dephoure et al, 2013), strategies to efficiently and system-

atically identify functional phosphorylation events are lacking, espe-

cially in the case of budding yeast.

Here, we present an in-depth phosphoproteome for budding

yeast that constitutes the largest collection of phosphorylation sites

for this organism. Over 10.6 million high-resolution MS/MS spectra

were acquired in our mass spectrometer. In addition, we utilized

two independent methods for scoring phosphosite localization and
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employed an in-house algorithm to capture ambiguous phosphosites

that fall within clusters of consecutive, phosphorylate-able residues.

When considering the new phosphorylation events identified by this

study, the aggregated budding yeast phosphoproteome currently

constitutes over 46,000 phosphosites. In addition to performing cell

cycle- and DNA damage-related analyses, we computationally posi-

tioned phosphorylation onto all available 3D protein structures in

order to systematically identify potentially functional phosphoryla-

tion events. Results reveal many phosphorylation sites that map to

or near protein interaction interfaces, some of which result in steric

or electrostatic “clashes” predicted to disrupt the interaction. Phos-

phorylation site mutants experimentally validate our predictions

and establish roles for phosphorylation in negatively regulating

protein–protein interactions. We have compiled our in-depth phos-

phoproteome into an online database open to the budding yeast

community. This resource should help drive the functional and

spatial exploration of the yeast phosphoproteome.

Results

In-depth phosphoproteome of budding yeast

We sought to generate an in-depth phosphoproteomic database for

the model system budding yeast. The spectra used to assemble the

dataset were generated from 75 independent SILAC-based experi-

ments conducted in our laboratory. These experiments were origi-

nally performed for various unrelated biological inquiries and

explored a range of conditions, including distinct cell cycle stages,

DNA damage treatment, and carbon deprivation (Fig 1A, Dataset

EV1). Phosphopeptides enriched from proteolytically digested whole

cell lysates were subsequently pre-fractionated by HILIC chromatog-

raphy (Fig 1A). Our data are sourced strictly from high-resolution

spectral data acquired using a single, in-house mass spectrometer

and processed through a unified data processing pipeline. A fraction

of this dataset was previously published (See Dataset EV1 (Lanz

et al, 2018)). In all, the dataset consists of fragmentation spectra

acquired from over 825 LC-MS/MS injections (1,500+ h of data-

dependent acquisition time). To identify peptide spectrum matches

(PSMs) from our library of fragmentation spectra, we utilized two

prominent search engines—Sequest and Andromeda (MaxQuant;

Appendix Fig S1, Datasets EV2 and EV3; see details under Materi-

als and Methods). The search parameters for the Andromeda and

Sequest searches were mostly the same, the primary difference

being the semi-specificity for tryptic ends in the Sequest search

(we were unable to search large amounts of data with semi-specific

digestion using our MaxQuant platform). Nearly 2,300 sites

were identified with highest confidence in semi-tryptic phospho-

peptides (Dataset EV4), demonstrating the utility of the secondary

search. We performed one phosphoproteomic experiment using

chymotrypsin as the digestive enzyme (Dataset EV5 and

Appendix Fig S1). In all, our dataset consists of ~ 3.5 million

PSMs, representing ~ 45,000 called phosphosites detected within

~ 4,000 proteins (Fig 1A).

A critical challenge in the analysis of peptide-centric phosphopro-

teomic workflows is the need to properly assign the phosphorylated

STY residue within a fragmented phosphopeptide (Thompson et al,

2012). The use of multiple search engines allowed us to employ two

prominent algorithms for determining phosphosite localization,

PhosphoRS and PTM-Score, each of which utilize distinct methods

to identify “site-determining” ions (Taus et al, 2011; Sharma et al,

2014). We present our dataset with a range of cutoffs for localiza-

tion probability (Fig 1B, Dataset EV2). We also implemented an in-

house clustering algorithm to capture several thousand “phospho-

sites” whose site localization probabilities were distributed within

consecutive STY residues (Fig 1B illustrates how clustered phospho-

sites differ from other phosphosites with ambiguous localization).

As phosphosite localization confidence decreases, the total number

reported phosphosites is inflated by false positives because, in some

cases, multiple ambiguous phosphosites are called from phospho-

peptides that may only harbor a single phosphorylated residue.

With this fact in mind, we overlaid our dataset with the primary

public repository for budding yeast phosphosites, YeastMine. Yeast-

Mine contains over 21,000 “unique” phosphosites (Balakrishnan

et al, 2012) and is the contributing repository for the Saccharomyces

Genome Database (SGD), an online resource used by nearly all

budding yeast biologists. YeastMine is comprised of phosphosites

identified from high-throughput MS-based studies in addition to

phosphosites identified from low-throughput investigations of indi-

vidual proteins or protein complexes. When considering only the

phosphosites we identified with greater than 90 localization proba-

bility, we detect over 60% of the sites contained within YeastMine.

As the stringency for phosphosite localization is relaxed, the overlap

of our dataset with YeastMine increases. This is true even as poorly

localized sites are considered, as well as phosphosites identified

within non-unique phosphopeptides that map to multiple different

proteins (Fig 1C). This comparative analysis suggests that public

phosphosite repositories may contain many mis-localized phospho-

rylation sites that, although originating from a true PSM, result from

differences in how individual contributors account for phosphosite

localization. Our suggested cutoff (Fig 1C; dashed line) aims to

strike a balance between the false positives associated with poorly

localized sites and the false negatives resulting from a strict reliance

on highly localized sites.

We found that phosphosite localization probability tolerance also

impacted the proportionality of STY phosphorylation within our

dataset and that the fraction of phospho-tyrosine residues doubles

as the threshold for site localization probability is relaxed (Fig 2A).

This observation could in part explain the slightly higher proportion

of tyrosine phosphorylation reported on YeastMine (Fig 2B). In fact,

the average quality of phospho-tryosine sites identified in our

dataset is lower than that of phospho-serine or phospho-threonine

(Fig 2C). Because sites identified as phospho-tyrosine in our study

(and possibly YeastMine) are prone to represent mis-localized phos-

pho-serine or phospho-threonine, we encourage the careful consid-

eration of the PSM quality metrics when investigating tyrosine

phosphorylation. We found that filtering based on the number of

phosphosite identifications (PSMs) increases overall data quality

(Fig 2C and D) and reduces the false discovery rate (Fig 2E,

Appendix Fig S2).

To contextualize the depth of our study, we plotted our identified

phosphosites as a function of protein abundance (Ho et al, 2018).

Despite the fact that the enrichment of phosphopeptides directly

from cell lysates can hinder the detection of phosphorylation events

that occur in low abundant proteins (Solari et al, 2015), we readily

identified novel phosphorylation events in very low abundant yeast
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proteins, and the distribution of phosphosite discovery was mostly

independent of the estimated protein abundance (Fig 3A). The scale

of our analysis (825 independent MS runs) produced a large

dynamic range of phosphopeptide identifications (i.e. PSMs) per

phosphorylation site. By plotting the number of PSMs for each phos-

phosite as a function of the harboring protein’s estimated copy
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Figure 1. In-depth analysis of the budding yeast phosphoproteome.

A A generalized workflow for mapping the budding yeast phosphoproteome using mass spectrometry. Dataset EV1 contains detailed information on the experiments
included in this dataset. Appendix Fig S1 contains a decision tree that describes how the primary and secondary searches were compiled into a final dataset.

B Rationale for phosphosite localization analysis. Site localization probabilities were determined using MaxQuant and the PhosphoRS node within Proteome Discoverer.
Hypothetical fragmentations illustrate how fragment ion information impacts the ability to resolve phosphorylated residues within phosphopeptides. Clustered sites
were identified using an in-house algorithm.

C Overlay of this study with YeastMine, the public repository for phosphosites utilized by the Saccharomyces Genome Database (SGD). Localization criteria for
phosphosites identified by this study are relaxed in descending Venn diagrams. Our lower cutoff reflects a balance between confidence in localization and the
prevention of false negatives. In the comparison marked with the asterisk, phosphosites that we derived from non-unique phosphopeptides were included in the
overlay if already present in YeastMine. These non-unique sites were excluded from the analysis if not present in YeastMine.
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number (Fig 3B), we highlighted ~ 500 phosphosites with highest

PSM# -to- protein abundance ratios, which could potentially serve as

crude indicators of high stoichiometry phosphorylation within low

abundance proteins, despite the noted caveats of using number of

PSMs and generalizing estimated protein abundances for such types

of inferences (Fig 3B, see “#identifications” and “ProteinAbundance”

columns in Dataset EV2).

Because it was previously demonstrated that the extent of phos-

phorylation identified in high-throughput studies is less than that

which can be detected from affinity-purified proteins (Albuquerque

et al, 2008), we next compared our coverage to various low-through-

put MS analyses. One such low-throughput study identified 25

phosphosites in Yen1 (Blanco et al, 2014), a nuclease regulated by

cyclin-dependent kinase. We were able to detect 18 phosphosites in

Yen1 (Fig 3C), nearly all of which were identified by Blanco and

colleagues. Only four Yen1 phosphosites are contained within Yeast-

Mine. Another study identified 39 phosphosites in the replisome

protein Mrc1 (Albuquerque et al, 2008), a number comparable to the

36 sites identified in our study (Fig 3C). Together, these examples

illustrate that, in some cases, our depth of coverage compares to the

depth achieved in the analysis of affinity-purified proteins. In addition,

we note that our analysis confirmed the presence of phosphorylation

at putative phosphosites, whose mutation was previously shown to

preclude phosphorylation-dependent mobility shifts and disrupt

genuine phospho-mediated regulation (Appendix Fig S3, bolded dark

blue sites with asterisk) (Kono et al, 2008; Rossi et al, 2015).
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Figure 2. S, T, Y phosphorylation proportionality and quality control in the budding yeast phosphoproteome.

A Proportionality of S, T, Y phosphorylation as a function of phosphosite localization probability. Clustered sites are excluded.
B Proportionality of S, T, Y phosphorylation in the indicated datasets. Clustered sites are excluded.
C, D (C) MaxQuant’s site localization scores for and (D) total number of S, T, and Y phosphosites with at least one, two, or three identifications (PSMs). Only sites

identified by the primary search (Maxquant) were included.
E FDR approximation for the final dataset (Dataset EV2) when considering phosphosites with at least one, two, or three identifications (PSMs). FDR was estimated by

a Target/Decoy analysis designed to track the Target/Decoy ratio at each step of the analysis pipeline, both before and after combining results from the primary
and secondary search engines (Appendix Fig S2).
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Figure 3. Contextualizing the depth of the budding yeast phosphoproteome.

A Histogram depicting the distribution of identified phosphosites as a function of protein copy number (estimated from Ho et al, 2018). Bars representing the number
of phosphosites identified in this study are plotted behind (not on top of) the bars representing YeastMine.

B The PSM count for identified phosphosites as a function of protein copy number (estimated from Ho et al, 2018). Only phosphosites within proteins with copy
number estimations are depicted. Blue dots highlight a small subset of sites with a high PSM#/protein copy number ratio.

C Coverage maps comparing the Yen1 and Mrc1 phosphosites identified in this study (above, in black) with the sites identified in low-throughput studies (below, in
gray). For the low-throughput MS analyses, phosphopeptides were enriched after affinity purification of Yen1 or Mrc1 from yeast lysates.

D The current state of the budding yeast phosphoproteome (Dataset EV2). This study is combined with YeastMine and another recent large-scale analysis, Hu et al,
2019, which used a localization probability cutoff of 75 for their dataset. See Dataset EV3 for a dataset sourced exclusively from the Sequest searches. In the
comparison marked with the asterisk, phosphosites that we derived from non-unique phosphopeptides were included in the overlay if already present in YeastMine.
These non-unique sites were excluded from the analysis if not present in YeastMine.

E Dot graph examining saturation in the ability to identify novel phosphoproteins and phosphosites from the budding yeast phosphoproteome. Unique, non-redundant
phosphosites from this study were iteratively added to an aggregate set (left–right) in randomized chunks (localization probability of > 70, clustered sites are
excluded). Dataset generated using chymotrypsin (Dataset EV5) is the ultimate addition to the plot.
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We next sought to define the current state of the budding yeast

phosphoproteome by aggregating our dataset with two prominent

publicly available datasets. In addition to YeastMine, we also incor-

porated a recent large-scale phosphoproteomic screen performed by

Hu et al (2019). Unlike our study, Hu et al, utilized high-pH reverse

phase chromatography for phosphopeptide prefractionation (Batth

et al, 2014). Aggregation of these three datasets (our dataset, Hu

et al, and YeastMine) resulted in a composite dataset containing

46,553 phosphosites (Fig 3D, Dataset EV2). Similar to what has

been done previously (Amoutzias et al, 2012), and using the Yeast-

Mine and Hu et al, datasets as a foundation, we iteratively incorpo-

rated our dataset in a randomized “chunk”-wise manner. As the

final portions of our tryptic dataset were considered, our ability to

detect new phosphoproteins and phosphosites was approaching

saturation (Fig 3E). However, the ultimate addition of a dataset

derived from phosphopeptides generated by chymotryptic digestion

broke the plateau of the saturation curve (Fig 3E), suggesting that

the size of the yeast phosphoproteome can still be significantly

expanded using alternative digestive enzymes. It is also likely that

the phosphoproteome can also be expanded by exploring a more

diverse set of cellular states. For example, our dataset lacks spectra

acquired from meiotic conditions and, therefore, may not contain

phosphorylation events mediated by meiosis-specific kinases, like

Ime2 (Foiani et al, 1996; Guttmann-Raviv et al, 2002). Moreover,

our search pipeline does not capture phosphorylation that occurs on

non-canonical residues, which has recently been identified in other

eukaryotes (Hardman et al, 2019).

Functional and regulatory exploration of the budding
yeast phosphoproteome

Despite the large quantity of phosphorylation revealed by mass

spectrometry, the inability to distinguish meaningful phosphoryla-

tion events from “noise” within the phosphoproteome represents a

fundamental limitation of the technology. To address this limitation,

we employed a variety of strategies to systematically reveal poten-

tially meaningful phosphorylation events. First, we took advantage

of an extensive compilation of temperature sensitive (ts) budding

yeast mutants (Li et al, 2011). We reasoned that, since ts mutations

fall within chemically sensitive regions of a protein’s structure,

phosphorylation events which occur at or near these ts residues are

more likely to be impactful. Our analysis revealed 50 phosphoryla-

tion events that occur in immediate proximity (� 3 a.a.) to residues

that harbor ts mutations (Dataset EV6), and in several cases the ts

residue is itself phosphorylated. In one such case, rsp5-T104A, the

sensitizing mutation, is the substitution of a threonine to alanine,

which suggests that the phosphorylation of the Rsp5 ubiquitin ligase

at T104 is somehow important for its function.

Because phosphorylation that is subjected to dynamic regulation

is more likely to be functionally important (Kanshin et al, 2015), we

next aimed to extract regulatory information for the phosphorylation

events we identified. A unique feature of our dataset is the multi-

tude of analyses performed on yeast treated with DNA damaging

agents, synchronized to distinct cell cycle stages, or both. We

selected from our dataset a set of 11 independent SILAC experiments

that probe the response to DNA damage in different stages of the

cell cycle. This curation contains measurements for the behavior of

over 23,000 phosphosites (Dataset EV7). In budding yeast, DNA

damage signaling is mediated by the sensor kinases Mec1 and Tel1

and the downstream checkpoint kinase Rad53 (see recent reviews

(Giannattasio & Branzei, 2017; Pardo et al, 2017; Cussiol et al, 2019;

Lanz et al, 2019)), while the cyclin-dependent kinase orders the

progression of the budding yeast cell cycle. Phosphopeptides whose

abundance is dependent on the action of these kinases have been

identified previously (Holt et al, 2009; Bastos de Oliveira et al,

2015), and the behavior of these “substrate” phosphopeptides can

be used to track kinase activity (Fig 4A) (Hustedt et al, 2015; Bastos

de Oliveira et al, 2018; Lanz et al, 2018). We assessed changes in

the activity of these kinases, along with changes to the rest of the

phosphoproteome, in response to DNA damage and cell cycle

progression (Fig 4B–D, Appendix Fig S4). The treatment of G1-

arrested cells with a UV-mimicking drug, 4-Nitroquinoline N-oxide

(4NQO), results in short tracts of ssDNA exposure (as a byproduct

of nucleotide excision repair pathway (Giannattasio et al, 2004))

and is sufficient for the activation of both the apical and down-

stream checkpoint kinases (Fig 4B). We found that signaling from

the DNA damage response kinases uncouples during unperturbed S

phase, where Mec1 and Tel1 exhibit an activity independent of

Rad53 (Fig 4C), a finding consistent with previous work (Bastos de

Oliveira et al, 2015; Lanz et al, 2018). However, replication in the

presence of a DNA alkylating agent, MMS, strongly induces Rad53

activity during S phase, revealing more efficient signal transduction

from Mec1 to Rad53. Strikingly, in addition to the established

targets of Mec1, Tel1, and Rad53 previously reported, the data

presented here highlight many unexplored DNA damage- and cell

cycle-regulated phosphorylation events.

We used another curation of experiments from our dataset (see

Dataset EV1) to obtain cell cycle-related regulatory information for

~ 11,000 phosphorylation events. While the experiments that

comprise this resource were not originally designed to precisely and

systematically monitor phosphorylation dynamics across the cell

cycle, we compared the relative prevalence of phosphopeptides

identified in bulk from yeast that were synchronized within three

distinct cell cycle stages (G1 arrested, S phase enriched, and G2M

arrested). Approximately 20% of the 11,000 phosphorylation events

were either enriched or depleted in one stage of the cell cycle

(Appendix Fig S5; Dataset EV8). Many phosphorylation events that

were subjected to cell cycle regulation were either established cell

stage-specific events or occurred within proteins with cell cycle-

related functions (highlighted in Appendix Fig S5). Though our cell

cycle analysis constitutes a large catalog of phosphorylation events,

we caution that, due to technical and experimental limitations, our

approach using “spectral counting” for this dataset lacks the quanti-

tative accuracy and temporal resolution achieved by more focused

investigations of cell cycle phosphorylation dynamics in yeast

(Swaffer et al, 2018; Touati et al, 2018).

The 3D budding yeast phosphoproteome

In addition to probing the regulation of phosphorylation, we

performed structural analysis of phosphorylation site position with

the goal of improving the systematic prediction of functional phos-

phorylation events. Because phosphorylation events occurring at or

near protein–protein interfaces may also be more likely to impact

protein function, we first plotted the phosphoproteome within the

context of protein–protein interactions. We utilized Interactome
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Figure 4. Probing regulation: DNA damage and cell cycle-induced changes to the phosphoproteome.

A Tracking the activity of DNA damage and cyclin-dependent kinase signaling by monitoring the behavior of substrate phosphopeptides. In brief, “substrate” sites are
kinase-dependent phosphopeptides and harbor phosphorylated residues that lie in consensus target sequence of the indicated kinase. These putative substrate sites
were defined previously by (Holt et al, 2009; Bastos de Oliveira et al, 2015).

B SILAC quantitation for the indicated experiment in the form of a volcano plot (Dataset EV7). Alpha factor arrest was for 3 h. 4NQO was added 2 h and 20 min after
G1 arrest. Mec1/Tel1, Rad53, and CDK substrate phosphopeptides are highlighted in blue, red, and green, respectively. The violin plots represent the distribution of
SILAC ratios for putative kinase substrate phosphopeptides (a proxy for kinase activity in the given experiment). Central dot and boxes represent the median and
interquartile range, respectively. P-value was calculated via t-test of four independent biological replicates.

C (C) As in (B), S phase synchrony was achieved by releasing alpha factor arrested cells for 40 min. Central dot and boxes represent the median and interquartile range,
respectively. P-value was calculated via t-test of two independent biological replicates.

D (D) As in (B), S phase synchrony was achieved by treating asynchronous cultures with 0.02 % MMS for 2 h. Central dot and boxes represent the median and
interquartile range, respectively. P-value was calculated via t-test of four independent biological replicates.
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INSIDER (Meyer et al, 2018), a tool that has systematically identi-

fied, proteome-wide, every amino acid residue found at the interface

between proteins in a crystal structure or homology model (interac-

tome3D is the source for our homology models (Mosca et al, 2013)).

In total, we identified 646 phosphosites that lie at the surface

between interacting proteins and many more sites that fall within

5 a.a. residues of an interface (Dataset EV9). An additional feature

of Interactome INSIDER is its ability to predict interface residues for

known protein–protein interactions that do not currently have any

structural information (Meyer et al, 2018); we found 1,932 phospho-

rylation events that occur on these predicted protein-protein inter-

face residues (Dataset EV9). This information has been compiled

into the SuperPhos online database (superphos.yulab.org), which

lists all identified phosphorylation sites in budding yeast and

displays their proximity to known or predicted protein interaction

interfaces (Fig 5A).

To further exploit available structural information in our effort

to systematically identify functional phosphorylation sites, we

computationally positioned the budding yeast phosphoproteome

onto all available 3D protein structures within the Protein Data

Bank (PDB; Fig 5B). When considering 941 yeast proteins with

structural information in PDB with resolution better than 4 �A, we

found that the majority of phosphorylation occurs only within in

regions with no structural information (5,943 of 8,708 phospho-

sites), a finding consistent with the importance of intrinsic disorder

for protein phosphorylation (Iakoucheva et al, 2004). Despite this,

we were still able to map 2,765 phosphorylation events onto struc-

tured regions (Fig 5B). Because most crystal structures are

prepared under conditions in which the crystalized proteins would

not be phosphorylated (e.g., protein purified from bacteria), phos-

phorylation sites that map to solvent-inaccessible regions within

these protein structures would have a higher likely-hood of being

impactful. We distinguished between two types of solvent-inacces-

sible residues: (i) residues buried within the core of a single

polypeptide chain and (ii) residues that lie at the interface between

interacting proteins (similar to our INSIDER approach). We identi-

fied 539 phosphorylation sites that mapped to a buried, solvent-

inaccessible region within a single protein (Dataset EV10).

However, we opted to focus more on phosphorylation sites found

at the interfaces where proteins interact, since these sites poten-

tially play key regulatory roles.

Mapping phosphorylation sites to protein interaction
interfaces reveals phosphorylation events that regulate
protein–protein interactions

Due to the potentially disruptive nature of adding a bulky and nega-

tively charged phosphate group to an S/T/Y residue near a protein

interaction surface, the presence of phosphorylation at a protein-

protein interface could result in a steric or electrostatic clash. In

these instances, we predict that interface phosphorylation would

disrupt or prevent protein–protein interactions and therefore reflect

a potentially important regulatory mechanism. This concept was

previously explored in budding yeast by Studer et al, albeit on a

smaller scale (Studer et al, 2016). To systematically identify phos-

phorylation that causes “clashes” between interacting proteins, we

devised a minimal scoring system based on the steric and electro-

static environment surrounding phosphosites near a protein

interface region (see Materials and Methods for detailed explana-

tion of how the scores were calculated). Our method is similar to

the approach employed by Studer et al (2016). In brief, our

method utilizes the per-atom charge calculated by employing

PDB2PQR pipeline (Dolinsky et al, 2004). Here, steric clash (STE)

and electrostatic (ELE) scores for a given phosphosite are calcu-

lated based on the distance and charge of atoms from neighboring

proteins (Fig 5C, Dataset EV11). Manual inspections of several

phosphorylation events within their 3D context found that a phos-

phosite’s STE and ELE scores accurately represent the surrounding

steric and electrostatic environment (Fig 5D–F). We caution that

the quality of our predictions is dependent on the quality and

content of the structural information deposited on PDB, which can

vary from structure to structure. Studer et al also reported that

phosphorylation sites that lie at interface residues tend to exhibit

more conservation throughout multiple fungal species, a finding

supported by our own investigation of phosphosite conservation in

our dataset (see Materials and Methods for full description). We

distilled our conservation analysis into a single score and incorpo-

rated into Dataset EV9.

Using our scoring system, we extracted from our dataset

hundreds of sites that, if phosphorylated in the context of the crystal

structure, would cause steric clashing, occur within a negatively

charged environment, or both (Fig 5C, Dataset EV11). We hypothe-

sized that phosphorylation events with high STE scores and low

ELE scores may disrupt protein–protein interactions. To test this

hypothesis, we constitutively mimicked phosphorylation by mutat-

ing a phosphosite residue from serine to aspartic acid and deter-

mined how that mutation impacted a predicted set of

protein–protein interactions. We performed proof-of-principle exper-

iments in Rad23, an evolutionarily conserved protein with dual

roles in nucleotide excision repair and proteolysis (Schauber et al,

1998). For its DNA repair functions, Rad23, together with Rad4,

recognizes damaged DNA (de Laat et al, 1999). For its role in

protein degradation, Rad23 interacts with several proteins in the

ubiquitin pathway (Schauber et al, 1998). One of these proteins is

Png1, a protein involved in the degradation of misfolded ER proteins

(Kim et al, 2006). We chose Rad23 for our proof-of-principle experi-

ments because it harbored a phosphosite (serine 270; S270) that

mapped to an interface that binds two different proteins, Rad4 and

Png1 (Fig 6A). Based on its STE and ELE scores, we anticipated that

phosphorylation at S270 might significantly impact Rad23’s interac-

tion with Png1 while having a milder effect on its interaction with

Rad4. To test our prediction, we generated a phospho-mimetic

RAD23 mutant (Rad23S270D) and performed IP-MS to quantitatively

compare interacting proteins pulled down with Rad23WT vs

Rad23S270D. Consistent with our prediction, we found that Rad23’s

interaction with Png1 was specifically disrupted when phosphoryla-

tion was mimicked at S270 (greater that 25-fold change in the aver-

age SILAC ratios for Png1 peptides; Fig 6B and C). Importantly, the

ability of Rad23 to bind to its other interacting proteins, including

Rad4, was not disrupted by the mutation of serine 270. A

Rad23S270N substitution resulted in a less dramatic disruption of the

Rad23-Rad4 interaction (Appendix Fig S6B), suggesting that in this

case electrostatics plays a more important role in impairing the

interaction as compared to steric constraints.

We performed a similar analysis for the Golgi-resident Rab family

GTPase protein, Ypt1. Ypt1 is an essential Rab1 homolog that
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regulates ER-to-Golgi membrane trafficking by recruiting effectors to

the membrane surfaces of ER-derived vesicles and the Golgi

complex (Hutagalung & Novick, 2011; Yang et al, 2016). The

primary guanine-nucleotide exchange factor (GEF) that activates

Ypt1 in vivo is the TRAPPIII complex (Wang et al, 2000; Thomas

et al, 2018); the related TRAPPII complex is also capable of promot-

ing Ypt1 activation (Thomas & Fromme, 2016). Ypt1 interacts with

the TRAPP complexes, in part, by binding to the Trs23 subunit. The

inactive (GDP-bound) form of Ypt1 is kept soluble in the cytoplasm

by binding to Gdi1 (Garrett et al, 1994). Gdi1 therefore prevents

inactive Ypt1 from accumulating on the membrane of the Golgi

complex or other organelles. Interestingly, we found three consecu-

tive phosphosites in Ypt1 (S74, S75, and S76) that lie at its interface

with both Trs23 and Gdi1, potentially disrupting these interactions

when phosphorylated (Fig 6D). A phospho-mimetic mutation of just

one of these residues, S75D, was sufficient to disrupt the interac-

tions of Ypt1 with subunits of the TRAPP complexes (including

Trs23) and with Gdi1, without disrupting other interactions (Fig 6E

and F). We also tested whether the S75D mutation retained the

essential function of Ypt1. We observed that ypt1-S75D was unable

to support viability in the absence of endogenous Ypt1 (Fig 6G).

However, the GFP-Ypt1-S75D mutant protein appeared to retain

normal Golgi localization, measured by colocalization with the

Golgi-resident protein Sec7 (Fig 6H), suggesting that S75D is a sepa-

ration-of-function mutation that will be useful to dissect distinct

mechanisms of Ypt1 regulation. Overall, together with previous

work (Studer et al, 2016), these examples reinforce the concept that

it is possible to systematically predict the impact of phosphorylation

on the regulation of protein–protein interactions based on the struc-

tural context of its occurrence.

◀ Figure 5. 3D analysis of budding yeast phosphoproteome reveals potential regulatory phosphorylation at protein interaction interfaces.

A The SuperPhos database (beta version accessible at: http://superphos.yulab.org). Representative example of data display for a protein entry. The database merges
an updated version of the budding yeast phosphoproteome with the protein interface calculations made by interactome INSIDER. In addition to indicating
interactions for which PDB structures are available (as shown in this example), the SuperPhos database also provides information on all predicted interaction
interfaces from INSIDER (not shown in this example). INSIDER mapping and phosphosite positional information used for the website can be found within Dataset
EV9.

B Mapping the yeast phosphoproteome to all available PDB structures and systematic prediction of phosphorylation that regulates protein–protein interactions. For
each phosphosite that mapped to a structured region, ELE and STE scores were systematically calculated based on the proximity and charge of atoms from
neighboring proteins. See Materials and Methods for a detailed explanation of how the scores were calculated. Phosphosites that map to more than one crystal
structure or to multiple chains within a single crystal structure were assigned multiple STE and ELE scores (Dataset EV11).

C Distribution of STE and ELE scores assigned to phosphosites in the 3D budding yeast phosphoproteome. Labeled dots are highlighted in panels D–F.
D–F Representative examples of the mapping and scoring of phosphosites within the structural context of protein complexes. The phosphoprotein is displayed as a

green ribbon cartoon; the electron density of the surrounding protein(s) is colored based on the electrostatic environment (as calculated by default using APBS:
Adaptive Poison-Boltzmann Solver). Blue coloring and red coloring represent more positive and negative charge environment, respectively. We note that, due to
technical limitations related to size of the Ypt1-TRAPP structure, it is not present in INSIDER and thus not searchable in our webtool.

▸Figure 6. Validation of the predicted effects of phosphorylation of Rad23 and Ypt1 in disrupting specific protein–protein interactions.

A Rad23 in complex with Rad4 (left) and Png1 (right). STE (left box) and ELE (right box) scores are displayed for the phosphorylation of Rad23 at serine 270 (circled in
both structures). The electron density of the surrounding protein(s) is colored based on the electrostatic environment (as calculated by default using APBS). Blue
coloring and red coloring represent more positive and negative charge environment, respectively.

B Quantitative mass spectrometry analysis of the Rad23 interaction network and the effect of a phospho-mimetic mutation at serine 270. SILAC-labeled yeast cultures
expressing Rad23-FLAG or an empty vector were subjected to anti-FLAG IP to pre-define the list of specific Rad23 interacting proteins shown in the graph. The
average SILAC ratios represent fold changes for each of the Rad23 interactions in an IP using wild-type Rad23 vs Rad23-S270D mutant as bait. The average SILAC ratio
for each protein (central icon) is derived from the measurement of multiple unique peptides (Dataset EV10). Error bars represent the standard deviation between
independent peptide measurements. Data shown are representative of two independent experiments (data from the replicate experiment can be found in
Appendix Fig S6A).

C Schematics depicting Rad23’s protein interaction network and the impact of a phospho-mimetic mutation at serine 270, as defined by SILAC IP-MS.
D Ypt1 in complex with the TRAPP (left) and Gdi1 (right). We detected phosphorylation at S74, S75, and S76 of Ypt1 (all with high-confidence localization in singly

phosphorylated phosphopeptides). STE (left) and ELE (right) scores for the monophosphorylation of Ypt1 at serine 75 are displayed and modeled into both structures
(circled). The electron density of the surrounding protein(s) is colored based on the electrostatic environment (as calculated by default using APBS). Blue coloring and
red coloring represent more positive and negative charge environment, respectively. We note that, due to technical limitations related to size of the Ypt1-TRAPP
structure, it is not present in INSIDER and thus not searchable in our webtool.

E Quantitative mass spectrometry analysis of the Ypt1 interaction network and the effect of a phospho-mimetic mutation at serine 75. SILAC-labeled yeast cultures
expressing Ypt1-FLAG or an empty vector were subjected to anti-FLAG IP to pre-define the list of specific Ypt1-interacting proteins shown in the graph. The average
SILAC ratios represent fold changes for each of the Ypt1 interactions in IP using wild-type Ypt1 vs Ypt1-S75D mutant as bait. The average SILAC ratio for each protein
(central icon) is derived from the measurement of multiple unique peptides (Dataset EV10). Error bars represent the standard deviation. Data shown are
representative of two independent experiments.

F Schematics depicting Ypt1’s protein interaction network and the impact of a phospho-mimetic mutation at serine 75, as defined by SILAC IP-MS.
G Plasmid shuffling assay to test whether ypt1-S75D can fulfill Ypt1’s essential functions. Yeast were spotted onto plates containing 5-Fluoroorotic acid (5-FOA) to

relinquish the URA plasmid.
H Fluorescent and differential interference contrast (DIC) microscopy to determine whether ypt1-S75D retains proper localization to the Golgi complex. Plasmids

expressing either wild-type GFP-Ypt1 or GFP-Ypt1-S75D were transformed into yeast cells. Single focal planes are shown of live-cell fluorescence microscopy images
under normal growth conditions. Cells are expressing an endogenously tagged Golgi marker, Sec7-DsRed. Scale bar is 2 µm. A total of 105 cells for WT and S75D. The
amount of overlap between Ypt1 and Sec7 colocalization was quantified using the Pearson’s correlation coefficient (PCC). An unpaired t-test with Welch’s correction
was used to compare WT and mutant PCC data points (see Materials and Methods). The PCC for the WT and S75D mutant is not significantly different (P = 0.1667).
WT Mean = 0.5068, S75D Mean = 0.4732, error bars represent 95% CIs.
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Discussion

Here, we conducted the most in-depth analysis of the phosphopro-

teome in budding yeast to date. As it currently stands, if considering

both our current analysis and previous reports, the budding yeast

phosphoproteome presently consists of approximately 45,000 phos-

phorylation sites, though this number varies greatly depending on

thresholds set for phosphosite localization probability. Our analysis

of phosphosites identified over a range of localization probabilities

should help inform the yeast community on the limitations inherent

to the mass spectral identification of phosphosites and illustrate the

pros and cons of both laxity and stringency in setting cutoffs for

localization probability. Importantly, the saturation analysis in Fig 3

E suggests that the size of the phosphoproteome can be expanded

further using alternative digestive enzymes.

The biological significance of nearly all these identified phospho-

rylation events remains unknown. The extensive scope of the phos-

phoproteome raises the question as to whether many of the

identified phosphorylation events have tangible biological signifi-

cance. While the quantity of phosphosites identified and phospho-

proteome coverage achieved in our study has inherent value, the

ability to distinguish functional phosphorylation from what could

potentially be “off-target” or promiscuous kinase action represents

the primary challenge in dealing with large-scale phosphoproteomic

datasets. Importantly, while the “detectability” of a particular phos-

phorylation event is impacted by factors other than its abundance

(e.g., peptide solubility or ionization and accessibility to tryptic

digestion), an argument could be made that many of the phosphory-

lation events that are buried deep within the phosphoproteome are

low abundant and therefore are likely less important than the events

which are readily detectable. If true, by expanding the depth with

which the phosphoproteome is profiled, to what extent is our

dataset revealing functional phosphorylation sites? While this ques-

tion is difficult to address, the examples presented in Appendix Fig

S3 indicate that even phosphorylation that exists near the threshold

of MS detection can be biologically meaningful. In addition, the rela-

tive prevalence of a particular phosphorylation event does not

predetermine its importance. Although specialized MS applications

can assess the stoichiometry of protein phosphorylation (Wu et al,

2011; Lim et al, 2017), general MS-based phosphoproteomics does

not inherently inform phosphorylation stoichiometry. Therefore,

low abundant phosphoproteins that are stoichiometrically phospho-

rylated are often indistinguishable from very abundant proteins

whose phosphorylated form represents only a small fraction of their

total protein.

Given the challenges highlighted above, how can one distinguish

biologically meaningful phosphorylation from what might just be

the “noise” of the phosphoproteome? For one, it is clear that the

evolutionary conservation of a phosphorylated residue does not

dictate the relevancy of the event, as many functional phosphoryla-

tion events occur on poorly conserved residues (Holt et al, 2009;

Amoutzias et al, 2012). One clever way to distinguish a “deliberate”

phosphorylation event from promiscuous ones may be to measure

how dynamically it changes. With the assumption that functional

kinase–substrate interactions are better optimized for binding than

promiscuous interactions, Kanshin et al (2015) demonstrated that

changes in phosphorylation occur faster on functional vs promiscu-

ous substrates. Nevertheless, the current standard for determining

the functionality of a phosphorylation event requires the generation

of mutant yeast strains that either lack or constitutively mimic the

phosphorylated residues in a substrate protein, with the ultimate

goal of phenocopying the effects of a kinase’s action or inaction.

However, generating phosphosite mutations is labor intensive and

often times, due to the recessive nature of phosphomutant pheno-

types, requires genetic manipulation at the endogenous locus.

Efforts to elicit phenotypes from phosphosite mutants can be further

complicated by functional redundancy, which in some cases can be

found in serines or threonines neighboring the identified phosphory-

lation event or in another substrate whose phosphorylation results

in a redundant effect. The phospho-regulation of Slx4 and Sld3/

Dbf4 exemplifies the extensive redundancy that must be overcome

when making phosphosite mutants (Ohouo et al, 2010; Zegerman &

Diffley, 2010).

The challenges that hinder the interpretation of large phospho-

proteomic datasets are, in some ways, similar to those faced in the

field of human genomics. As mass spectrometry has exponentially

expanded the catalog of phosphorylation events, genomics has simi-

larly revealed tens of thousands of disease-associated mutations

(Stenson et al, 2003; Landrum et al, 2014). Akin to the biologically

impactful phosphorylation events in our dataset, impactful muta-

tions exist amidst many less meaningful polymorphisms (Tennessen

et al, 2012; The, 1000 Genomes Project Consortium, 2012; The

Genome of the Netherlands Consortium, 2014). Recent efforts to

identify the key mutations that underpin human disease phenotypes

have utilized the expanding collection of protein structural informa-

tion (Wang et al, 2012; Wei et al, 2014; Meyer et al, 2016; Chen

et al, 2018), with the logic being that mutations that occur at or near

the interfaces where proteins interact will have a higher likelihood

of impacting protein function. Building on this logic, here we

streamlined the identification of the functional phosphosites by

identifying those located at or near protein-interaction interfaces. In

addition, we were able to make systematic predictions about the

impact of a phosphorylation event occurring near protein-protein

interfaces and its potential for causing steric clashes or an electro-

static environment incompatible with the crystal structure. Our

minimalistic approach to predicting regulatory phosphorylation

based on available structural information, though simpler than

methods employed previously (Nishi et al, 2011; Beltrao et al, 2012;

Betts et al, 2017; Ochoa et al, 2020), successfully predicted disrup-

tive phosphorylation (Fig 6). For example, we demonstrated that

phosphorylation-mimicking mutation of Rad23 at S270 specifically

disrupts the interaction between Rad23 and Png1. The formation of

the Rad23-Png1 complex is critical for the efficient degradation of

glycosylated ER-associated proteins (Kim et al, 2006). Thus, while

the kinase responsible for the phosphorylation of S270 and the

biological context in which this phosphorylation occurs remain

unclear, the phosphorylation of Rad23 at S270 could act as a switch

to inhibit the degradation of glycosylated ER proteins. Moreover, we

found that phospho-mimetic mutation of S75 in the Rab GTPase

Ypt1 disrupts its interactions with both Gdi1 and the TRAPP GEF

complexes. This suggests that phosphorylation of S75 would result

in decreased activation of Ypt1 but persistence of inactive Ypt1 on

the Golgi membrane. Correspondingly, the Ypt1 phosphomutant

retained its localization to the Golgi yet was unable to provide the

essential function of Ypt1. Previous studies have demonstrated that

phosphorylation of another Rab GTPase, Sec4, is a negative
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regulatory mechanism coupled to the cell cycle (Heger et al, 2011;

Lepore et al, 2016) and that Rab family proteins are regulated by

phosphorylation in humans (Steger et al, 2017). Therefore, although

it remains to be determined how phosphorylation of Ypt1 is regu-

lated, our results suggest that phosphorylation of Ypt1 is a plausible

regulatory mechanism for controlling when and where it is activated

and that the ypt1-S75D separation-of-function mutation will be

useful to further dissect distinct mechanisms of regulation.

A recent study explored in-depth the functional landscape of the

human phosphoproteome (Ochoa et al, 2020), curating the massive

amount of raw mass spectral data gathered on the human cell lines

and processing it through a unified pipeline (requiring 2 months of

dedicated PSM search time). Taking advantage of the wealth of

structural and mutational information available in human systems,

the authors assigned a predicted functional “score” for each phos-

phosite. Unfortunately, relative to the human phosphoproteome, the

budding yeast phosphoproteome has currently been profiled to a far

lesser extent and much less structural information is available for

this organism. Moving forward, the ever-expanding repository of

structural information represents an invaluable resource in the

study of post-translational modifications and their functionality.

Elucidation of more protein structures, particularly through the use

of emerging technologies like Cyro-EM, will expand the 3D charac-

terization of the phosphoproteome and support the approaches

presented here.

Materials and Methods

Protein extraction and sample preparation for
phosphoproteome analysis

The phosphoproteomic experiments used as the source for the data-

base were performed for a variety of focused biological investiga-

tions. In almost all cases, these experiments were performed with

the intention of quantifying changes in phosphopeptide abundance

and thus relied on a two-channel SILAC-based workflow. "Light"
and "heavy"-labeled cultures ("light" version complemented with

normal arginine and lysine; "heavy" version complemented with

L-Lysine 13C6,
15N2.HCl and L-Arginine 13C6,

15N4.HCl) were

combined, harvested by centrifugation in TE buffer pH 8.0 contain-

ing protease inhibitors and stored frozen at −80°C until cell lysis.

Approximately 0.3 g of yeast cell pellet (in three separate 2 ml

screwcap tubes) was lysed by bead beating at 4°C in 3 ml of lysis

buffer (1 ml per tube) containing 50 mM Tris–HCl, pH 8.0, 0.2%

Tergitol, 150 mM NaCl, 5 mM EDTA, complete EDTA-free protease

inhibitor cocktail (Roche), 5 mM sodium fluoride and 10 mM β-glyc-
erophosphate. Lysates of light and heavy conditions were mixed

together (approximately 6 mg of protein from each condition). The

mixed lysate was then denatured in 1% SDS, reduced with DTT,

alkylated with iodoacetamide and then precipitated with three

volumes of a solution containing 50% acetone and 50% ethanol.

Proteins were solubilized in a solution of 2 M urea, 50 mM Tris–-
HCl, pH 8.0, and 150 mM NaCl, and then TPCK-treated trypsin was

added. Digestion was performed overnight at 37°C, and then trifluo-

roacetic acid and formic acid were added to a final concentration of

0.2%. For the digestion using chymotrypsin, the urea concentration

was reduced to 1 M. Peptides were desalted with Sep-Pak C18

column (Waters). C18 column was conditioned with five column

volumes of 80% acetonitrile and 0.1% acetic acid and washed with

five column volumes of 0.1% trifluoroacetic acid. After samples

were loaded, column was washed with five column volumes of

0.1% acetic acid followed by elution with four column volumes of

80% acetonitrile and 0.1% acetic acid. Elution was dried in a

SpeedVac evaporator and resuspended in 1% acetic acid.

Phosphopeptide enrichment

After protein extraction and trypsin digestion, desalted peptides

were resuspended in 1% acetic acid and loaded in a tip column

containing ~ 22 µl of immobilized metal affinity chromatography

(IMAC) resin prepared as previously described (Bastos de Oliveira

et al, 2018). After loading, the IMAC resin was washed with one

column volume of 25% acetonitrile, 100 mM NaCl, and 0.1% acetic

acid solution followed by two column volumes of 1% acetic acid,

one column volume of deionized water and finally, eluted with

three column volumes of 12% ammonia and 10% acetonitrile solu-

tion. The elutions were then dried and resuspended in 16.5 μl H2O.

1.5 μls (10% of the sample) was diluted to 10 μl of 0.1% TFA and

ran as input samples to assess phosphopeptide purity.

HILIC fractionation

After phosphopeptide enrichment, samples were dried in a

SpeedVac, reconstituted in 80% acetonitrile and 1% formic acid,

and fractionated by hydrophilic interaction liquid chromatography

(HILIC) with TSK gel Amide-80 column (2 mm × 150 mm, 5 µm;

Tosoh Bioscience). 90 s fractions were collected between 10 and

25 min of the gradient. Three solvents were used for the gradient:

buffer A (90% acetonitrile); buffer B (80% acetonitrile and 0.005%

trifluoroacetic acid), and buffer C (0.025% trifluoroacetic acid). The

gradient used consists of a 100% buffer A at time = 0 min; 88% of

buffer B and 12% of buffer C at time = 5 min; 60% of buffer B and

40% of buffer C at time = 30 min; and 5% of buffer B and 95% of

buffer C from time = 35 to 45 min in a flow of 150 µl/min.

Mass spectrometry analysis and data acquisition

Hydrophilic interaction liquid chromatography fractions were dried

in a SpeedVac, reconstituted in 0.1% trifluoroacetic acid, and

subjected to LC-MS/MS analysis using a 20-cm-long 125-µm inner

diameter column packed in-house with 3 µm C18 reversed-phase

particles (Magic C18 AQ beads, Bruker). Separated phosphopeptides

were electrosprayed into a QExactive Orbitrap mass spectrometer

(Thermo Fisher Scientific). Xcalibur software (Thermo Fischer

Scientific) was used for the data acquisition, and the Q Exactive was

operated in data-dependent mode. Survey scans were acquired in

the Orbitrap mass analyzer over the range of 380 to 1,800 m/z with

a mass resolution of 70,000 (at m/z 200). MS/MS spectra were

performed selecting up to the 10 most abundant ions with a charge

state using of 2, 3, or 4 within an isolation window of 2.0 m/z.

Selected ions were fragmented by higher-energy collisional dissocia-

tion (HCD) with normalized collision energies of 27, and the tandem

mass spectra were acquired in the Orbitrap mass analyzer with a

mass resolution of 17,500 (at m/z 200). Repeated sequencing of

peptides was kept to a minimum by dynamic exclusion of the
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sequenced peptides for 30 s. For MS/MS, AGC target was set to 1e5

and max injection time was set to 120 ms.

Phosphopeptide and phosphorylation site identification: primary
search using Andromeda

Three separate search engines were used to search the raw MS/MS

spectra. All searches were performed on 19 separate “chunks”, with

each chunk containing an average of 500,000 MS/MS spectra. The

primary search engine used was Andromeda, as part of the

MaxQuant software package (version 1.6.5.0). Searching parameters

for MaxQuant included a fully-tryptic requirement. After a “first

search” at 20 ppm, the precursor match tolerance was set to

4.5 ppm. Differential modifications were 8.0142 daltons for lysine,

10.00827 daltons for arginine, 79.966331 daltons for phosphoryla-

tion of serine, threonine and tyrosine, and a static mass modifi-

cation of 57.021465 daltons for alkylated cysteine residues. N-

terminal acetylation was also set as a variable modification, but only

for peptides that correspond to the N-terminus of protein. A

complete list of searching parameters can be found in Dataset EV13.

The primary source for the phosphosite identification was the

“Phospho STY” output table in MQ (Sharma et al, 2014). The qual-

ity threshold for a PSM to be considered for phosphosite identifi-

cation was an Andromeda score greater than 40 and a delta score of

greater than 6 (similar to criteria used previously (Sharma et al,

2014)). The 19 “Phospho STY” files (from each of the 19 chunks)

were concatenated and redundancy eliminated by retaining the PSM

entry with best phosphosite localization score for every identified

phosphosite. The primary dataset contains only phosphosites with

high-confidence localization, which we considered as having a

MaxQuant localization probability of > 0.70.

Phosphopeptide and phosphorylation identification: secondary
search using Sequest

All spectra were also searched using two Sequest-based engines,

Proteome Discoverer (Thermo) and SORCERER (Sage N Research,

Inc.). For PD and SORCERER, we used similar search parameters as

MaxQuant, with the exception that we permitted semi-tryptic diges-

tion, rather than require fully typtic. Precursor match tolerance for

both Sequest searches was set to 10 ppm. We considered only high-

confidence PSMs for the pipeline, filtered to < 1% FDR using perco-

lator and sorcererscore for PD and SORCERER, respectively. To

increase the confidence in our Sequest searches further, we only

considered phosphopeptides whose backbone sequence appeared in

both the PD and SORCERER PSM searches. For phosphopeptides

that passed this backbone requirement, we then retained the PSM

information acquired using Proteome Discoverer. The phosphoryla-

tion localization probabilities were determined using ptmRS (Phos-

phoRS) within Proteome Discoverer (Taus et al, 2011). The

threshold for “high-confidence” phosphosite localization was a

phosphoRS percentage of > 70%.

Inclusion of phosphosite clusters

Phosphopeptides that did not contain phosphosite localization

scores that met our “high-confidence” threshold (MQ: localization

probability above 0.70; PD/SORCERER: phosphoRS percentage

above 70%) were subsequently searched for phosphosite “clusters”.

This involved identifying consecutive S/T/Y residues that were

assigned localization probabilities which sum to > 0.9 (MQ) or 90%

(phosphoRS).

SILAC quantitation

Maxquant was used to determine the SILAC ratios for the experi-

ments related to Fig 4B–D and Dataset EV7. These 11 experiments

were subjected to an independent Maxquant search (using the same

PSM search parameters described above (Dataset EV13)). Phospho

STY output file from Maxquant was used to assemble Dataset EV7.

Analysis of cell cycle phosphorylation dynamics

The spectral counts used to perform the cell cycle analysis were

extracted from the primary search outlined in Appendix Fig S1. A

curated set of runs were given either a G1, S phase, or G2M annotation.

For every phosphosite (specifically, its best corresponding phospho-

peptide), the number of identifications (i.e., spectral counts, PSMs)

within runs with cell cycle annotation was tallied. Only phosphopep-

tides that were detected more than five times in the annotated runs

(G1 + G2M + MMS) were retained. The stringency for enrichment or

depletion in a particular cell cycle state was a five-fold difference in the

number of identifications for one cell cycle stage vs the other two.

G1 synchrony was achieved through alpha factor arrest. S phase

synchrony was primarily achieved via 2 h MMS treatment (in some

cases, 40 min release from alpha factor arrest). G2/M synchrony

was achieved via 2.5 h of nocodozole treatment. The use of DNA

damaging agents to synchronize cells in S phase was counterbal-

anced by the inclusion of multiple experiments involving the addi-

tion of 4NQO to both G1- and G2/M-arrested cell. Thus, each cell

cycle stage contains analyses done with and without the presence of

a DNA damage.

Conservation analysis

Fungal protein sequences were downloaded from Uniprot database

(UniProt, 2019) (Taxonomy id: 4751; downloaded on 10th Septem-

ber 2020). Homologous fungal proteins for all the Saccharomyces

cerevisiae phosphoproteins in our dataset were identified using

BLASTP (Camacho et al, 2009). From the BLASTP output, for the

phosphoproteins that had at least three homologs (percent identity

≥ 30%; E-value cutoff: 0.05), multiple sequence alignment (MSA)

was performed using MAFFT3 (in clustal format) (Katoh & Standley,

2013). Further, with the MSAs as input, conservation score was

generated for all the aligned positions in phosphoproteins utilizing

AL2CO (Pei & Grishin, 2001).

Calculation of ELE and STE scores for phosphosites near
protein–protein interaction interfaces

All the phosphosites were mapped onto the available 3D structures

in PDB (Gilliland et al, 2000) using residue-level mapping informa-

tion obtained from SIFTS database (Gutmanas et al, 2018). The sites

that were mapped to structures with more than one chain were

further considered for calculation of ELE and STE scores. For each

site, neighboring atoms with in a distance of 10 �A were identified

14 of 17 EMBO reports 22: e51121 | 2021 ª 2021 The Authors

EMBO reports Michael C Lanz et al



(excluding the atoms present in the same chain as the phosphosite)

using an in-house python script (Atoms chosen to be the “phospho-

site atoms”: “OG” for serine, “OG1” for threonine and “OH” for

tyrosine). Next, the charge for all the individual neighboring atoms

was obtained using a command line version of PDB2PQR pipeline

(Dolinsky et al, 2004) (with amber as the force field and using

“--nodebump” option). Finally, the STE and ELE scores were

calculated using the following equations:

STE Score¼
Number of neighboring atoms

mean distance of neighboring atoms within 5Å from the phosphosite atom

ELE Score¼ ∑
n

i¼0

Chargei
Distancei

where, Chargei is the charge of neighboring atom i and Distancei is

the distance between atom i and the phosphosite atom.

Quantitative MS analysis pull-down protein complexes

Yeast carrying either GFP-YPT1 or Rad23-FLAG were grown to an

O.D.600 of 0.4 in 200 ml of -Arg -Lys dropout media ("light" version
complemented with normal arginine and lysine; "heavy" version

complemented with L-Lysine 13C6,
15N2.HCl and L-Arginine 13C6,

15N4.HCl). After centrifugation, pellets were kept at −80°C prior to cell

lysis. Approximately 0.3 g of cell pellet of each strain was lysed by

bead beating at 4°C in 3 ml of lysis buffer (50 mM Tris–HCl pH 7.5,

0.2% Tergitol, 150 mM NaCl, 5 mM EDTA, Complete EDTA-free

protease inhibitor cocktail (Roche), 5 mM sodium fluoride, 10 mM

β-glycerol-phosphate). Lysates were incubated with GFP-TRAP

(in-house) or anti-FLAG agarose resin (Sigma) for 4 h at 4°C. After
three washes with lysis buffer, bound proteins were eluted with 90 μls
of elution buffer (100 mM Tris–HCl pH 8.0, 1% SDS). Eluted proteins

from normal or heavy media grown cells were mixed together,

reduced, alkylated and then precipitated with three volumes of a solu-

tion containing 50% acetone and 50% ethanol. Proteins were solubi-

lized in a solution of 2 M urea, 50 mM Tris–HCl, pH 8.0, and 150 mM

NaCl, and then Trypsin Gold was added. Digestion was performed

overnight at 37°C, and then trifluoroacetic acid and formic acid were

added to a final concentration of 0.2%. Peptides were desalted with

Sep-Pak C18 column (Waters). Elution from C18 column was dried in

a SpeedVac evaporator and resuspended in 0.1% trifluoroacetic acid.

Fluorescent microscopy

Overnight cultures were grown to an OD600 between 0.1 and 0.8,

then imaged. Single focal planes are shown of live-cell fluorescence

microscopy images under normal growth conditions. Cells are

expressing endogenously tagged Sec7-6xDsRed. Scale bar is 2 um.

The amount of overlap between Ypt1 and Sec7 was quantified using

the Pearson’s Correlation Coefficient (PCC). A region of interest was

selected surrounding 1–4 cells and propagated to all of the focal

planes containing those cells for correlation analysis. Each data

point represents the PCC for an image (WT = 9 images, S75D = 10

images) containing several regions of interest totaling 4–21 cells. A

total of 105 cells for WT and S75D. An unpaired two-tailed t-test

with Welch’s correction was used to analyze the data points.

Data availability

The phosphoproteomic datasets produced in this study have been

deposited to the PRIDE database (https://www.ebi.ac.uk/pride/arc

hive/) and assigned the identifier PXD012395 (https://www.ebi.ac.

uk/pride/archive/projects/PXD012395). Some data from PXD012395

were previously published in PXD009734 (https://www.ebi.ac.uk/

pride/archive/projects/PXD009734).

Expanded View for this article is available online.
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