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Thorough quality assessment of novel interactions identified 
by proteome-wide cross-linking mass spectrometry (XL-MS) 
studies is critical. Almost all current XL-MS studies have 
validated cross-links against known three-dimensional struc-
tures of representative protein complexes. Here, we provide 
theoretical and experimental evidence demonstrating that 
this approach can drastically underestimate error rates for 
proteome-wide XL-MS datasets, and propose a comprehen-
sive set of four data-quality metrics to address this issue.

XL-MS is a powerful platform capable of unveiling protein 
interactions and capturing their structural dynamics1. The wealth 
of information from proteome-wide XL-MS approaches facilitates 
large-sale identification of protein–protein interactions2,3, and 
high-throughput three-dimensional (3D) structural modeling of 
functional protein complexes4–6. With the increased throughput of 
these techniques, the number of false positive cross-links and incor-
rect interactions can quickly add up with just one large-scale XL-MS 
experiment, if one is not careful. Therefore, thorough quality assess-
ment has become critically important.

It has been previously shown that the conventional false dis-
covery rate (FDR) calculations for XL-MS can be susceptible to 
error propagation7 (Supplementary Note 1). Currently, almost all 
proteome-wide XL-MS studies leverage available 3D structures of 
representative complexes for validation and quality assessment8,9. 
Here, we demonstrate fundamental flaws in this structure-based 
quality assessment approach that can drastically underestimate the 
error rates of large-scale XL-MS datasets.

In small-scale XL-MS studies, the fraction of cross-linked resi-
due pairs that satisfy the maximum distance a given cross-linker 
can span (for example, 30 Å for disuccinimidyl sulfoxide (DSSO)10) 
provides meaningful insights into protein flexibility and the qual-
ity of the cross-links detected. In proteome-wide XL-MS stud-
ies, researchers extend this concept and use representative, highly 
abundant complexes such as the ribosome and the proteasome to 
estimate the quality of all cross-links reported. However, true posi-
tive and false positive cross-links in these large-scale studies are not 
equally likely to successfully map onto an existing 3D structure, 
leading to massive underestimation of false positives (Fig. 1a).

To theoretically demonstrate this, let us consider a reference 
protein complex structure consisting of 100 subunits. Because 
a false positive cross-link can be detected between any two ran-
dom proteins within the proteome (~20,000 proteins for human 
proteome-wide experiments), for a given false positive with one 
of its ends mapped to the reference complex, the probability that 

the second end also maps to this complex by random chance is 
5 × 10−3 (100/20,000). It should be noted that this probability 
would be even lower for the often-used ribosome (76 subunits: 
Protein Data Bank (PDB) ID 5T2C) or proteasome (34 subunits: 
PDB ID 5GJQ) complexes. However, these probabilities only hold 
for random peptide pairs (derived from false positive cross-links); 
true positive cross-links are much more likely to perfectly map 
to existing 3D structures. Conceptually, this is very similar to the 
fact that false positive cross-links are much more likely to be inter-
protein than intraprotein as shown by previous studies11,12. We 
expect that almost all false positive cross-links will have only one 
peptide mapped to the reference complex structure. The current 
structural-mapping approach explicitly considers only cross-links 
where both peptides map to the same complex structure, and, in 
doing so, it enriches for true positive cross-links and massively 
underestimates the error rates for proteome-wide XL-MS datasets. 
Consequentially, this validation approach may erroneously anno-
tate artifacts as novel interactions, resulting in less-reliable experi-
mental datasets for further studies.

To demonstrate our theory experimentally, we obtained a sub-
set of 122 raw files from our recent proteome-wide human K562 
XL-MS study2. Next, to generate three sets of cross-links with 
drastically different qualities, we ran the XlinkX search engine 
(Proteome Discoverer 2.2) using three criteria of increasing strin-
gency (‘10% FDR’, ‘1% FDR’ and ‘1% FDR with ΔXlinkX score ≥ 50’; 
see the Methods). As shown in Fig. 1b, at 10% FDR, a set of 35,561 
interprotein cross-links were identified (we intentionally chose 
10% FDR to obtain a low-quality set of cross-links with many 
false positives); 1% FDR yielded 16,591 interprotein cross-links; 
whereas ‘1% FDR with ΔXlinkX score ≥ 50’ yielded 985 interpro-
tein cross-links. We mapped the interprotein cross-link residue 
pairs from these three sets separately onto the 3D structure of the 
human proteasome following the conventional methodology. We 
then calculated the percentage of mapped residue pairs that satis-
fied DSSO’s theoretical constraint (≤30 Å). We observed that there 
was no significant difference (all P > 0.85) among the three sets in 
terms of their percentage of residue pairs satisfying the distance 
constraint (Fig. 1c), even though the overall qualities of these three 
sets are drastically different by design. Additionally, we utilized our 
recently published search engine, MaXLinker2, to repeat the analy-
sis and observed similar results, confirming that these findings 
are software-independent (Extended Data Fig. 1a,b). We further 
re-analyzed raw files from two other publicly available studies rep-
resenting different organisms (Escherichia coli13 and mouse10) and 

Structure-based validation can drastically 
underestimate error rate in proteome-wide 
cross-linking mass spectrometry studies
Kumar Yugandhar1,2, Ting-Yi Wang   1,2, Shayne D. Wierbowski   1,2, Elnur Elyar Shayhidin1,2 and 
Haiyuan Yu   1,2 ✉

NaTurE METHoDS | VOL 17 | OCtOBer 2020 | 985–988 | www.nature.com/naturemethods 985

mailto:haiyuan.yu@cornell.edu
https://www.rcsb.org/structure/5t2c
https://www.rcsb.org/structure/5gjq
http://orcid.org/0000-0001-5536-925X
http://orcid.org/0000-0002-2595-2011
http://orcid.org/0000-0001-7597-6049
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-020-0959-9&domain=pdf
http://www.nature.com/naturemethods


Brief CommuniCation NATurE METHoDS

cellular compartments (mitochondria10) (Fig. 2a,b and Extended 
Data Fig. 2a,b). These experimental results confirm that the current 
structure-mapping approach fails to capture the underlying error 
rate and indicate an urgent need for reliable metrics to estimate the 
quality of proteome-wide cross-linking datasets.

To address the pitfalls of the current validation approach, we 
propose the following comprehensive set of four measurements:

 (1) Fraction of structure-corroborating identifications (FSI): The 
current structure-based validation approach considers only 
those cross-links where both peptides mapped to the reference 
structure. Here, we propose FSI as an improved structure-based 
metric that uses the number of all interprotein cross-links with 
at least one peptide mapped to the reference structure, not just 
those with both peptides mapped, as the denominator (see the 
Methods).

 (2) Fraction of misidentifications (FMI): Including the proteome 
of an unrelated organism in the search database as an internal 
negative control can be an efficient way to independently assess 
the underlying error rate of the cross-link search algorithm2,14,15 
(see the Methods).

 (3) Fraction of interprotein cross-links from known interactions 
(FKI): Using previous knowledge of experimentally detected 
protein interactions to calculate the FKI provides a compara-
tive quality estimate (see the Methods).

 (4) Fraction of validated novel interactions using orthogonal experi-
mental assays: It is essential to validate a representative set of 
novel interactions identified in proteome-wide XL-MS stud-
ies using an orthogonal experimental assay (for example, yeast 
two-hybrid (Y2H), protein complementation assay (PCA)), 
to ensure data quality and reproducibility (see the Methods). 
Furthermore, using a Bayesian framework16,17 (Supplementary 
Note 2) and leveraging the validation rates among a positive 

reference set (PRS) of well-known interactions and a negative 
reference set (random reference set (RRS)) of random pairs, we 
can calculate the absolute precision of the novel interactions 
detected in an XL-MS study.

We next applied our proposed metrics on our human 
proteome-wide XL-MS results, and demonstrated how each of 
them efficiently captures the differences in data quality among the 
three filtered sets (Fig. 1d–g). Figure 1d shows that our improved 
structure-based metric, FSI, differentiates the three sets with statis-
tical significance, which could not be achieved by the conventional 
structure-based approach (Fig. 1c). The results are consistent with 
our earlier theoretical expectation that applying more stringent 
quality filters would remove predominantly (likely false positive) 
cross-links with only one peptide mapped to the structure, and 
thereby result in higher FSI values (Fig. 1b,d). Furthermore, Fig. 1e  
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Fig. 1 | Evaluation of the conventional 3D structure-based validation 
approach for proteome-wide XL-MS using human K562 DSSo XL-MS 
data2. a, In the current structure-mapping approach for validating 
cross-link identifications, most false positive cross-links only have one 
peptide mapped to the structure and are therefore ignored. b, table 
showing the number of interprotein cross-links obtained at different 
filtering criteria, and upon mapping to a representative 3D structure of a 
human 26S proteasome. c, Fraction of cross-links satisfying the maximum 
distance constraint (≤30 Å) across the three sets, according to the 
conventional structure-based validation approach (n = 43 cross-links for 
‘1% FDr with ΔXlinkX score ≥ 50’; n = 72 cross-links for ‘1% FDr’; n = 73 
cross-links for ‘10% FDr’). d, FSI across the three sets (n = 52 cross-links 
for ‘1% FDr with ΔXlinkX score ≥ 50’; n = 262 cross-links for ‘1% FDr’; 
n = 426 cross-links for ‘10% FDr’). e, FMI across the three sets (n = 668 
cross-links for ‘1% FDr with ΔXlinkX score ≥ 50’; n = 3,029 cross-links 
for ‘1% FDr’; n = 4,957 cross-links for ‘10% FDr’; see the Methods). f, 
FKI across the three sets (n = 985 cross-links for ‘1% FDr with ΔXlinkX 
score ≥ 50’; n = 16,591 cross-links for ‘1% FDr’; n = 35,561 cross-links for 
‘10% FDr’). For c–f, P values were calculated using a two-sided Z-test. 
the error bars indicate ±s.e. of the proportion and the centers of the error 
bars indicate the proportion. g, Orthogonal experimental validation of a 
random subset of novel interactions from the three sets using PCA. PrS: 
mean fraction positive: 0.286; rrS: mean fraction positive: 0.098; ‘10% 
FDr’: mean fraction positive: 0.152; ‘1% FDr’: mean fraction positive: 0.152; 
‘1% FDr with ΔXlinkX score ≥ 50’: mean fraction positive: 0.258. the 
error bars indicate ±s.d. and the centers of the error bars indicate mean 
fraction positive; P values were calculated using a two-sided t-test on the 
log-transformed measurements (n = 3 independent experiments; see the 
Methods); 95% confidence interval; t-statistic 4.04 for ‘10% FDr’ versus 
rrS, 7.20 for ‘1% FDr with ΔXlinkX score ≥ 50’ versus ‘1% FDr’, 2.13 for 
PrS versus ‘1% FDr with ΔXlinkX score ≥ 50’; 2 degrees of freedom.
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reveals the exact same trend: FMI is significantly lower for the ‘1% 
FDR with ΔXlinkX score ≥ 50’ set compared to the other two sets. 
Moreover, as shown in Fig. 1f, FKI exhibits great agreement with 
the expected data quality of different datasets (at ‘1% FDR with 
ΔXlinkX score ≥ 50’, FKI is 55.5%; but at ‘10% FDR’, FKI is merely 
4.4%; P < 1 × 10−20).

Finally, we performed a thorough orthogonal experimen-
tal validation of randomly chosen novel interactions from the  
three sets using PCA18,19. The fraction of PCA-positive novel 
interactions from the ‘1% FDR with ΔXlinkX score ≥ 50’ set (the 
highest-quality set) is distinctively higher compared with the 
other two sets and indistinguishable from that of PRS (P = 0.17; 

Fig. 1g). Notably, the fractions of PCA-positive interactions 
for ‘1% FDR’ and ‘10% FDR’ are indistinguishable from that of  
RRS. Furthermore, using the Bayesian framework16,17 
(Supplementary Note 2), we calculated the absolute precision of the 
novel interactions detected in our human XL-MS study (Extended 
Data Fig. 3). Especially since the true FDR at the protein pair level 
can be substantially higher than the estimated FDR at the peptide 
pair level7,15, absolute precision will be critically important for con-
firming the quality of novel protein–protein interactions identified 
in a large-scale cross-linking study. Finally, we confirmed the use-
fulness and robustness of the three computational metrics (namely, 
FSI, FMI and FKI) on the re-analyzed E. coli (Fig. 2c–e) and  
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mouse mitochondrial (Extended Data Fig. 2c–e) XL-MS datasets, 
and using the additional search engine MaXLinker2 (Extended 
Data Fig. 1c–e).

Taken together, our four metrics constitute a comprehen-
sive framework to facilitate both relative comparison across  
different datasets and absolute estimation of error rates. Moreover, 
because these metrics stem from different principles, they pro-
vide complementary insights to various aspects of the data qual-
ity. FMI provides an orthogonal estimation of FDR and serves 
as an absolute measure of error rate. In fact, other methods11,14,20 
have been reported to provide complementary error estimates for 
XL-MS studies, and show good agreement with FMI in terms of 
the relative data quality across different datasets (Supplementary  
Note 3). Since FSI typically leverages thoroughly studied complexes, in  
theory, it should provide an absolute estimate of quality. 
Nonetheless, we do note that it may only provide relative com-
parison especially in cases where limited or incomplete 3D refer-
ence structures are available (Fig. 2c and Extended Data Fig. 2c). 
FKI and ‘fraction of validated novel interactions using orthogonal 
experimental assays’ specifically address the quality of detected 
interactions inferred from interprotein cross-links. Because a large 
fraction of true protein interactions is yet to be discovered, FKI 
only provides relative estimates of quality among comparable data-
sets. Finally, even if high-throughput orthogonal assays are not 
available, we recommend that low-throughput validation assays 
(such as coimmunoprecipitation21) be performed on a meaningful 
subset of the interactions identified (Supplementary Note 4).

In conclusion, we theoretically and experimentally illustrated 
the limitation of the current structure-based validation approach 
for evaluating proteome-wide XL-MS results. Furthermore, we 
proposed a comprehensive set of four metrics, and demonstrated 
their ability to distinguish datasets with varying qualities. Moreover, 
we acknowledge that this drastic underestimation of the error rate 
by the conventional structure-based approach is unlikely to pose 
a serious issue for XL-MS studies focused on specific proteins 
and individual complexes as long as the cross-link search is per-
formed against only proteins that are included in the experiment. 
Importantly, this issue is highly relevant for the increasingly popu-
lar proteome-wide XL-MS experiments8,9 and cross-linking immu-
noprecipitation–mass spectrometry studies22. Going forward, a 
comprehensive and accurate quality assessment framework such as 
the one proposed in this work needs to be adapted to aid in the 
advancement of XL-MS technologies.
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Methods
Data processing. Cross-links were identified using XlinkX software (Proteome 
discoverer 2.2). Proteome Discoverer (PD) templates for different XlinkX search 
methodologies were obtained from Rosa Viner (Thermo Fisher Scientific). The raw 
files for the E. coli XL-MS dataset (MS2–MS3 aquisition) were obtained through 
e-mail request to Dr. Fan Liu. In addition to filtering cross-links at ‘10% FDR’ and 
‘1% FDR’, we further filtered the ‘1% FDR’ set using ‘ΔXlinkX score’ cut off ≥50. 
ΔXlinkX score is a cross-link spectrum match level scoring parameter in XlinkX 
software that indicates confidence in identifying a peptide pair over the next best 
competing peptide pair for a given precursor mass (higher score implies better 
quality). In addition to the three sets, we also filtered cross-links at ‘20% FDR’ and 
carried out the structure-based mapping analyses to verify that the trend observed 
in Figs. 1c and 2b and Extended Data Fig. 2b holds at this much higher FDR 
threshold (Extended Data Fig. 4). During generation of the 20% FDR set  
using MaXLinker software, the FDR was estimated at the cross-link spectrum 
match level.

Target protein sequences were downloaded from the Uniprot database23 (with 
filter ‘reviewed’): (1) E. coli: 5,268 sequences; downloaded on 28 October 2017; 
(2) Saccharomyces cerevisiae: 7,904 sequences; downloaded on 28 September 2017 
(‘reviewed: yes’); (3) human (Homo sapiens): 42,202 sequences (20,206 canonical; 
21,996 isoforms); downloaded on 23 June 2017); and (4) mouse (Mus musculus): 
17,019 sequences; downloaded on 8 July 2019. More specifically, the human 
database consists of 21,996 isoform sequences in addition to the 20,206 canonical 
sequences. The mouse database consists of the canonical sequences for 17,019 
proteins. The E. coli database contains of 5,268 sequences in total, consisting of 
4,436 sequences from the K12 strain (4,436; most common) and the remaining 
832 sequences from other less common strains. Similarly, for S. cerevisiae, the fasta 
database consists of 6,721 sequences from the common strain ‘ATCC 204508’, and 
the remaining sequences come from other less common strains such as ‘YJM789’, 
‘RM11-1a’ and ‘JAY291’. We utilized the full list of protein entries (did not rely on 
the protein grouping) to classify each cross-link as ‘interprotein’ or ‘intraprotein’, 
to avoid any inconsistencies that might occur due to potential protein grouping 
artifacts. When performing searches for Fig. 1e and Extended Data Fig. 5a, XlinkX 
crashed multiple times given the huge number of raw files (122 files) and the 
enormous search space (H. sapiens + S. cerevisiae). Hence, we ran the searches on a 
smaller set of raw files (25 files) to generate Fig. 1e and Extended Data Fig. 5a.

Mapping of cross-links to existing PDB structures. Cross-links from our 
human K562 proteome-wide XL-MS dataset were mapped to the 3D structure 
of the human 26S proteasome (PDB ID 5GJQ) utilizing residue-level mappings 
between Uniprot and PDB entries obtained from the SIFTS24 database. In cases 
where multiple positions within the PDB structure were valid, the mapping with 
the shortest distance was prioritized. For the re-analyzed mouse mitochondrial 
XL-MS dataset10, the cross-links were mapped to homologous complexes (PDB 
IDs 1EUC, 1T9G, 5LNK, 1ZOY, 1NTM, 1V54) as shown previously10. In brief, the 
protein sequences for all proteins involved in detected cross-links were aligned 
against a reference database containing PDB sequences of interest using BLAST25. 
All BLAST matches with significant E value and percentage identity greater than 
70% were retained. Exact positions for each cross-link were mapped against 
homologous PDB structures using a pairwise alignment, and cross-links were 
only considered successfully mapped if the cross-linked lysine was conserved in 
the structure. In cases where multiple positions within the PDB structure were 
valid, the mapping with the shortest distance was prioritized. Any cross-links 
where the exact position of the cross-linked lysine was not structurally resolved 
in a homologous PDB structure were considered partially mapped. Because SIFT 
residue-level mapping for most of the representative structures (PDB IDs 2VRH, 
1DKG, 1PCQ, 3JCD, 4PC1 and 2LRX) was unavailable for the E. coli dataset13, 
we utilized the above-mentioned homology-based approach and the closest 
homologous complexes (PDB IDs 5MY1, 5ADY, 5ME0, 2RDO, 2VRH, 4JK2, 
4YLN, 4YLO, 4XO2, 4YFH, 4YF0).

FSI. FSI can be calculated using the following equation:

FSI %ð Þ ¼

Number of interprotein XLs within the

Euclidean distance constraint of the linker
Number of interprotein XLs with at least

one of the two residuesmapped to structure

´ 100 ð1Þ

In this work, we used 30 Å as the maximum distance constraint for DSSO.

FMI. FMI is the fraction of cross-link identifications from a false search space 
(from an unrelated organism) among all of the identified cross-links. It can be 
calculated using the following equation:

FMI %ð Þ ¼ Number of mis-identifications
Total number of identifications

´ 100 ð2Þ

In the current work, all of the raw files were re-analyzed against a sequence 
database containing all of the sequences from the target organism’s proteome 

and all of the sequences from the S. cerevisiae proteome. Then the FMI, that is, 
cross-links with at least one of the two linked residues unambiguously mapped 
to proteins from S. cerevisiae, is calculated (if any cross-link had a peptide shared 
between homologous proteins from the target organism and S. cerevisiae, it 
was considered a true identification). Importantly, when choosing an unrelated 
organism, it is critical to make sure that there is no potential experimental 
contamination with proteins from that organism. It should be noted that another 
decoy database (reverse sequences of proteomes from both organisms) is generated 
for the FDR calculation by Proteome Discoverer. It is also noteworthy that FMI is 
estimated after the cross-link results are filtered at a conventional FDR threshold 
(‘1% FDR’ in the current study). Additionally, it should be pointed out that similar 
to the conventional FDR calculations26, FMI calculations can also be sensitive to 
drastic differences in size of the proteome database of the unrelated organism. We 
utilized the following equation adapted from Fischer and Rappsilber7 to account 
for differences in database size and observed a similar trend to that of uncorrected 
FMI across all three datasets analyzed in the current study (Extended Data Fig. 5).

FMIcorrected %ð Þ ¼
TDþ DD 1� TDDB

DDDB

� �

TT
´ 100 ð3Þ

where TT is the number of target–target matches, DD is the number of decoy–
decoy matches and TD is number of target–decoy and decoy–target matches. TDDB 
is the number of all possible unique target–decoy and decoy–target peptide pairs 
and DDDB is the number of all possible unique decoy–decoy peptide pairs.

FKI. FKI for proteome-wide XL-MS studies can be defined as the fraction of 
the identified interprotein cross-links from previously known protein–protein 
interactions. It can be derived using the following equation:

FKIð%Þ ¼ Number of true positives
Total number of postives

X 100 ð4Þ

where, ‘positives’ refers to all of the identified interprotein cross-links, and 
‘true positives’ refers to interprotein cross-links from known protein–protein 
interactions. If a given interprotein cross-link represents multiple potential 
interactions and at least one of those potential interactions was mapped to the 
list of known protein–protein interactions, it was counted as a ‘true positive’. We 
compiled the known protein–protein interactions for E. coli (24,745), mouse 
(40,527) and human (336,033) from seven primary interaction databases. These 
databases include IMEx27 partners IntAct28, MINT29 and DIP30; IMEx observer 
BioGRID31; and additional sources HPRD32, MIPS33 and iRefWeb34. Furthermore, 
iRefWeb combines interaction data from CORUM35, BIND36, MPPI33 and OPHID37. 
We converted all gene identifiers in each database to Entrez gene IDs and then 
mapped to Uniprot IDs.

We would like to point out that FSI and FKI are calculated using similar 
denominators, conceptually. For FSI, the dominator consists of all interprotein 
cross-links with at least one of the two peptides mapped to the reference structure. 
In the case of FKI, the denominator consists of all of the interprotein cross-links 
in the dataset. Even though FKI’s equation does not explicitly require all of the 
cross-links to have at least one of the two proteins to be present in the reference 
interactome database, we expect that almost all interprotein cross-links satisfy 
this criterion. Moreover, we analyzed all of the datasets from the current study 
and noted that all of the datasets have more than 97% of all of their interprotein 
cross-links with at least one of the proteins in the reference interactome database. 
We acknowledge that someone who has a smaller reference database might not 
note the same observation. However, we argue that such a case would lead to 
underestimation of FKI (that is, overestimation of error rate), thereby making FKI 
more stringent.

Fraction of validated novel interactions using orthogonal experiment, namely 
PCA. The open reading frames of novel protein–protein interactions in pDONR223 
vector were inoculated from hORFeome v.8.1 library38. In each of the categories, 
namely ‘1% FDR with ΔXlinkX score ≥ 50’, ‘1% FDR’ and ‘10% FDR’, 93 protein 
pairs were randomly picked without any overlaps between categories. The Gateway 
LR reactions were performed to clone the individual bait and prey proteins of 
each protein pair into the expression plasmids containing the complementation 
fragments of the fluorescent protein Venus. To perform the assay, the HEK293T cells 
were prepared in DMEM supplemented with 10% fetal bovine serum (ATCC) in 
black 96-well flat-bottom plates (Costar) with 5% CO2 at 37 °C. Upon reaching 
60–70% confluency, the cells were cotransfected with both plasmids containing 
the Venus fragments-tagged bait and prey open reading frames (100 ng for each) 
which were premixed and incubated with polyethylenimine (Polysciences) and 
OptiMEM (Gibco). For positive and negative controls, the sets containing the 
previously published 92 positive reference pairs and 92 negative reference pairs were 
simultaneously examined19,39. After 58 h, the fluorescence intensity of the transfected 
cells was measured and recorded using an Infinite M1000 microplate reader (Tecan) 
(excitation = 514 ± 5 nm/emission = 527 ± 5 nm). The PCA experiments were 
performed and analyzed in triplicate. We performed a statistical power analysis 
(using in-built R v.3.6.3 functions and Python 2.7) and confirmed that using 92 
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interactions would give us >97% power to detect the difference for the ‘Positive 
Reference Set (PRS)’ versus the ‘Random Reference Set (RRS)’, and the ‘1% FDR 
with ΔXlinkX score ≥ 50’ versus the ‘1% FDR’ and the ‘10% FDR’ datasets. The effect 
sizes (Cohen’s d) were calculated from the means and pooled standard deviations 
of two given groups under comparison (all effect sizes were large, that is, d > 0.8). 
The results are provided in Supplementary Table 1. Additionally, a short discussion 
on the utility of PCA to validate interactions from large-scale XL-MS studies on cell 
organelles and different organisms is provided in Supplementary Note 5.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The human K562 XL-MS raw files (122 raw files (97 HILIC and 25 SCX fractions) 
from our recent proteome-wide human K562 XL-MS study2) analyzed in this 
study have been deposited to the ProteomeXchange Consortium via the PRIDE40 
partner repository with the dataset identifier PXD018771. Raw data from our PCA 
experiments are available from the corresponding author upon request. Protein 
sequences were obtained from the Uniprot database (https://www.uniprot.org/). 
Residue-level mapping was performed using data from the SIFTS database (https://
www.ebi.ac.uk/pdbe/docs/sifts/index.html). Protein three-dimensional structures 
utilized in this study were obtained from the PDB (accession codes: 5GJQ, 1EUC, 
1T9G, 5LNK, 1ZOY, 1NTM, 1V54, 5MY1, 5ADY, 5ME0, 2RDO, 2VRH, 4JK2, 
4YLN, 4YLO, 4XO2, 4YFH and 4YF0). Source data are provided with this paper.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | analysis of the human proteome-wide XL-MS dataset using MaXLinker software. (a) table showing the number of interprotein 
cross-links obtained at different filtering criteria, and upon mapping to a representative 3D structure of a human 26S proteasome (PDB id: 5GJQ). (b) Comparison 
of the fraction of validated cross-links using the conventional structure-based approach (n = 49 XLs for ‘1% FDr’; n = 65 XLs for ‘10% FDr). (c) Comparison 
using the fraction of structure-corroborating identifications (FSI) (n = 63 XLs for ‘1% FDr’; n = 125 XLs for ‘10% FDr). (d) Comparison using the fraction of 
mis-identifications (FMI) (n = 8127 XLs for ‘1% FDr’; n = 15110 XLs for ‘10% FDr). (e) Comparison using the fraction of interprotein cross-links from known 
interactions (FKI) (n = 1144 XLs for ‘1% FDr’; n = 5158 XLs for ‘10% FDr). for (b–e), the P values were calculated using a two-sided Z-test and the error bars 
indicate +/- Se of proportion.
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Extended Data Fig. 2 | Demonstration of the utility of our comprehensive set of validation metrics on a publicly available mouse mitochondrial XL-MS 
dataset. (a) table showing the number of interprotein cross-links obtained at different filtering criteria, and upon mapping to representative 3D structures. 
(b) Conventional structure-based validation (n = 47 XLs for ‘1% FDr with ΔXlinkX score≥50’; n = 59 XLs for ‘1% FDr’; n = 63 XLs for ‘10% FDr’). (c) 
Fraction of structure-corroborating identifications (FSI) (n = 360 XLs for ‘1% FDr with ΔXlinkX score≥50’; n = 1402 XLs for ‘1% FDr’; n = 2097 XLs for 
‘10% FDr’). (d) Fraction of mis-identifications (FMI) (n = 4814 XLs for ‘1% FDr with ΔXlinkX score≥50’; n = 15323 XLs for ‘1% FDr’; n = 24317 XLs for 
‘10% FDr’). (e) Fraction of interprotein cross-links from known interactions (FKI) (n = 2368 XLs for ‘1% FDr with ΔXlinkX score≥50’; n = 11418 XLs for 
‘1% FDr’; n = 19665 XLs for ‘10% FDr’). P values in (b-e) were calculated using a two-sided Z-test and the error bars indicate +/- Se of proportion.
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Extended Data Fig. 3 | Estimated precision using PCa experiments for the three datasets of different quality from our human K562 proteome-wide 
XL-MS study. Derived from Fig. 1g (n = 3 independent experiments; See Methods). the error bars indicate +/- Se of proportion (see Supplementary  
Note 2 for a detailed description of the methodology).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Structure-based mapping analysis at 20% FDr, extension to the analysis shown in Fig. 1, Fig. 2, and Extended Data Fig. 2. a. 
Human proteome-wide XL-MS study: (i) Conventional structure-based validation (n = 43 XLs for ‘1% FDr with ΔXlinkX score≥50’; n = 72 XLs for ‘1% 
FDr’; n = 73 XLs for ‘10% FDr’; n = 73 XLs for ‘20% FDr’). (ii) Fraction of structure-corroborating identifications (FSI) (n = 52 XLs for ‘1% FDr with 
ΔXlinkX score≥50’; n = 262 XLs for ‘1% FDr’; n = 426 XLs for ‘10% FDr’; n = 605 XLs for ‘20% FDr’). b. E. coli proteome-wide XL-MS study:  
(i) Conventional structure-based validation (n = 14 XLs for ‘1% FDr with ΔXlinkX score≥50’; n = 17 XLs for ‘1% FDr’; n = 17 XLs for ‘10% FDr’;  
n = 17 XLs for ‘20% FDr’). (ii) Fraction of structure-corroborating identifications (FSI) (n = 31 XLs for ‘1% FDr with ΔXlinkX score≥50’; n = 55 XLs 
for ‘1% FDr’; n = 101 XLs for ‘10% FDr’; n = 123 XLs for ‘20% FDr’). c. Mouse mitochondrial XL-MS study: (i) Conventional structure-based validation 
(n = 47 XLs for ‘1% FDr with ΔXlinkX score≥50’; n = 59 XLs for ‘1% FDr’; n = 63 XLs for ‘10% FDr’; n = 63 XLs for ‘20% FDr’). (ii) Fraction of 
structure-corroborating identifications (FSI) (n = 360 XLs for ‘1% FDr with ΔXlinkX score≥50’; n = 1402 XLs for ‘1% FDr’; n = 2097 XLs for ‘10% FDr’;  
n = 2751 XLs for ‘20% FDr’). P values in all the panels were calculated using a two-sided Z-test and the error bars indicate +/- Se of proportion.
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Extended Data Fig. 5 | Corrected FMI for the three datasets analyzed in the study (utilizing Equation 3 from Methods section). (a) Human 
proteome-wide XL-MS (n = 668 XLs for ‘1% FDr with ΔXlinkX score≥50’; n = 3029 XLs for ‘1% FDr’; n = 4957 XLs for ‘10% FDr). (b) E. coli 
proteome-wide XL-MS (n = 340 XLs for ‘1% FDr with ΔXlinkX score≥50’; n = 553 XLs for ‘1% FDr’; n = 755 XLs for ‘10% FDr). (c) Mouse mitochondrial 
XL-MS (n = 4814 XLs for ‘1% FDr with ΔXlinkX score≥50’; n = 15323 XLs for ‘1% FDr’; n = 24317 XLs for ‘10% FDr). P values in all the panels were 
calculated using a two-sided Z-test and the error bars indicate +/- Se of proportion.
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