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Abstract

Motivation: Vast majority of human genetic disorders are associated with mutations that affect protein–protein
interactions by altering wild-type binding affinity. Therefore, it is extremely important to assess the effect of muta-
tions on protein–protein binding free energy to assist the development of therapeutic solutions. Currently, the most
popular approaches use structural information to deliver the predictions, which precludes them to be applicable on
genome-scale investigations. Indeed, with the progress of genomic sequencing, researchers are frequently dealing
with assessing effect of mutations for which there is no structure available.

Results: Here, we report a Gradient Boosting Decision Tree machine learning algorithm, the SAAMBE-SEQ, which is
completely sequence-based and does not require structural information at all. SAAMBE-SEQ utilizes 80 features rep-
resenting evolutionary information, sequence-based features and change of physical properties upon mutation at
the mutation site. The approach is shown to achieve Pearson correlation coefficient (PCC) of 0.83 in 5-fold cross val-
idation in a benchmarking test against experimentally determined binding free energy change (DDG). Further, a
blind test (no-STRUC) is compiled collecting experimental DDG upon mutation for protein complexes for which
structure is not available and used to benchmark SAAMBE-SEQ resulting in PCC in the range of 0.37–0.46. The accur-
acy of SAAMBE-SEQ method is found to be either better or comparable to most advanced structure-based methods.
SAAMBE-SEQ is very fast, available as webserver and stand-alone code, and indeed utilizes only sequence informa-
tion, and thus it is applicable for genome-scale investigations to study the effect of mutations on protein–protein
interactions.

Availability and implementation: SAAMBE-SEQ is available at http://compbio.clemson.edu/saambe_webserver/
indexSEQ.php#started.

Contact: ealexov@clemson.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Mutations introduce diversity in genome that can be either advanta-
geous or cause diseases. Their effect on molecular level is manifested
as alterations of wild-type properties of the corresponding macro-
molecules such as proteins, DNAs and RNAs (Kucukkal et al.,
2015; Petukh et al., 2015a,b). Of particular interest is the effect of
mutations on protein–protein interactions, since protein–protein
interactions are essential for a wide range of cellular processes such
as signal transductions, cell metabolism, regulation of gene expres-
sion, transport and muscle contractions (Bustin, 2015; Jones and
Thornton, 1996; Keskin et al., 2008). Therefore, understanding the
effect of mutations on protein–protein interactions at molecular

level is crucial for protein engineering (Orii and Ganapathiraju,
2012), developing novel therapeutics (Petta et al., 2016; Wells and
McClendon, 2007) and revealing molecular mechanism of diseases
(Kuzmanov and Emili, 2013; Nibbe et al., 2011). This prompted nu-
merous investigations, both experimental (Fragoza et al., 2019) and
computational (Das et al., 2012), to explore the impact of mutations
on protein–protein interactions.

Computational methods for predicting the effect of mutations on
protein–protein binding energy are alternative to experimental tech-
niques, since they are less time consuming and do not require bio-
chemical work to prepare the samples. Because of that, various
computational methods (described below) were developed, however,
most of them require structural information. This is a severe
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limitation for genome-scale approaches, since it is estimated that
only about 6.5% of known human interactome has structural infor-
mation (Mosca et al., 2013).

Among various computational methods, some are based on
physical energy-based features or knowledge-based features, some
use machine learning algorithms others linear combination of energy
terms. For example, FoldX (Guerois et al., 2002; Schymkowitz
et al., 2005), a machine learning method uses physical energies, such
as van der Waals, electrostatic energy, hydrogen bond and solvation
energy. In addition, this method considers conformational changes
of side chains using rotamer approach. In addition to physical en-
ergy, knowledge-based energy terms were also used to determine
DDG. For example, SAAMBE (Petukh et al., 2015a,b, 2016) uses
combination of MM/PBSA and knowledge-based energy terms. The
specialty of SAAMBE is that it uses amino-acid-specific dielectric
constants to mimic the conformational flexibility caused by muta-
tion. BindProfX (Xiong et al., 2017) is another method, which com-
bines conservation profile with the FoldX to improve the prediction
of DDG. In 2018, a statistical energy-based DDG predictor based on
a coarse-grained model, the BeAtMuSiC (Dehouck et al., 2013), was
developed. All these methods based on either physical energy or
knowledge-based potential or combination of both were reported to
achieve Pearson correlation coefficient (PCC) ranging from 0.38 to
0.68 as benchmarked on SKEMPI v1.1 database (Moal and
Fernández-Recio, 2012).

In recent years, several machine learning-based methods have
been developed with structure-based features to predict DDG upon
mutations. The first developed machine learning-based predictor is
mCSM (Pires et al., 2014), which uses atomic distance pattern sur-
rounding the mutation site to represent the neighboring environment
and achieved a high correlation of 0.80 on 2317 single mutations
from SKEMPI v1.1 database. Recently published iSEE (Geng et al.,
2019) method is based on 31 features involving position-specific
scoring matrix, structure interface profile and energy-based features
and utilizes a random forest model to predict DDG caused by a given
mutation. iSEE achieved a high correlation of 0.8 on single muta-
tions in dimeric complexes from SKEMPI v1.1. MutaBind (Li et al.,
2016) is another predictor, which obtained a correlation of 0.68 on
the single point mutations in SKEMPI 1.1. Recently, MutaBind2
(Zhang et al., 2020) was developed and reported to achieve PCC of
0.82 against experimental DDG from SKEMPI v2.0(Jankauskaite
et al., 2019). It is important to mention that MutaBind2 can predict
DDG caused by multiple mutations as well. BindProfX (Xiong et al.,
2017) combines its interface profile with the FoldX score to improve
the prediction of DDG using random forest model and achieved PCC
of 0.74 on 1131 single mutations from SKEMPI v1.1. However,
BindProfX can only predict DDG for mutations located at the inter-
face of the protein complexes. Recently, an improved version of
mCSM method, called mCSM-PPI2 (Rodrigues et al., 2019), was
reported. In mCSM-PPI2 method, the graph-based signature frame-
work of mCSM is combined with additional inter-residue complex
network, evolutionary information and energetic terms. Another re-
cent innovative algorithm is TopNetTree (Wang et al., 2020), which
integrates topological features and a deep learning algorithm, repre-
sented by a topology-based network tree. The method achieved a
PCC of 0.82 on single mutations from SKEMPI v2.0 database. Our
recently published method, SAAMBE-3D (Pahari et al., 2020) is a
structure-based machine learning algorithm, which utilizes several
knowledge-based features representing the physical environment sur-
rounding mutation site. SAAMBE-3D is the fastest method available
so far for predicting DDG caused by single mutation and comes as
stand-alone code as well. Moreover, in addition to predicting DDG,
the method predicts whether the mutation is disruptive or non-
disruptive, which enables identification of disease-causing mutations.

The important thing to note here is that all the above-mentioned
methods require a 3D structure of the protein complex as input to pre-
dict DDG upon mutations. However, as mentioned above, only 6.5%
of known human interactome has structural information (Mosca
et al., 2013). Therefore, the applicability of these structure-based
methods is limited. A partial solution that can extend their applicability
is to predict the structures of protein complexes from sequence using

homology modeling. However, generating high-quality 3D structures
is not always possible which makes the predictions much less accurate.
Therefore, it is crucial to develop a method, which can predict DDG
caused by mutations using only sequence information.

Currently, there is only one sequence-based method, the
ProAffiMuSeq (Jemimah et al., 2019), which takes the sequence of
two interacting chains as input. However, ProAffiMuSeq is intended
to only predict DDG caused by mutations located at the interfaces
of the protein–protein complexes, and thus still requires structural
information. Our attempt to use it for predicting DDG for non-
interfacial mutations resulted in negative PCC as benchmarked
against experimental data (see Section 3). The ProAffiMuSeq is a
machine learning-based method, achieves a PCC of 0.75 in bench-
marking test (90% training and 10% testing sets) taken from
1173 interfacial mutations in protein–protein complexes from
PROXiMATE database (Jemimah et al., 2017).

Here, we report a new development of SAAMBE, the SAAMBE-
SEQ, which is a truly sequence-based machine learning algorithm to
predict the binding affinity changes upon single mutation in pro-
tein–protein complexes. Unlike other existing methods, SAAMBE-
SEQ does not either require a 3D complex structure as input or
knowledge of interfacial residues. Therefore, this method can be
applied to protein complexes without known structure. The predic-
tion of DDG using SAAMBE-SEQ is found to be either more accur-
ate or comparable to leading structure-based methods. The method
is available as a webserver as well as stand-alone code. SAAMBE-
SEQ utilizes 80 features representing evolutionary information using
position-specific scoring matrix, sequence-based features and change
in some physical properties of mutation site. SAAMBE-SEQ is
trained on 2398 single point mutations from 200 complexes taken
from SKEMPI v2.0. The method uses the Gradient Boosting
Decision Tree (GBDT) machine learning algorithm and achieves a
PCC of 0.83. Furthermore, SAAMBE-SEQ is also trained to discrim-
inate disruptive from non-disruptive mutations and achieves accur-
acy of 0.81, precision of 0.65, sensitivity and specificity of 0.81 as
benchmarked against Cornell University dataset (Fragoza et al.,
2019; Pahari et al., 2020).

2 Materials and methods

2.1 Dataset creation
The amino acid sequences and experimentally measured binding
free energies in this work were taken from the recently updated ver-
sion of SKEMPI, SKEMPI v2.0 database (Jankauskaite et al., 2019),
which compiles experimentally measured binding affinity values for
wild-type as well as mutant protein–protein complexes. SKEMPI 2.0
contains binding affinity data for 7085 mutations from 389 protein
complexes. Only cases of single point mutations from dimeric com-
plexes were considered, resulting in 2446 mutations from 207 differ-
ent protein–protein complexes. Then, the binding free energy (DG)
was calculated from the binding affinity:

DG ¼ RTln KDð Þ (1)

where R is the ideal gas constant, T is temperature in kelvin and KD

is binding affinity of the given protein complex. The DG is calcu-
lated for both wild-type and mutant protein complexes. Then, the
change in binding free energy upon mutation (DDG) is calculated by
subtracting DG for wild-type from that of mutant

DDGMutant�Wild�type ¼ DGMutant � DGWild�type (2)

For some mutations, multiple measurements were carried out,
and all the measured binding affinity values were reported in
SKEMPI v2.0 database. If the standard deviation of DDG for a par-
ticular mutation is less than 1.0 kcal mol�1, we considered those
cases and used average value for developing and benchmarking our
model. We removed all mutations with standard deviation greater
than 1 kcal mol�1. Further, we removed the complexes for which
any chain contains less than 20 amino acid residues. Therefore, the
final compiled dataset consists of 2398 single point mutations from
200 different dimeric complexes.

SAAMBE-SEQ 993



2.2 Model development
Our methodology of predicting binding free energy changes due to
mutation in protein complexes incorporates only sequence-based
features. Our machine learning model is based on GBDT algorithm.

Overall, we used 80 features which include average Position-Specific
Scoring Matrix (PSSM) for mutant and interaction chain, conserva-

tion score at mutation site, change in molar volume, hydrophobicity,
flexibility, hydrogen bonds, polarity, mutation type, chemical nature
and size of the mutated amino acid. Label encoding method is used

for incorporating mutation type, change in polarity, chemical prop-
erties, hydrogen bond donor/acceptor and size features. We describe

the features in detail in the following section. We also analyzed the
importance of each feature using XGBoost machine learning soft-
ware. To avoid overfitting and make a robust model, we carried out

100 times 5-fold cross validations. We created two models: one
using 80% and another using 90% of the compiled dataset to train

the model and remaining 20 or 10% is used for testing the perform-
ance of the model. For a more accurate estimation, we repeated the
whole process 100 times and then averaged the PCC and Mean

Square Error (MSE). Figure 1 represents a schematicillustration of
the SAAMBE-SEQ method.

2.3 Features
2.3.1 Features based on the position-specific scoring

matrix (PSSM)

The corresponding protein sequence is utilized as input to search

and align homologous sequences from Uniref50 (Suzek et al., 2014)
database (https://www.uniprot.org/downloads) using the PSI-

BLAST program (Camacho et al., 2009) with 3 iterations and a
cutoff E-value of 0.001. Then the PSSM is constructed through a
multiple sequence alignment of the highest scoring hits. As a result,

we obtain an L�20 PSSM for each protein sequence, where L is the
length of each protein sequence. Each row of the PSSM matrix rep-

resents the log likelihood score for amino acid substitutions at the
corresponding positions in the input sequence:

PPSSM ¼
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where Pi, j represents the score of the amino acid residue in the ith
position of the protein sequence being changed to amino acid type j
during the evolution process.

2.3.2 Evolutionary features of mutated and interaction chains

Protein sequences of different sizes have different lengths of PSSM.
To make the PSSM descriptor become a size-uniform matrix, one
approach is to represent a protein sample P by

P
�

PSSM ¼ P1

�
;P2;
�
� � � ;P20

�� �T

(4)

where

P
�

j ¼
1

L

XL

i¼1

Pi;j j ¼ 1; 2; . . . 20ð Þ (5)

and P
�

j is the composition of the amino acid type j in the PSSM and
represents the average score of the amino acid residues in the protein
P being mutated to amino acid type j during the evolution process.
All values in PSSM of each protein sequence are normalized to be
between 0 and 1 by sigmoid function:

f xð Þ ¼ 1= 1þ exð Þ (6)

where x is the original value of PSSM.
Using this method, we obtained 20 uniform average conservation

scores for mutated and interaction chains, respectively.

2.3.3 Conservation score at mutation site

We select the rows belonging to the given mutation site from PSSM
to obtain 20 conservation scores features for the mutation site.

2.3.4 Sequence neighbors feature

We labeled ten residues including five on the left and five on the
right side from the mutation site. There can be 20 possibility of each
label representing 20 different amino acids. These are the ten resi-
dues which can have a significant influence on mutation site.

2.3.5 Features related to mutation site

We used nine features related to mutation site: net volume, net
hydrophobicity, mutation type, net flexibility, chemical property,
size, polarity, hydrogen bond and label_hydrophobicity. For
detailed description of each feature, refer to our previous paper
(Pahari et al., 2020) and Supplementary Material.

2.4 Feature importance analysis
We analyzed the importance of each selected feature for the predic-
tion performance of SAAMBE-SEQ method. To evaluate the feature
importance, we used XGBoost algorithm from python package.
Figure 2 represents the importance level of each feature. Figure 2
reveals that average PSSM of mutant chain (MC avePSSM) and con-
servation score at mutation site (CS Mutation Site) are the two most
important features in our model. The third highest contributing fea-
ture is average PSSM for interaction chain (IC avePSSM). These
three features capture the evolutionary conservation of a given
amino acid at the mutation site as well as of surrounding of muta-
tion site and its change upon mutation. PSSM has already been
established for providing crucial information in hotspot (Moreira
et al., 2017) and binding site prediction (Walia et al., 2014). The
next important feature is sequence neighbor, where we considered
10 amino acids near mutation site according to primary sequence.
Sequence neighbor feature captures the influence of neighboring
amino acid residues on the mutation site. The next three important
features are mutation type, change in molar volume and hydropho-
bicity of amino acid residues upon the mutation. We applied feature
selection protocol on the training set with 5-fold cross validation
when tested on 20% of dataset. Supplementary Table S7 displays
the performances of the models using additive feature groups in
each iteration. The final model achieves a PCC of 0.83, higher than
the 0.82 using all features. For comparison, we also trained our
model by removing each feature from our final model and tested the
robustness of SAAMBE-SEQ.Fig. 1. Schematic illustration of SAAMBE-SEQ method
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2.5 no-STRUC dataset
From literature, we collected the experimental DDG values upon
mutation in protein–protein complexes, for which structure is not
available. We utilized UniProt database to obtain the sequence from
protein name and used these. We provided the Uniprot ID and the
corresponding reference in Supplementary Tables S1 and S2 for
homodimer and heterodimer complexes, respectively.

3 Results

We trained SAAMBE-SEQ on a large and diverse dataset containing
experimental DDG for 2398 single point mutations from 200 pro-
tein–protein dimeric complexes. For predicting DDG upon a given
mutation, we developed a regression model using 80 knowledge-
based features, representing evolutionary information and physical
environment surrounding the mutation site. In order to build a reli-
able and robust model, we performed 100 times 5-fold cross valid-
ation. Selection of the training and test sets were repeated 100 times
randomly, and average PCC and MSE are considered. We trained
our model against 80% as well as 90% of the 2398 mutations pre-
sent in our compiled dataset and tested against the remaining 20 or
10% data. In 5-fold cross validation, our model shows a correlation
of 0.83 and MSE of 1.44 kcal/mol when tested on 20% of the data-
base (Fig. 3a). In contrast, we obtained a PCC of 0.91 and MSE of
0.90 kcal/mol when tested on 10% of the database (Fig. 3c). In
Figure 3, we also plotted the distribution of both experimental as
well as predicted DDGs for the corresponding test sets. In both cases,
it can be seen that the distribution of predicted DDGs using
SAAMBE-SEQ is remarkably similar to corresponding experimental
DDGs. To avoid any bias and overfitting, we chose the model, which
is trained on 80% of the dataset for the rest of the article.

Furthermore, a detailed comparison between predicted and ex-
perimental DDGs upon mutations associated with different types of
amino acids is plotted in Figure 4. All mutations from the 20% test
set were evaluated. In Figure 4, x-axis and y-axis represent the
amino acid residue type for wild-type and mutant, respectively. The
value (in kcal/mol) of variance of DDG upon each type of mutation
is shown in color code—the darker the color the larger is the vari-
ance. We categorized the amino acid residue types in three catego-
ries depending on their physico-chemical characteristics: (i) size of
the residue (small, medium and large); (ii) polarity (polar and non-
polar) and (iii) hydrophobicity (hydrophobic, neutral and
hydrophilic).

One can see in Figure 4 that both experimental data as well as
predicted data using SAAMBE-SEQ indicate that variance of bind-
ing energy changes associated with mutations from small residue
type in wild-type to small residue type in mutant is usually low,
while mutations from small to large residue type result in large

change in binding energy. Another interesting fact is that if the
amino acid residue type is alanine in the wild-type, then irrespective
of any residue type in the mutant, the binding energy change is al-
ways small. One can also see that in both experimental as well as
SAAMBE-SEQ predicted data, mutations involving hydrophobic to
hydrophobic residue are usually associated with small binding en-
ergy change. Overall, comparing the patterns on the left and right
panels in Figure 4, one can easily notice that they are very similar
indicating that SAAMBE-SEQ predicted variances of DDG is very
similar to those of experimental data.

3.1 Performance comparison on blind datasets
For validation, we used three recently published datasets (for more
details, see Geng et al., 2019): MDM2-p53, NM and s487 and one
compiled by us, termed no-STRUC, which contains mutations from
protein complexes whose 3D structures are not available.

3.1.1 Performance of SAAMBE-SEQ on MDM2-p53 dataset

MDM2-p53 dataset contains 33 mutations among which 7 were
reported as mutation for which DDG exceed experimental detection
limit. Therefore, we removed these 7 entries from our validation test
set, resulting in 26 mutations from a single protein complex (PDB
ID is 1YCR, however, in our benchmarking, we used only sequence
information). These mutations were not used in our training and
test dataset. We compared the correlation between experimental
and predicted DDG on these 26 mutations. SAAMBE-SEQ achieved
a PCC of 0.35 and MSE of 0.45 kcal/mol. We compared the per-
formance of SAAMBE-SEQ with the only existing sequence-based
method, ProAffiMuSeq, which obtained a PCC of 0.16 and MSE of
0.99 kcal/mol. We also compared the prediction of SAAMBE-SEQ
with other existing high-performing structure-based methods such
as iSee, mCSM, BindProfX, FoldX, mCSM-PPI2, MutaBind2 and
SAAMBE-3D. Figure 5 shows the performance of SAAMBE-SEQ
and other methods on MDM2-p53 validation dataset. We can see in
Figure 5a that SAAMBE-SEQ outperforms iSee, FoldX, mCSM and
MutaBind2 and achieved similar performances (PCC¼0.35) as of
BindProfX (PCC ¼ 0.36) and mCSM-PPI2 (PCC ¼ 0.35). Figure 5a
indicates that SAAMBE-3D outperforms all the existing methods
and achieved a PCC of 0.41. However, we need to keep in mind that
SAAMBE-SEQ is a sequence-based method and the comparable per-
formances of the method with the already established high-

Fig. 2. Importance level of each feature selected for SAAMBE-SEQ

Fig. 3. SAAMBE-SEQ predicted DDG against experimental DDG. (a, b) In case of

20% of mutations as test set and (c, d) in case of 10% of mutations as a test set.

Panels on the left show the results over the entire data range, while panels of the

right zoom at the range of 95% of the entries that have DDG between �3.0 and

6.0 kcal/mol
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performing structure-based methods make SAAMBE-SEQ an out-
standing DDG predictor. Moreover, Figure 5b reflects that

SAAMBE-SEQ has the second lowest MSE of 0.45 kcal/mol after
mCSM-PPI2. Furthermore, we carried out Fisher-T statistical signifi-

cance test of correlation coefficient (Supplementary Table S3) for
each method and also evaluated whether the difference in other
methods compared to SAAMBE-SEQ is statistically significant or

not (Supplementary Table S4) using Fisher-Z test.

3.1.2 NM dataset

The second validation dataset was taken from the NM dataset
studied by Benedix et al. (2009). We only selected single mutations
that were not present in our training dataset, and we removed cases

in which more than two chains were present in the PDB structure. In
this way, we filtered out 27 single mutations from a single protein
complex (PDB ID: 1IAR, however, in the benchmark, we used only
sequence information). Unfortunately, we could not compare the
prediction performance of SAAMBE-SEQ with ProAffiMuSeq as
these mutations from NM dataset are present in their training data-
set. However, we compared the performance of SAAMBE-SEQ with
existing structure-based methods, mCSM-PPI2 (Rodrigues et al.,
2019), SAAMBE-3D and MutaBind2 (Zhang et al., 2020) on these
selected 27 mutations. Figure 5a presents the correlation between
experimental and predicted DDG for the 27 mutations for all the
above-mentioned methods. We could not calculate DDG using iSee,
mCSM and FoldX because the corresponding webservers were un-
available. Also, we were unable to compare the prediction with
BindProfX method as this method only can predict DDG for inter-
facial mutations. Figure 5a indicates that SAAMBE-SEQ outper-
forms SAAMBE-3D and mCSM-PPI2 in predicting DDG upon
mutations from NM dataset. SAAMBE-SEQ achieved PCC of 0.57
and MSE of 2.06 kcal/mol. It should be mentioned that MutaBind2
is the highest performer with PCC of 0.70 and MSE of 1.35 kcal/
mol. The results of statistical significance are shown in
Supplementary Tables S3 and S4.

3.1.3 S487 dataset

The third validation dataset is s487, compiled by Geng et al. (2019)
The dataset contains 487 single mutations from 56 complexes and
all mutations are located at protein–protein interfaces. Figure 5 rep-
resents a prediction comparison in the form of PCC and MSE
obtained using different structure-based DDG predictors along with

Fig. 4. Comparison of the experimental and SAAMBE-SEQ predicted variance of DDG due to mutations associated with different amino acid types on test set

Fig. 5. Performance comparison of SAAMBE-SEQ with other existing structure-

based methods on three validation test set (MDM2-p53, NM and s487) in terms of

(a) PCC and (b) MSE
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SAAMBE-SEQ. The PCC and MSE values, achieved by iSee,
BindProfX, FoldX, mCSM, MutaBind2 and SAAMBE-3D are taken
from our previous paper (Pahari et al., 2020). We could not com-

pare the prediction of mCSM-PPI2 as some or all of these 487 muta-
tions are present on their training dataset (SKEMPI v2.0). As shown

in Figure 5a, BindProfX and MutaBind2 both achieve the highest
PCC of 0.41 followed by SAAMBE-3D (PCC¼0.39) and SAAMBE-
SEQ (PCC¼0.34).

Unfortunately, we could not compare the DDG prediction on the
s487 validation dataset using SAAMBE-SEQ with the only existing

sequence-based method, the ProAffiMeSeq, as some of these muta-
tions are already included in their training dataset. Therefore, we

considered their compiled validation dataset, s473, which is a com-
bination of above-mentioned three datasets. They removed all the
mutations which are not present at the protein–protein interfaces as

ProAffiMeSeq is trained to predict DDG only for interfacial muta-
tions. Thus, on the s473 dataset, SAAMBE-SEQ achieved a PCC of
0.35 and MSE of 1.73 kcal/mol, whereas ProAffiMuSeq obtained a

PCC of 0.20. Furthermore, the statistical significance was evaluated
and the results are shown in Supplementary Tables S3 and S4.

3.1.4 no-STRUC dataset

The last validation test was done on no-STRUC dataset compiled by
us (see Section 2 and Supplementary Tables S1 and S2). This dataset

comprised experimentally measured changes of the binding free en-
ergy of protein–protein complexes for which there is no available ex-

perimentally determined 3D structure. Because of that, all the
above-mentioned structure-based methods cannot be tested. The
only methods that can handle such dataset are SAAMBE-SEQ and

ProAffiMuSeq.
We divided the no-STRUC dataset into two categories: homo-

dimer and heterodimer. ProAffiMuSeq was trained on some of the
entries in homodimer dataset since some of the no-STRUC cases are

taken from PROXiMATE database (Jemimah et al., 2017).
Nevertheless, the benchmarking was carried out and the results are
shown in Table 1. Among the 30 mutations in homodimer dataset,

ProAffiMuSeq could not predict for 5 non-interfacial mutations.
Therefore, we discarded those five mutations while comparing the
performance of SAAMBE-SEQ with ProAffiMuSeq on homodimer

dataset and reported in Table 1. SAAMBE-SEQ achieved a correl-
ation of 0.35 and MSE of 1.42 kcal/mol when considered all the 30

mutations from homodimer dataset.
One can see from Table 1 that SAAMBE-SEQ drastically outper-

forms ProAffiMuSeq, despite that some of the cases in the homo-
dimer dataset were used for training of ProAffiMuSeq model. In
Supplementary Table S5, we evaluated the statistical significance of

the correlation obtained using SAAMBE-SEQ and ProAffiMuSeq
for both homodimers and heterodimers. The P-value indicates that

for homodimers, the correlation obtained using none of the two
methods is statistically significant. However, the P-value for
SAAMBE-SEQ is closer to be statistically significant. For hetero-

dimers, correlation obtained using SAAMBE-SEQ is indeed statistic-
ally significant while this is not the case for ProAffiMuSeq. Further,

we evaluated whether there is a significant statistical difference in
the PCC of SAAMBE-SEQ and ProAffiMuSeq using Fisher-Z test.
We obtained P-value of 3.63E-2 for homodimers and 1.20E-2 for

heterodimers (Supplementary Table S6).

3.2 Performance of SAAME-SEQ on identifying

disruptive and non-disruptive mutations both

for homodimer as well as heterodimer
We explored the success of the prediction of SAAMBE-SEQ in clas-
sifying disruptive and non-disruptive mutations using only sequence
information in case of both homodimer as well as heterodimer com-
plexes. As mentioned in our previous paper (Pahari et al., 2020),
Cornell University dataset contains 2500 single mutations from 300
homodimer protein complexes and 245 single mutations from 50
heterodimeric complexes. Yeast two-hybrid (Y2H) experiments
were conducted at Cornell University (Fragoza et al., 2019) and the
mutations were scored either disruptive or non-disruptive. The data-
set was purged to remove identical sequences and cases where any
of the two chains has less than 20 amino acid residues. We com-
bined both homodimer and heterodimer complexes together and
ended up with 342 mutations from 90 protein complexes. These 342
mutation entries were split into 80% training and 20% test sets. We
used the same features for this classification as described in Section
2 for our SAAMBE-SEQ model. We carried out ROC analysis and
found that our method is 84% successful in classifying disruptive
and non-disruptive mutations for the 342 mutations for both homo-
dimer and heterodimer complexes. We plotted ROC in Figure 6 and
further prediction performance is measured by area under the curve,
accuracy, precision and sensitivity. SAAMBE-SEQ achieved an ac-
curacy of 0.81, precision of 0.65, sensitivity and specificity of 0.81
in classifying disruptive and non-disruptive mutation.

3.3 Webserver
We implemented SAAMBE-SEQ as a user-friendly webserver,
freely available at http://compbio.clemson.edu/saambe_webserver/
indexSEQ.php#started. The server front end is built using JavaScript
and backend using PHP. It is hosted on a Linux server running in
Apache. SAAMBE-SEQ can be used in two different ways: (i) pre-
dict the effect of mutation specified by the user in the given boxes.
User needs to provide FASTA sequence of the protein–protein com-
plex, which can be provided by uploading the sequence in the
FASTA format or by inputting the sequence in appropriate box.
User must provide two sequences corresponding to two protein

Table 1. Comparison of prediction performance of SAAMBE-SEQ with ProAffiMuSeq on both homodimer and heterodimer protein com-

plexes from no-STRUC dataset

Dataset

SAAMBE-SEQ,

PCC

SAAMBE-SEQ,

MSE (kcal/mol)

ProAffiMuSeq,

PCC

ProAffiMuSeq,

MSE (kcal/mol)

Homodimers (Supplementary Table S1) 0.37 1.34 �0.10 3.74

Heterodimers (Supplementary Table S2) 0.47 0.73 0.19 2.91

Fig. 6. Prediction performance of SAAMBE-SEQ in identifying disruptive and non-

disruptive mutations
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chains. User need to make sure that they are uploading or putting
the sequence in the appropriate place corresponding to mutated
chain and interaction chain. Then, user require to provide mutation
details in three different boxes: in position box, corresponding resi-
due number according to FASTA sequence file should be provided.
It is important to remember that the first residue number starts
with 1 not 0. In the ‘Original Amino Acid’ box, user must specify
one-letter code for the wild-type residue as a string and similarly
for ‘Mutated Amino Acid’, mutant residue in one-letter code must
be mentioned. In this way, user can submit a single job. (ii) If user
wants to submit multiple jobs at the same time, in addition to
uploading or inputting sequences of mutated and interaction chain
in FASTA format, user need to upload a file called ‘List_
Mutation.txt’. The file must contain a list of mutations information
in a text file for batch processing. A sample ‘List_Mutation.txt’ file
is provided in the submission page to assist the user for submission
of jobs. (iii) User can also directly download the SAAMBE-SEQ
code by clicking the download option available via the top naviga-
tion bar. A readme file will also be downloaded which will guide
the user how to use the code.

4 Conclusion

Machine learning methods are the alternative to the first principle-
based approaches such as quantum mechanics (QM) modeling, mo-
lecular dynamics (MD) and Monte Carlo (MC) simulations (Klepeis
et al., 2009; Paquet and Viktor, 2015), molecular mechanics PB/GB
surface area (MM/PB/GBSA), multiscale and mesoscale methods. In
terms of modeling, the effects of amino acid substitutions on protein
stability, binding and dynamics, one should mention methods as free
energy perturbation (FEP), thermodynamics integration (TI) and
molecular mechanics Poisson-Boltzmann/Generalized Born surface
area (MM/PB/GBSA) (Getov et al., 2016; Li et al., 2014; Petukh
et al., 2015a,b). However, machine learning methods are more ac-
curate in their predictions and require less computational time, mak-
ing them primary choice for large-scale investigations. Indeed, the
above-mentioned first principle-based methods frequently require
days of computation for a single case and since they require 3D
structure, any small structural imperfection could result in very
wrong predictions.

It should be mentioned that one of the most indicative measure
of methods performance is the MSE. The best SAAMBE-SEQ MSE
is 0.90 kcal/mol when tested on 10% of the training set. Other meth-
ods mentioned in the article reported MSE ranging from 0.94 kcal/
mol up to 2.89 kcal/mol. Thus, one should be careful in interpreting
prediction results, since they come with an inherited error. In the
simplest way, the predictions should be considered on the back-
ground of reported MSE. However, different MSEs were reported
depending on the datasets used in the benchmarking. Therefore, the
safest protocol should apply the largest reported MSE to investiga-
tions on new set of cases (for which there is no experimental data).
Alternatively, one may want to utilize as many as possible predictors
and seek a consensus.

Here, we reported a method, the SAAMBE-SEQ method, which
predicts the change of the binding free energy caused by single muta-
tions utilizing sequence information only. Combined its computa-
tional efficiency, accuracy and availability as a stand-alone code, the
SAAMBE-SEQ is the only available method to be applied on
genome-scale investigations. Indeed, genomic sequencing produces
much more data than the efforts of structure determination, and this
trend is not going to change. Therefore, there is a desperate need for
machine learning methods that can make predictions using only gen-
omic sequencing data, a need that SAAMBE-SEQ addresses for
protein–protein interactions. Furthermore, it is demonstrated that
SAAMBE-SEQ is capable of distinguishing disruptive from non-
disruptive mutations. Since disruptive mutations are usually disease-
causing, SAAMBE-SEQ can be used for early diagnosis by detecting
the disruptive mutations.
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