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Abstract

Motivation: In silico drug target prediction provides valuable information for drug repurposing, understanding of
side effects as well as expansion of the druggable genome. In particular, discovery of actionable drug targets is crit-
ical to developing targeted therapies for diseases.

Results: Here, we develop a robust method for drug target prediction by leveraging a class imbalance-tolerant ma-
chine learning framework with a novel training scheme. We incorporate novel features, including drug–gene pheno-
type similarity and gene expression profile similarity that capture information orthogonal to other features. We
show that our classifier achieves robust performance and is able to predict gene targets for new drugs as well as
drugs that potentially target unexplored genes. By providing newly predicted drug–target associations, we uncover
novel opportunities of drug repurposing that may benefit cancer treatment through action on either known drug tar-
gets or currently undrugged genes.

Contact: haiyuan.yu@cornell.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Target identification is a crucial step during drug development. As
the cost of bringing a single new drug to market skyrockets to over
2.7 billion dollars on average (DiMasi et al., 2016), alternative
approaches, such as drug repurposing, have been pursued with
increasing efforts. For example, the drug aspirin, commonly used for
treating fever and acute pain, has been found in recent years to show
anti-cancer activities through attenuation of EGFR expression (Li
et al., 2015), inhibition of COX-2 (Tsujii et al., 1998) and suppres-
sion of NF-jB activation by TNF (Kutuk and Basaga, 2004). As a re-
sult, the efficacy of aspirin in treating multiple types of cancers,
including breast cancer, prostate cancer and colorectal cancer, is
being actively evaluated in clinical trials. By repurposing approved
drugs for new indications through novel target discovery, the cost of
drug development can be substantially reduced, especially in the pre-
clinical and earlier clinical phases where the toxicity and dosage of
the drug is assessed (Pushpakom et al., 2019). In addition to benefit-
ing drug repurposing efforts, identifying unknown targets of drugs
can facilitate understanding of their side effects, which are often
caused by drugs binding to unintended targets. The serotonin recep-
tor agonist cisapride, as an example, is a gastroprokinetic agent used

for treating gastric reflux, but it can cause serious cardiac events
including arrhythmia and even lead to death. The mechanism behind
the cardiac effects of cisapride was discovered in 1997 to be its high-
affinity blocking of the human cardiac potassium channel (Rampe
et al., 1997). And this resulted in its withdrawal from the US market
3 years later. Furthermore, out of over 4400 genes estimated to be
druggable in the human genome (Finan et al., 2017), only less than
half of them are currently targeted by approved drugs. Therefore,
identification of novel gene targets can help with expanding the
druggable genome, opening up new avenues for drug development.

Experimental methods for determining drug–target associations
provide direct evidence and information on the mode of action of
drugs. However, their high cost and long timeframe have prohibited
them from large-scale application. As an alternative, computational
approaches, including docking-based methods and machine
learning-based methods, have been developed to predict new drug–
target associations (Chen et al., 2016). In particular, machine
learning-based methods that exploit the chemogenomic space have
yielded considerable success in drug target prediction without
requiring 3D protein structures of the targets (Ezzat et al., 2018;
Jacob and Vert, 2008; Yamanishi et al., 2008; Yu et al., 2012; Zhao
and Li, 2010). Various features, including chemical similarity
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(Keiser et al., 2007; 2009) and side effect similarity (Campillos
et al., 2008; Lounkine et al., 2012), have proved valuable in identi-
fying new associations between drugs and targets. Nevertheless, two
fallacies are commonly overlooked: conventional train–test splitting
and cross-validation schemes are flawed for pair-input prediction
tasks (Park and Marcotte, 2012); extreme class imbalance in drug
target datasets is not satisfactorily addressed by commonly used
methods such as sampling from the majority class (Ezzat et al.,
2016). Moreover, most methods lack the ability to predict drug–tar-
get interactions for genes that are not yet known to be druggable.

To address these challenges, in this study, we design a novel
training scheme that prevents possible overfitting caused by overlap-
ping drugs or targets in the training and test sets and at the same
time solves the class imbalance problem with an ensemble method.
Additionally, we exploit two new types of features, namely the
phenotype similarity between a drug and a gene, and the expression
profile similarity between two genes across different tissues. We
show that they confer considerable predictive power and provide or-
thogonal information that is not captured by other features.
Incorporating these features, we build a classifier and demonstrate
that it achieves robust performance. Further, our classifier is able to
make predictions for drugs without known targets and for genes
that are not yet known to be druggable. By predicting new potential
drug–target associations, we reveal unexplored opportunities of
drug discovery and repurposing for cancer treatment.

2 Materials and methods

2.1 Data collection
We collected a comprehensive dataset of known drug–gene associa-
tions by extracting relevant information for all drugs with human
gene targets from the Probes and Drugs database (version 10.2018)
(Skuta et al., 2017). Side effects of drugs were obtained from SIDER
4.1 (Kuhn et al., 2016) and OFFSIDES (Tatonetti et al., 2012), both
of which used Unified Medical Language System (UMLS) concept
IDs as identifiers of side effects. However, as similar side effect terms
could cause biases in calculating side effect similarity, we mapped
all UMLS concept IDs to MedDRA concept IDs using the 2017AB
release of UMLS (Bodenreider, 2004). This allowed us to map
UMLS concept IDs to a specific level, Preferred Term (PT), of the
MedDRA hierarchy obtained from MedDRA (version 21.0) (Brown
et al., 1999). Gene–disease associations were obtained from
DisGeNET (version 5.0) (Pinero et al., 2017). Similar to side effects,
disease phenotype terms were also mapped to the PT level of the
MedDRA hierarchy, allowing direct comparison with side effects.
We only considered drugs with available side effect information and
at least one human gene target whose association with disease phe-
notypes is known. This resulted in a final set of 11 556 drug–gene
associations involving 1262 drugs and 1062 human genes. Since
there is not a gold-standard dataset of non-targets of drugs, non-
associated drug–gene pairs were obtained by taking all drug–gene
combinations not known to be associated using these sets of drugs
and genes.

2.2 Feature extraction and selection
Similarity-based features have been widely used for drug target pre-
diction (Ding et al., 2014). Behind them is a simple motivating hy-
pothesis: similar drugs tend to have the same gene targets, and vice
versa, similar genes tend to be targeted by the same drugs. Among
various drug–drug similarity metrics, chemical similarity and side ef-
fect similarity have been most extensively employed (Campillos
et al., 2008; Keiser et al., 2007, 2009; Lounkine et al., 2012).
Chemical similarity was calculated by taking the Tanimoto similar-
ity of the fingerprints of the drugs, which are bit vectors of fixed
sizes where each bit characterizes the drug by indicating presence or
absence of a defined structural fragment:

Tanimoto Va; Vbð Þ ¼ Va � Vb

jVaj1 þ jVbj1 � Va � Vb
(1)

While 2D similarity utilizes Morgan fingerprints, which repre-
sent planar chemical substructures (Rogers and Hahn, 2010), a
method for encoding the 3D structure of molecules has been devel-
oped and has been shown to enhance the performance of conven-
tional 2D fingerprinting methods in binding prediction (Axen et al.,
2017). We calculated Morgan fingerprints of compounds with the
RDKit Python package, and generated 3D fingerprints with the
E3FP Python package. Side effect similarity was calculated by taking
the Jaccard index of the sets of side effects of the drugs mapped to
the PT level of the MedDRA hierarchy:

Jaccard Sa; Sbð Þ ¼ jSa \ Sbj
jSa [ Sbj

(2)

For each type of drug–drug similarity (2D chemical, 3D chem-
ical, side effect), we calculated two groups of features: (i) similarity
between the drug in question and drugs that are known to target the
gene in question (Fig. 1a); and (ii) similarity between the drug in
question and drugs that are known to target protein interactors of
the gene in question (Fig. 1b). Since similarity for multiple drug pairs
were calculated for each drug–gene pair, aggregation functions were
applied to obtain feature values for drug–gene instances. For the for-
mer group, four different aggregation functions were applied to each
type of feature: min, mean, median and max, while for the latter
group, mean was replaced by first applying the mean to each set of
drugs that were known to target a single protein interactor before
applying a second mean function to obtain a single value.

In addition to aforementioned similarity metrics, which have al-
ready been incorporated in previous drug–target prediction meth-
ods, here we introduce two novel types of features: drug–gene
phenotype similarity and expression profile similarity between two
genes. Drugs that act directly on a protein and alter its activity may
lead to similar phenotypic changes as mutations on the correspond-
ing gene. On this account, we designed a drug–gene phenotype simi-
larity metric by taking the Jaccard index of the side effects of the
drugs and disease phenotypes of the gene (Fig. 2a). We also consid-
ered protein interactors of the gene in question and calculated their
phenotypic resemblance to our drug (Fig. 2b). Similar to drug–drug
similarity metrics, we obtained a group of four features by aggrega-
tion with min, mean, median and max. In addition to drug–gene

Fig. 1. Calculation of drug–drug similarity features. (a) Schematics of calculating drug–drug similarity features for each drug–gene pair. Each group of features consists of four

features corresponding to four different aggregation functions. (b) Schematics of calculating drug–drug similarity features considering known targeters of protein–protein inter-

action partners of the target in question

Revealing new therapeutic opportunities through drug target prediction 4491



similarity, we calculated similarity between two genes by taking
their Spearman correlation coefficient in expression levels across dif-
ferent tissues using gene expression data from GTEx (Consortium,
2013). For each drug–gene pair, we considered the similarity be-
tween the gene in question and known gene targets of the drug in
question. Application of the same aggregation functions resulted in
another group of four features (Fig. 2c). Overall, we calculated five
types of similarity metrics: 2D chemical similarity between drugs,
side effect similarity between drugs, 3D chemical similarity between
drugs, drug–gene phenotype similarity and expression profile simi-
larity between genes. In total, we extracted a total of 33 features
across 9 groups for each drug–gene pair (Supplementary Table S1).

Since these similarity features utilize the whole drug–gene associ-
ation network as well as the protein–protein interaction network,
care needs to be taken when calculating features for the training/val-
idation/test sets. When calculating the feature matrix for the full
training set, only drugs and genes used for training and connections
among them were regarded as known (Supplementary Fig. S1a). On
the other hand, when calculating the feature matrix for the test set,
all associations except those between test drugs and test targets were
treated as known (Supplementary Fig. S1b). This principle also
applied to training and validation sets during hold-out validation,
where the set used for fitting the classifier was analogous to the
training set and the validation set was equivalent to the test set.

To obtain an optimal feature combination, we calculated all fea-
tures for the full training set and applied group maximum concave
penalty (MCP) (Breheny and Huang, 2011) with the grpreg R pack-
age for feature selection using default parameters. All subsequent
training was done with this optimal set of 14 features
(Supplementary Table S1).

2.3 The training scheme and hyperparameter

optimization
In order to build a machine learning model for drug–target predic-
tion, we divided all drug–gene pairs into a training set and a test set.
If the split is random in this pair-input prediction setting, the overall
test set performance is not representative of the different classes
within all test set instances (Park and Marcotte, 2012). More specif-
ically, in the problem of drug–target prediction, test pairs sharing no
drugs or targets with the training set would perform much more
poorly than those sharing both drugs and targets with the training
set. In order to build a classifier that can be applied to the most gen-
eral scenario where either the drug or the gene target, or even both,
may have no known drug–gene association, we applied a splitting
scheme where the drugs were first randomly divided into ‘train
drugs’ and ‘test drugs’ with a 2:1 ratio, and the genes were similarly
split into ‘train targets’ and ‘test targets’ with the same ratio
(Fig. 3a), guaranteeing that there is no overlap between the training
set and the test set in terms of either drugs or genes. The training set
then consisted of all drug–gene pairs where the drug is a ‘train drug’

and the target is a ‘train target’; the test set consisted of all drug–
gene pairs where the drug is a ‘test drug’ and the target is a ‘test tar-
get’ (Fig. 3a).

Since there was no gold-standard dataset of non-associated drug–
gene pairs, all drug–gene pairs not known to be associated were con-
sidered as non-associated. This resulted in an extreme class imbalance
where negative instances were over 100 folds more than positive
instances in quantity. Class imbalance is usually dealt with by provid-
ing a weight for each class to place a higher penalty for misclassifying
the minority class (Chen et al., 2004). However, an extreme imbal-
ance could be detrimental to classifier fitting. Other common
approaches include oversampling the minority class and undersam-
pling the majority class. While these methods do not prevent the clas-
sifier from improper fitting, the former introduces copies of data of
the minority class, leading to increased likelihood of overfitting
(Chawla et al., 2002), while the latter does not make use of all instan-
ces of the minority class, leaving out valuable information for the
classification task (Ganganwar, 2012). To address the extreme class
imbalance problem here, we adopted an approach similar to that pro-
posed by Ezzat et al. (2016), splitting all drug–gene pairs with nega-
tive labels into subsets, each having a size 5 times that of all the
positive labels in the training set expect the last subset (which has a
size between 5 to 10 times that of all the positive labels in the training
set). Each subset of negative labels was combined with all the instan-
ces with positive labels in the training set to obtain a training subset
(Fig. 3b). In this way, we made use of all data—especially those with
negative labels—while keeping a reasonable class ratio within each
training subset, which will be used for classifier fitting.

For each training subset, we trained an extreme gradient boost-
ing (XGBoost) classifier (Chen and Guestrin, 2016). XGBoost is a
decision tree ensemble model that additively trains decision trees
that predict the prediction error of the existing ensemble. We chose
XGBoost for its speed and ability to automatically learn branch
directions for missing values. In each classifier the scale_pos_-
weight hyperparameter was set to the negative-to-positive class
ratio in the corresponding training subset. At the end, we applied an
ensemble approach by taking the average prediction score of all the
classifiers trained as the final prediction score.

To find the best set of hyperparameters for each classifier, we
adopted the tree-structured Parzen estimator (TPE) approach
(Bergstra et al., 2011). Instead of cross-validation, we split the full
training set into training and validation sets using the same splitting
method as the train–test split to ensure that there was no overlap be-
tween data used for training and validation in terms of either drugs
or genes (Fig. 3c). For each classifier, the part used for training was
then intersected with the corresponding training subset before used
as input to the classifier, while the entire validation set was used for
performance evaluation. For each classifier and each set of hyper-
parameter, the split was conducted 15 times, and we selected 1
minus the average area under the precision-recall curve (AUPR) of
the 15 trials of hold-out validation as the loss function to minimize

Fig. 2. Calculation of drug–gene similarity features and gene–gene similarity features. (a) Schematics of calculating the drug–gene phenotype similarity feature. (b) Schematics

of calculating drug–gene phenotype similarity features considering protein–protein interaction partners of the target in question. (c) Schematics of calculating gene expression

profile similarity features. This group of features consists of four features corresponding to four different aggregation functions
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for TPE (Fig. 3d). We ran TPE for 1000 iterations to obtain the best
set of hyperparameters that minimized the loss function for each
classifier in our ensemble. After obtaining the optimal sets of hyper-
parameters, we retrained each classifier using all data from the cor-
responding training subset.

2.4 Model evaluation and application
Model performance on the training set was evaluated by taking the
average performance across all classifiers in the ensemble using per-
formance metrics calculated from the best sets of hyperparameters
during hyperparameter optimization, including average AUROC
and AUPR across 15 splits. To evaluate the contribution of each
type of feature to model performance, we dropped each type of fea-
tures and repeated training and hyperparameter optimization proce-
dures. To further evaluate the predictive power of our model, we
predicted on the left-out test set which had no overlap with training
data in terms of either drugs or genes. In order to evaluate the extent
to which our training scheme prevents overfitting, we compared our
training and test set performance against that derived from hyper-
parameter optimization with conventional 5-fold cross-validation
on each of the training subsets. Finally, to apply our model to pre-
dicting new drug targets, we considered all drug–gene pairs that
were not previously known to be associated where the drug had
known side effects and the gene had known disease phenotypes. A
total of 9958 new drug–gene associations were identified with a pre-
cision lower bound cutoff at 10% (Supplementary Table S2).

3 Results

3.1 Predictive power of similarity-based features
To determine whether the newly proposed features are informative
for predicting drug targets, we compared feature values of known
associated drug–gene pairs with those of other drug–gene pairs. Not
surprisingly, when aggregating by the maximum, mean or median,
drugs are significantly more chemically similar to known targeters
of their gene target than to known targeters of other genes (Fig. 4a),
using Morgan fingerprints as representations of molecular struc-
tures. On a similar note, measuring drug–drug similarity by taking
the set similarity of their side effects gave identical trends (Fig. 4b).
Interestingly, when aggregating similarity scores by the minimum,

drug–gene pairs that are known to be associated had significantly
lower scores than those that are not known to be associated, regard-
less of the type of similarity metric used (Fig. 4a and b). This can be
explained by the fact that genes in associated drug–gene pairs have a
significantly higher number of known targeters in a broader chemo-
genomic space than genes in other drug–gene pairs (Supplementary
Fig. S2a). Furthermore, features utilizing 3D molecular fingerprints
as the chemical similarity metric uncovered similar trends as 2D
chemical similarity and side effect similarity (Fig. 4c). But notably,
3D chemical similarity features are only weakly correlated with 2D
chemical similarity and side effect similarity features
(Supplementary Fig. S2b). This indicates that 3D chemical similarity
brings in information that is not be captured by 2D chemical simi-
larity, highlighting the importance of including both for our predic-
tion task.

Our newly proposed features, drug–gene similarity and gene ex-
pression profile similarity, also exhibit classifying power in distin-
guishing known drug–target pairs from other drug–gene pairs. As
expected, drug–gene pairs that are known to be associated have sig-
nificantly higher phenotype similarity scores than drug–gene pairs
that are not known to be associated (Fig. 5a). For gene expression
similarity features, we discovered that when taking maximum, mean
or median as the aggregation function, genes have significantly more
similar expression profiles to known targets of their targeters than
to known targets of other drugs (Fig. 5b). Using minimum as the ag-
gregation function rendered the opposite trend, which could be
explained by drugs in drug–gene pairs that are known to be associ-
ated having a significantly more diverse target set than drugs in
other drug–gene pairs (Supplementary Fig. S2c). Intriguingly, ex-
pression profile features, especially when aggregated with max-
imum, mean or median, exhibit almost no correlation with other
groups of features, bringing in complementary information that
other features do not capture (Fig. 5c).

It is worth noticing that drug–gene phenotype similarity and
gene expression profile similarity features can be calculated even if
the gene in question has no known drugs that target it. This potenti-
alizes us to make predictions for currently undrugged genes, thereby
expanding the druggable genome. Our consideration of drugs that
are known to target protein–protein interaction partners of the gene
in question for both chemical similarity and side effect similarity
(Fig. 1b) extends this advantage to drug–drug similarity features. In
addition, we considered protein–protein interactors of the gene in

Fig. 3. Data splitting and the training scheme. (a) The train–test split. All drugs were split into ‘train drugs’ and ‘test drugs’, while all genes were split into ‘train targets’ and

‘test targets’. The training set then consisted of all drug–gene pairs where the drug was a ‘train drug’ and the target was a ‘train target’. Similarly, the test set consisted of all

drug–gene pairs where the drug was a ‘test drug’ and the target was a ‘test target’. (b) The training set was split into multiple training subsets by splitting all the training exam-

ples with a negative label into subsets, each combined with all examples with a positive label to form a training subset. (c) The entire training set was split into one portion

used for fitting the classifiers and one portion used for validation using a similar splitting method as the train–test split so that there was no overlap between data used for fitting

the classifiers and data used for validation in terms of either drugs or genes. (d) For each classifier and each set of hyperparameters, the train–validation split was done 15 times.

Each time the training data was intersected with the corresponding training subset before used for classifier fitting, while the entire validation set was used for performance

evaluation using AUROC and AUPR as metrics. The average AUROC and AUPR over the 15 splits were considered as the performance for that specific set of hyperparameters
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question for drug–gene phenotype similarity (Fig. 2b). These groups
of features also possess distinguishing power in separating drug–tar-
get pairs and other drug–gene pairs (Supplementary Fig. S3a–d), and

more importantly, the fact that they do not require our gene of inter-
est to be targeted by any known drug enhances the ability of our
model to make predictions for genes that remain undrugged.

3.2 Performance of the novel training scheme
After feature selection (see Section 2), the final set of features com-
prised of 14 features, with every type of feature present, including
the newly proposed drug–gene phenotype similarity and expression
profile similarity features. Using a Bayesian TPE approach (Bergstra
et al., 2011), which has recently been shown to improve classifier
performance drastically (Meyer et al., 2018), we optimized hyper-
parameters for all classifiers in the ensemble under the new training
scheme that we proposed. This resulted in an average training
AUROC of 0.924 across all classifiers in the ensemble and an aver-
age training AUPR of 0.273 (Table 1). When evaluated on the hold-
out test set which has no overlap with the training data in terms of
either drugs or genes, we obtained an AUROC of 0.928 (Fig. 6a)
and an AUPR of 0.268 (Fig. 6b). This similar performance between
training and evaluation on a test set that does not overlap with the
training set in terms of either drugs or genes demonstrates that our
model is not subject to overfitting and illustrates the robustness of
our training scheme. Notably, our model attained a precision of
78% on the top 50 predictions and a precision of 48.2% when
examining the top 500 predictions. Considering the fact that these
are lower bound estimates since drug–gene pairs labeled as non-
associated could actually be undiscovered drug–target pairs, our
model achieves accurate drug target prediction in the most general
scenario where the drug and the gene could have no previously
known drug–gene associations.

To demonstrate the effectiveness and necessity of our novel
training scheme in preventing overfitting, we conducted an experi-
ment with the same training subsets and test set, using conventional
5-fold cross-validation for hyperparameter optimization rather than
the hold-out validation with no overlap splitting applied in our
training scheme. Although average training AUROC was as high as
0.966, AUROC and AUPR on the same test set only reached 0.912
(Fig. 6a) and 0.239 (Fig. 6b), respectively, substantially lower than
those obtained using our new training scheme. Furthermore, the
large discrepancy between training and test AUROC values indicate
that conventional cross-validation is prone to overfitting in this pair-
input setting and that our training scheme is robust to this problem.

3.3 Model evaluation
To assess the contribution of each type of features to model per-
formance, we dropped each type of features and retrained our classi-
fier ensemble using the same number of TPE iterations. As expected,
model performance declined when any of the five groups of features
was taken out. Interestingly, exclusion of expression profile similar-
ity resulted in the largest performance drop, followed by exclusion
of 3D chemical similarity (Table 1). These results demonstrate that
every type of feature contributes to classifier performance, and that

Fig. 4. Drug–drug similarity feature distributions. (a) Distribution of 2D chemical

similarity features (feature group A). (b) Distribution of side effect similarity features

(feature group C). (c) Distribution of 3D chemical similarity features (feature group

G) (statistical significance determined by the two-sided Mann–Whitney U-test)

Fig. 5. Distribution of phenotype similarity and gene expression similarity features. (a) Distribution of the drug–gene phenotype similarity feature (feature group E). (b)

Distribution of gene expression profile similarity features (feature group I). (c) Spearman correlation coefficients of gene expression similarity features with other types of fea-

tures. Only the correlation coefficient corresponding to the most correlated or anti-correlated feature in each type of features is shown (statistical significance determined by

the two-sided Mann–Whitney U-test)
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our newly proposed features are crucial components in our model
for prediction of drug targets.

To demonstrate that our method achieves superior performance
on a highly imbalanced test set with no drugs and genes overlapping

with the training set, we compared the performance of two previous-
ly published feature-based methods trained on our training set and
tested on our test set (Ezzat et al., 2016; Wen et al., 2017). As shown
in Table 2, our classifier substantially outperforms both drug–target
prediction methods.

3.4 Cancer treatment opportunities revealed by newly

predicted drug–target associations
We applied our trained model on drug–gene pairs that were not pre-
viously known to be associated and predicted novel drug–target
associations. By examining newly predicted associations between
known drugs and genes that are already known to be druggable
(Supplementary Table S3), we discovered new drug repurposing
opportunities. As an example, the antipsychotic drug, fluphenazine,
is predicted to target the PRKDC gene with high probability.
Commonly prescribed for treatment of schizophrenia, fluphenazine
primarily acts on dopamine receptors and G-protein coupled recep-
tors (Bisson et al., 2007; Seeman, 2002). The PRKDC gene encodes
a DNA-dependent protein kinase (DNA-PKc) that mediates non-
homologous end joining (NHEJ) (Ma et al., 2004), which is an im-
portant mechanism by which cells can repair double-strand breaks
(DSB) in DNA without a homologous template (Davis and Chen,
2013). Cells deficient of the ATM gene, which is commonly mutated
in various types of cancers (Choi et al., 2016), can evade p53-
mediated apoptosis but become reliant on NHEJ for DSB repair
(Jiang et al., 2009). Therefore, while ATM-deficient cancers are
largely resistant to genotoxic chemotherapy, it has been reported
that exposure to a DNA-PKc inhibitor diminishes their ability to re-
pair DSBs and prolongs survival using a ATM-deficient mouse
lymphoma model (Riabinska et al., 2013). This, along with studies
in other cancer types (Muraki et al., 2013; Tanori et al., 2019),
establishes the PRKDC gene as a potential target for treatment of
ATM-deficient cancer and opens up the possibility of repurposing
fluphenazine for cancer treatment (Fig. 7a).

In addition to predicting associations between known drugs and
genes that are already known as drug targets, we also predicted po-
tential associations between drugs and genes that are not yet known
to be druggable, in an effort to expand the druggable genome
(Supplementary Table S4). For instance, carfilzomib and IKZF1 is
the drug–target pair with the highest probability to be associated
where the gene is not yet known to be druggable. IKZF1 encodes a
transcription factor and has been shown to have tumor suppressive
function during leukemia development (Payne and Dovat, 2011). It
is a modulator of immune responses and its activation facilitates re-
cruitment of T cells (Fig. 7b). Furthermore, according to a recent
publication, overexpression of IKZF1 in tumors results in signifi-
cantly improved responses to immunotherapy, including anti-PD1
and anti-CTLA4 treatment (Chen et al., 2018). These discoveries
have rendered IKZF1 an ideal candidate for drug development and
showcase the power of our drug target prediction method in
expanding the druggable genome.

4 Discussion

In this article, we introduce a machine learning method for drug–tar-
get prediction that leverages newly proposed features and a novel
training scheme. We demonstrate that the new features, including
drug–gene phenotype similarity and gene expression profile similar-
ity features, provide complementary information that other features
do not capture and enhance the predictive power of our model. In
addition, we show that our novel training scheme warrants robust
prediction by preventing overfitting and our model achieves accur-
ate prediction while possessing the ability to predict associations for
new drugs or currently “undrugged” genes. By doing so, we predict
new drug–gene associations and reveal previously unexplored
opportunities for drug repurposing and expansion of the druggable
genome.

In a conventional train–test split setting, drugs and genes that
show up in both the training set and the test set may cause overfit-
ting through data leakage. Although several papers have proposed

Fig. 6. Performance evaluation. (a) Receiving operating characteristic (ROC) curve

when evaluating the model on the hold-out test set. Dashed line indicates ROC

curve of the classifier tuned with conventional cross-validation. (b) Precision–recall

curve when evaluating the model on the hold-out test set. Dashed line indicates pre-

cision–recall curve of the classifier tuned with conventional cross-validation

Table 1. Classifier performance after dropping each feature type

Features AUROC AUPR

All features selected 0.924 0.273

Drop 2D chemical similarity 0.922 0.261

Drop side effect similarity 0.921 0.260

Drop phenotype similarity 0.923 0.268

Drop 3D chemical similarity 0.909 0.226

Drop expression profile similarity 0.903 0.209

Notes: AUROC and AUPR values indicate the average over all classifiers in

the ensemble on the training set. p < 0.001 by two-sample t-test for all com-

parisons between the bold row with each row below (for both columns).

Table 2. Performance comparison on the test set

Method AUROC AUPR

Ezzat et al. (2016) 0.685 0.035

Wen et al. (2017) 0.521 0.009

Our method 0.928 0.268

Notes: statistical significance does not apply, since this is only a one-shot

evaluation performed on the independent test set.

Fig. 7. Novel therapeutic opportunities for cancer uncovered by drug target predic-

tions. (a) Fluphenazine is predicted to target DNA-PKc encoded by the PRKDC

gene. DNA-PKc is a key mediator of non-homologous end joining (NHEJ), which is

an alternative mechanism for DNA double-strand break (DSB) repair to homolo-

gous recombination (HR). Fluphenazine can potentially be repurposed to treat

ATM-deficient cancer by disabling NHEJ. (b) Carfilzomib is predicted to target the

transcription factor IKZF1, which is a modulator of immune responses. Activation

of IKZF1 enhances cell adhesion and promotes B cell differentiation and T cell re-

cruitment. This renders IKZF1 a potential drug target that might enhance the effi-

cacy of immunotherapy when activated
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alternate splitting schemes and experimental settings, including
splitting based on drugs or genes (Yu et al., 2012), few of them ad-
just their cross-validation strategy, leading to biased performance
estimates. Mayr et al. introduced a cluster-cross-validation strategy
where drugs undergo clustering before being split into training and
test sets (Mayr et al., 2018). The resulting training and test sets con-
tain drugs from different clusters and thus have no drugs that are
similar. However, although this strategy works in the scenario
where only single drug-based descriptors are used as features, it
decreases performance in our settings where similarity-based metrics
between drug pairs are important features for our predictions
(Supplementary Table S5). Pahikkala et al. proposed a nested cross-
validation technique for the same splitting scheme used here
(Pahikkala et al., 2015), yet its complexity renders it computational-
ly expensive considering the fact that in this drug–target prediction
problem the training and test feature matrices need to be re-
calculated for each fold (Supplementary Fig. S1a and b). Our newly
proposed hold-out validation scheme achieves the same effect of
avoiding overfitting with less computation while integrating well
with the hyperparameter optimization method. Along with the en-
semble approach to solving the class imbalance problem, it can be
readily applied to other biological prediction problems, especially
those involving biological networks. While other methods specifical-
ly designed for predicting drug–gene associations within the
explored drug and gene space might become more favorable as more
drug targets are discovered, they too would benefit from incorporat-
ing novel features introduced in this study, such as drug–gene
phenotype similarity and gene expression profile similarity, as well
as adapting the ensemble method in the scenario of extreme class
imbalance.

In addition to 2D and 3D fingerprints that we used for feature
construction, recent works have explored various alternative ways
of representing drugs, including SMILES strings, graph-based repre-
sentation, image-based representation and molecular descriptors.
SMILES strings represent the chemical structure of molecules as a
sequence of characters, and they have been widely applied to predic-
tion tasks including drug–target prediction (Ozturk et al., 2016),
chemical–chemical interaction prediction (Kwon and Yoon, 2017)
and drug toxicity prediction (Cao et al., 2012). Although a SMILES
string-based chemical similarity metric has been developed, replac-
ing either 2D or 3D chemical similarity with this SMILES string-
based similarity resulted in a decrease in performance
(Supplementary Table S6). Nevertheless, future studies may provide
better SMILES string-based similarity metrics that could potentially
improve drug–target prediction. Molecular graphs constructed from
the chemical structure of compounds can be processed by graph
neural networks, and this representation has been employed for pre-
dicting drug–target binding affinity (Nguyen et al., 2019). Image-
based representation of drugs, compatible with convolutional neural
networks, has been exploited for drug–target prediction (Rifaioglu
et al., 2018) and drug function prediction (Meyer et al., 2019).
Finally, drugs can be characterized by molecular descriptors that en-
code their chemical information, and softwares for calculating mo-
lecular descriptors such as Dragon (Mauri et al., 2006) and
Mordred (Moriwaki et al., 2018) have been extensively applied in
drug-related prediction tasks. It is worth noticing that graph- and
image-based drug representations each require specific algorithms
that are compatible with them, and that molecular descriptors are
features for drugs alone, and are therefore not easily integrable with
our algorithm, which uses similarity-based features calculated from
the network of drugs and genes. However, it would be interesting to
see future work that integrate these alternative algorithms and the
training scheme introduced in this paper.

One potential limitation of our approach lies in the construction
of the non-interacting drug–gene set by taking all drug–gene pairs
not known to be interacting. Although this has been the most com-
mon approach to representing the non-interaction space in a super-
vised learning framework (Ezzat et al., 2016; Wen et al., 2017;
Yamanishi et al., 2008; Yu et al., 2012), the fact that possible drug–
target associations could exist in the negative set may lead to inac-
curacies in feature calculation and classifier fitting. Therefore, our

method could potentially be improved in the future by applying a
positive-unlabeled learning framework, which comprises of a num-
ber of techniques that avoid treating all unlabeled data as negatives.

As more chemogenomic and phenotypic information about com-
pounds and genes becomes available, we expect that our method
will reach even better performance. Since there is no universal
method for drug repurposing and druggable gene discovery in place
(Finan et al., 2017; Makley and Gestwicki, 2013; Novac, 2013;
Pushpakom et al., 2019), our drug target prediction method can
serve as an intermediate step in the drug discovery pipeline, generat-
ing reliable candidates which can then be tested by downstream ex-
perimental validation. This could greatly accelerate the drug
development process and create new opportunities for disease
treatment.
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