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IN BRIEF

seQueNCING

sequencing BCr–antigen 
interactions
Setliff, I. et al. Cell 179, 1636–1646 (2019).

B-cell receptor (BCR) sequencing offers an 
important approach for examining immune 
responses to infection. Antigen-specific 
BCRs are often sequenced following single-
cell sorting with antigen baits. However, 
this strategy is low throughput. Setliff et al. 
developed LIBRA-seq for linking BCR 
sequences to antigen specificity via next-
generation sequencing. Single B cells are 
mixed with a set of DNA-barcoded antigens 
that are used to sort antigen-positive B cells. 
Then the sorted B cells are encapsulated 
with oligonucleotide-labeled beads for 
indexing both BCR transcripts and antigen 
barcodes, which allows sequencing both  
the antigen barcodes and BCR sequences, 
thus providing a direct readout of 
BCR–antigen binding interactions. This 
transformation to sequencing readouts 
allows high-throughput mapping of BCR 
sequences to antigen specificity. The 
researchers applied LIBRA-seq to peripheral 
blood mononuclear cells collected from two 
people infected with HIV and identified 
HIV- and influenza-specific antibodies. LT
https://doi.org/10.1038/s41592-020-0749-4

BIoINForMatICs

high-dimensional data 
visualization
Moon, K. r. et al. Nat. Biotechnol. 37, 1482–1492 (2019).

High-dimensional biological data conveys rich 
information but presents major challenges for 
analysis and visualization. Mapping such data 
to lower-dimensional spaces for visualization 
is often accompanied by information loss. 
Vast sizes of datasets and omnipresent noise 
further complicate the task. Moon et al. 
developed a new method, PHATE (Potential 
of Heat Diffusion for Affinity-based Transition 
Embedding), for visualizing high-dimensional 
data. The main idea is to first encode local data 
structure and then use a potential distance 
to measure global relationships. Finally, 
multidimensional scaling (MDS) is performed 
to embed the data in a lower-dimensional space. 
By this strategy, both local and global structures 
of the original data are accounted for. PHATE 
not only enables better data visualization 
than existing methods, but also helps identify 
interesting patterns such as branching or end 
points. It is robust to noise, has good scalability 
and can be used for analyzing different data 
types, such as mass spectrometry, scRNA-seq, 
Hi-C and gut microbiota data. LT*
https://doi.org/10.1038/s41592-020-0750-y
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NeurosCIeNCe

a brain observatory
De Vries, S. e. J. et al. Nat. Neurosci. 23, 138–151 (2020).

Numerous studies have reported recordings 
from neurons in the visual cortex, but such 
studies have typically been limited in the 
number of neurons being recorded and 
have used a variety of different stimuli. De 
Vries et al. have acquired a large dataset 
under standardized experimental conditions 
to address this limitation. The researchers 
performed calcium imaging using two-photon 
microscopy in awake, behaving mice. They 
imaged activity in about 60,000 excitatory and 
inhibitory neurons in the visual cortex while 
the mice were presented with a battery of 
visual stimuli ranging from drifting gratings 
to natural movies. The researchers could 
classify many neurons into several functional 
response classes and model their responses 
by combining linear filters and nonlinearities. 
Nevertheless, many of the recorded neurons 
could not be modeled, and these may 
be driven by highly specific stimuli not 
represented in the battery of stimuli presented 
here or by non-visual features of the mouse 
behavior. The dataset is available at http://
observatory.brain-map.org/visualcoding. NV

https://doi.org/10.1038/s41592-020-0751-x

ProteoMICs

Ms3-based cross-link 
search platform
Yugandhar, K. et al. Mol. Cell. Proteomics https://
doi.org/10.1074/mcp.TIr119.001847 (2019).

Determining the 3D structure of proteins 
and the structural basis of protein–protein 
interactions requires determining the spatial 
constraints between interacting partners. One 
method to capture these interactions is cross-
linking mass spectrometry (XL-MS), and 
efficient MS-cleavable chemical cross-linkers 
have allowed the approach to be expanded to the 
proteome scale. Yugandhar et al. have developed 
MaxLinker, an MS3-centric cross-link search 
approach that the authors demonstrate to have 
a significantly lower misidentification rate than 
the standard MS2-only approach. MaxLinker 
starts with MS3-level cross-link candidates and 
discards the ones without reliable sequence 
information for at least one of the two cross-
linked peptides. This is followed by an MS2-
based rescue step that looks at discarded peptides 
that may have partial sequence information at 
this level. The authors demonstrate the search 
strategy on a human proteome-wide XL-MS 
experiment using K562 cells. More than 9,000 
unique cross-links were identified at a 1% false 
discovery rate. The software is freely available for 
download from the lab website. AS

https://doi.org/10.1038/s41592-020-0752-9

http://www.nature.com/naturemethods
https://doi.org/10.1016/j.cell.2019.11.003
https://doi.org/10.1038/s41592-020-0749-4
https://doi.org/10.1038/s41587-019-0336-3
https://doi.org/10.1038/s41592-020-0750-y
https://doi.org/10.1038/s41593-019-0550-9
http://observatory.brain-map.org/visualcoding
http://observatory.brain-map.org/visualcoding
https://doi.org/10.1038/s41592-020-0751-x
https://doi.org/10.1074/mcp.TIR119.001847
https://doi.org/10.1074/mcp.TIR119.001847
https://doi.org/10.1038/s41592-020-0752-9


MaXLinker: Proteome-wide Cross-link
Identifications with High Specificity and Sensitivity
Authors
Kumar Yugandhar, Ting-Yi Wang, Alden King-Yung Leung, Michael Charles Lanz, Ievgen Motorykin,
Jin Liang, Elnur Elyar Shayhidin, Marcus Bustamante Smolka, Sheng Zhang, and Haiyuan Yu

Correspondence
haiyuan.yu@cornell.edu

In Brief
We designed two new quality
assessment metrics namely
“fraction of mis-identifications”
(FMI) and “fraction of interprotein
cross-links from known interac-
tions” (FKI) for proteome-wide
cross-link mass spectrometry
data. We developed a new ro-
bust cross-link search engine
named MaXLinker, with an
“MS3-centric” approach that
demonstrated high specificity
and sensitivity. We performed a
proteome-wide human XL-MS
study and identified more than
9,300 cross-links. We further
experimentally validated a large
subset of novel interactions
identified in our study using an
orthogonal assay, thereby con-
firming the quality of our data
and the robustness of our
MaXLinker software.

Graphical Abstract

Highlights

• New quality assessment metrics to evaluate proteome-wide cross-linking mass spectrometry (XL-MS)
data sets.

• New “MS3-centric” cross-link search engine named MaXLinker with high sensitivity and specificity.

• More than 9300 cross-links from our human proteome-wide XL-MS study.

• Orthogonal experimental validation of novel interactions identified in our study.
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MaXLinker: Proteome-wide Cross-link
Identifications with High Specificity and
Sensitivity*□S

Kumar Yugandhar‡§‡‡, Ting-Yi Wang‡§‡‡, Alden King-Yung Leung‡§,
Michael Charles Lanz§¶, Ievgen Motorykin�, Jin Liang‡§, Elnur Elyar Shayhidin‡§,
Marcus Bustamante Smolka§¶, Sheng Zhang�, and Haiyuan Yu‡§**

Protein-protein interactions play a vital role in nearly all
cellular functions. Hence, understanding their interaction
patterns and three-dimensional structural conformations
can provide crucial insights about various biological pro-
cesses and underlying molecular mechanisms for many
disease phenotypes. Cross-linking mass spectrometry (XL-
MS) has the unique capability to detect protein-protein in-
teractions at a large scale along with spatial constraints
between interaction partners. The inception of MS-cleav-
able cross-linkers enabled the MS2-MS3 XL-MS acquisition
strategy that provides cross-link information from both MS2
and MS3 level. However, the current cross-link search al-
gorithm available for MS2-MS3 strategy follows a “MS2-
centric” approach and suffers from a high rate of mis-
identified cross-links. We demonstrate the problem using
two new quality assessment metrics [“fraction of mis-iden-
tifications” (FMI) and “fraction of interprotein cross-links
from known interactions” (FKI)]. We then address this
problem, by designing a novel “MS3-centric” approach
for cross-link identification and implementing it as a
search engine named MaXLinker. MaXLinker outper-
forms the currently popular search engine with a lower
mis-identification rate, and higher sensitivity and speci-
ficity. Moreover, we performed human proteome-wide
cross-linking mass spectrometry using K562 cells. Em-
ploying MaXLinker, we identified a comprehensive set of
9319 unique cross-links at 1% false discovery rate, com-
prising 8051 intraprotein and 1268 interprotein cross-
links. Finally, we experimentally validated the quality of a
large number of novel interactions identified in our study,
providing a conclusive evidence for MaXLinker’s robust
performance. Molecular & Cellular Proteomics 19: 554–
568, 2020. DOI: 10.1074/mcp.TIR119.001847.

In the post-genomic era, one of the main goals of systems
biology is to determine the functions of all the proteins of
various organisms. In the cell, most proteins function through

interacting with other proteins. Therefore, generating interac-
tome network models with high quality and coverage is a
necessary step in the process of developing predictive mod-
els for protein functions at the scale of the whole cell (1).
Furthermore, structural information for protein-protein inter-
actions can serve as a crucial prerequisite for understanding
the mechanism of protein function (2).

Rapid advancements in the fields of cross-linking and mass
spectrometry lead to the development of a powerful tech-
nique known as cross-linking mass spectrometry (XL-MS)1

(3–5). XL-MS has been demonstrated to be an efficient tech-
nology to capture distance constraints, thereby providing cru-
cial information to decipher the interaction partners and
dynamics of protein-protein interactions (6). Efficient MS-
cleavable chemical cross-linkers such as disuccinimidyl sulf-
oxide (DSSO) (7), disuccinimidyl dibutyric urea (DSBU) (8) and
protein interaction reporters (PIRs) (9) have expanded the
applications of XL-MS to discovering proteome-wide interac-
tions along with their structural dynamics (10). Moreover,
different cross-linkers exhibit distinct cleavage mechanisms
and hence need specific and optimized fragmentation strat-
egies. DSSO is currently one of the most popular commer-
cially available MS-cleavable linkers. It yields signature peaks
with �32 Dalton mass difference at MS2, facilitating the
downstream MS3 fragmentation and analysis (7). Liu et al. (11)
demonstrated the high-throughput capability of DSSO with a
proteome-wide XL-MS study on HeLa cell lysate, using their
XlinkX search engine. They adapted the traditional “target-
decoy” approach for estimating false discovery rate (FDR) in
peptide spectrum matches (PSMs) to estimate quality of the
identified cross-links (each individual cross-link identification
is also known as a Cross-link Spectrum Match (CSM).

In a more recent study, multiple fragmentation schemes
were comparatively evaluated using DSSO, that include CID-
MS2, CID-MS2-ETD-MS2, CID-MS2-MS3 and CID-MS2-
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MS3-ETD-MS2 (a combination of CID-MS2-ETD-MS2 and
CID-MS2-MS3 acquisition strategies) utilizing an updated ver-
sion of XlinkX (12). Apart from CID-MS2, all other strategies
combine spectra from multiple MS levels (MS2 and MS3) or
from different types of energy fragmentations (CID and ETD)
or both. Their analysis revealed that, the ensemble strategy
(i.e. CID-MS2-MS3-ETD-MS2) resulted in the highest number
of cross-links, followed by CID-MS2-MS3, CID-MS2-ETD-
MS2 and CID-MS2. Moreover, utilizing sequence information
only from MS3 spectra (a subset of CID-MS2-MS3) for cross-
link identification (“MS3-Only”) resulted in the least number of
crosslinks among all the strategies. Hence the study con-
cluded CID-MS2-MS3-ETD-MS2 and MS3-Only to be the
most and least informative strategies, respectively. However,
the study did not assess quality of different strategies at the
given FDR cut-off using a rigorous comparative analysis.

In this study, we perform systematic and rigorous quality
assessment across different XL-MS acquisition strategies,
inspired by approaches widely-used in machine learning (1,
13). Based on these analyses, we noted that MS3-level infor-
mation is crucial for reliable XL identification and observed
that XlinkX results in high fraction of mis-identifications.
Therefore, we developed and validated a novel search algo-
rithm named MaXLinker, which is based on an innovative
“MS3-centric” approach for MS2-MS3 XL-MS strategy, de-
signed to efficiently eliminate incorrect cross-link candidates.
With MaXLinker in hand, we performed a large-scale pro-
teome-wide XL-MS study on K562 cell lysate, yielding more
than 9319 XLs. We further carried out an orthogonal system-
atic experimental validation of the novel interactions and
thereby confirming the reliable quality interprotein cross-links
identified in our study.

EXPERIMENTAL PROCEDURES

Cell Culture and Whole Cell Lysate Preparation—The K562 cells
(ATCC® CCL-243™) were purchased from American Type Culture
Collection (ATCC) and cultured in the Iscove’s Modified Dulbecco’s
Medium (IMDM) (ATCC, Manassa, VA) supplemented with 10% fetal
bovine serum (FBS) (ATCC) at 37 °C under humidified ambient atmo-
sphere containing 5% CO2. For harvest, 1 � 107 cells were collected
at 1000 � g for 3 mins and wash with cold PBS for three times. The
cell pellet were resuspended in cold buffer composed of 50 mM

HEPES, 150 mM NaCl, pH 7.5 and Protease Inhibitor Mixture (Roche,
Mannheim, Germany). The cell lysis was carried out by sonication
with the setting of 5-s on and 10-s off on Amplitude 10% for 6 cycles
on ice, followed by centrifugation at 15,000 � g for 10 min at 4 °C.
The cell lysate in the supernatant was collected. The protein concen-
tration of the lysate was determined using Bio-Rad Protein Assay Dye
(Bio-Rad, Hercules, CA).

Cross-linking of Bovine Glutamate Dehydrogenase (GDH) and Hu-
man Proteome—DSSO (Thermo Fisher Scientific, Rockford, IL) stock

solution (50 mM) was freshly prepared by dissolving in anhydrous
DMSO (Invitrogen). To perform cross-linking, 1 mM DSSO was mixed
with 1 mg/ml purified bovine glutamate dehydrogenase (GDH) protein
(Sigma-Aldrich, Gillingham, United Kingdom) in 50 mM HEPES, 150
mM NaCl, pH 7.5 and reacted for 30 min at room temperature.
Similarly, the 1 mg/ml K562 cell lysate were incubated with 1 mM

DSSO for 1 h at room temperature. Both cross-linking reactions were
terminated by 50 mM Tris-Cl buffer, pH 7.5.

DSSO-cross-linked Samples Processing for Analysis—The DSSO-
treated protein samples were processed as previously described (14,
15). Briefly, the cross-linked GDH was denatured in 1% sodium
dodecyl sulfate (SDS), reduced by dithiothreitol (DTT), and alkylated
with iodoacetamide, followed by precipitated in cold acetone-ethanol
solution (acetone/ethanol/acetic acid � 50:49.9:0.1, v/v/v). The pre-
cipitates were reconstituted in 50 mM Tris-Cl, 150 mM NaCl, 2 M urea,
pH 8.0 and digested by Trypsin Gold (Promega, Madison, WI) at 37 °C
overnight. The digested samples were then acidified by 2% trifluoro-
acetic acid-formic acid (TFA-FA) solution and desalted through Sep-
Pak C18 cartridge (Waters, Dublin, Ireland). The eluents were dried
using SpeedVacTM Concentrator (Thermo Fisher Scientific, Pitts-
burgh, PA). The samples were then reconstituted in 0.1% TFA and
stored in �80 °C before mass spectrometry analysis. The DSSO-
cross-linked human proteome was processed identically as de-
scribed above except that the TPCK-treated trypsin (Worthington
Biochemical Corporation, Lakewood, NJ) was used for digestion and
the sample was further processed by fractionation after drying.

Sample Fractionation by Strong Cation Exchange (SCX)—The SCX
fractionation was performed on a Dionex UltiMate 3000 Series instru-
ment (Thermo Fisher Scientific, Sunnyvale, CA) using a PolySULFOE-
THYL A column (5 �m, 200 Å, 2.1 � 200 mm; PolyLC, Columbia, MD)
with 10 mM potassium phosphate monobasic in 25% acetonitrile, pH
3.0 as Buffer A and 10 mM potassium phosphate monobasic/500 mM

potassium chloride in 25% acetonitrile, pH 3.0 as Buffer B. All eluents
were filtered through a 0.22 �m Durapore membrane (EMD Millipore
Corporation, Billerica, MA) and stored at 4 °C until use. Prior to
injection, the 1 mg of trypsin-digested sample was reconstituted in
25% acetonitrile/0.1% formic acid (v/v) and filtered through a Spin-X
centrifuge tube filters (cellulose acetate membrane, 0.22 �m; Corning
Incorporated, Corning, NY) by following manufacturer’s recom-
mended protocol. The fractionation was performed at a flow rate of
200 �l/min using a linear gradient from 5–60% of Buffer B in 40 min
and 60–100% of Buffer B in an additional 10 min. A total of 60
fractions were collected using a 96-well plate at 1-min intervals mon-
itored by the absorbance at 220 nm and 280 nm. The fractions
collected from 23 to 60 min were desalted using SOLA HRP SPE
cartridges (Thermo Scientific). The eluted peptides were dried by
speed vacuum and stored at �20 °C until LC-MS analysis.

Fractionation of Cross-linked Peptides by Hydrophilic Interaction
Liquid Chromatography (HILIC)—The DSSO-cross-linked human
peptides in 70% acetonitrile and 1% formic acid were fractionated
and enriched by hydrophilic interaction liquid chromatography
(HILIC). The HILIC fractionation was performed on a Dionex UltiMate
3000 Series instrument (Thermo Fisher Scientific, Sunnyvale, CA)
equipped with a TSKgel Amide-80 column (3 �m, 4.6 mm � 15 cm;
Tosoh Bioscience, Griesheim, Germany). The three following solvents
were used: 90% acetonitrile (solvent A), 80% acetonitrile and 0.005%
trifluoroacetic acid (solvent B), 0.025% trifluoroacetic acid (solvent C).
All the runs were performed at a flow rate of 600 �l/min using the
following gradients: 0–5 min (0–98% B and 0–2% C); 5–55 min
(98–75% B and 2–25% C); and 55–60 min (75–5% B and 25–95% C).
The fractions were collected from 5–55 min per 30 s. Each fraction
was dried and stored at �80 °C for further analysis.

LC-MSn Analysis—The SCX-fractionated samples were analyzed
using UltiMate3000 RSLCnano (Dionex, Sunnyvale, CA) coupled to an

1 The abbreviations used are: XL-MS, cross-linking mass spec-
trometry; DSSO, disuccinimidyl sulfoxide; DSBU, disuccinimidyl dibu-
tyric urea; PIRs, protein interaction reporters; FDR, false discovery
rate; PSM, peptide spectrum matches; CSM, cross-link spectrum
match; SCX, strong cation exchange.
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Orbitrap Fusion (Thermo Fisher Scientific, San Jose, CA) mass spec-
trometer. Each sample was loaded onto an Acclaim PepMap 100 C18
trap column (5 �m, 100 �m � 20 mm, 100 Å, Thermo Fisher Scientific)
and separated on an Acclaim PepMap C18 nano column (3 �m, 75
�m � 25 cm, Thermo Fisher Scientific) by 5–35% B at 300 nL/min in
120 min. For MS data acquisition, the CID-MS2-HCD-MS3 workflow
was used. The Orbitrap Fusion was operating in positive ion mode
and the MS1 precursors were detected in Orbitrap mass analyzer
(375–1575 m/z and resolution � 60,000). The precursor ions with the
charge of 4� to 8� were selected for CID-MS2 acquisition in Orbitrap
mass analyzer (resolution � 30,000, AGC target � 5 � 104, precursor
isolation width � 1.6 m/z, and maximum injection time � 100 ms) with
the collision energy of CID at 25%. The peaks with a mass difference
(� � 31.9721) in the CID-MS2 spectrum triggered acquisition of
HCD-MS3 spectra in Ion Trap with HCD collision energy of 35% and
AGC target of 1 � 104. All spectra were recorded by Xcalibur 3.0
software and Orbitrap Fusion Tune Application v. 2.1 (Thermo Fisher
Scientific).

The HILIC fractions were reconstituted in 0.1% trifluoroacetic acid.
The samples were then analyzed using an EASY-nLC 1200 system
(Thermo Fisher Scientific) equipped with an 125-�m � 25-cm capil-
lary column in-house packed with 3-�m C18 resin (Michrom BioRe-
sources, Auburn, CA) and coupled online to an Orbitrap Fusion Lu-
mos Tribrid mass spectrometer (Thermo Fisher Scientific). The LC
analysis was performed using solvent A composed of 0.1% formic
acid and solvent B composed of 80% acetonitrile and 0.1% for-
mic acid and run 10–40% B for 180 min at 300 nl/min. For MSn data
acquisition, the CID-MS2-HCD-MS3 method was used. The MS1
precursors were detected in Orbitrap mass analyzer (375–1500 m/z,
resolution of 60,000). The precursor ions with the charge of 4� to 8�
were selected for MS2 analysis in Orbitrap mass analyzer (resolu-
tion � 30,000, AGC target � 1 � 105, precursor isolation width � 1.6
m/z, and maximum injection time � 105 ms) with the collision energy
of CID at 25%. The peaks with a mass difference of 31.9721 Da in
CID-MS2 spectra were selected for further MS3 analysis. The se-
lected ions were fragmented in Ion Trap using HCD with the collision
energy at 35% and AGC target of 2 � 104. All spectra were recorded
by Xcalibur 4.1 software and Orbitrap Fusion Lumos Tune Application
v. 3.0 (Thermo Fisher Scientific). In total, we performed two biological
replicates using SCX fractionation, and one of them has two technical
replicates. For the HILIC fractionated samples, we performed four
biological replicates. We analyzed two biological replicates from SCX
and HILIC fractionation in terms of unique cross-linked peptides and
observed an overlap of �58 and �63%, respectively (supplemental
Fig. S1). Furthermore, we observed a higher overlap of �71% be-
tween two SCX technical replicates (supplemental Fig. S1). Addition-
ally, given the stochasticity of mass spectrometric identifications from
complex proteome-wide XL-MS samples, we ran some of the later
fractions multiple times in anticipation of extracting maximum possi-
ble data from such complex and cross-link rich fractions (resulting in
344 raw files in total).

Experimental Design and Statistical Rationale

Validation of Newly Identified Protein-Protein Interactions by Pro-
tein Complementation Assay (PCA)—The ORFs of a total of 49 protein
pairs in pDONR223 plasmid were picked from hORFeome v8.1 library
(16). The bait and prey protein of each protein pair was cloned into the
expression plasmids containing the complementation fragments of a
fluorescent protein Venus using Gateway LR reactions. The success
of the LR reactions with desired ORF was confirmed by PCR using the
plasmid-specific primers. To perform PCA, HEK293T cells were cul-
tured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented
with 10% fetal bovine serum (FBS) (ATCC) in black 96-well flat-
bottom plates (Corning, Kennebunk, ME) with 5% CO2 at 37 °C. At

60–70% confluency, the cells were co-transfected with the plasmids
containing the bait and prey ORF (100 ng for each) pre-mixed with
polyethylenimine (PEI) (Polysciences, Inc., Warrington, PA) and Op-
tiMEM (Gibco, Grand Island, NY). A total of 49 bait and prey ORF pairs
along with previously published 45 positive reference pairs and 45
negative reference pairs were examined and distributed across dif-
ferent plates (17, 18). After 68 h, the fluorescence of the transfected
cells was measured using Infinite M1000 microplate reader (Tecan)
(excitation � 514 � 5 nm/emission � 527 � 5 nm). The PCA exper-
iments were performed and analyzed in triplicate. The p values were
calculated using a paired one-tailed t test. In order to have a high
confidence in our validation, we used a stringent fluorescence cutoff
during postprocessing of the PCA raw data. We noted that the de-
tection rate of our positive reference set is comparable to the detec-
tion rate achieved by previous studies utilizing PCA and other high-
throughput methodologies such as Y2H, wNAPPA, and LUMIER to
study protein interactions in various model organisms (18–21).

Fraction of Mis-identifications (FMI)—FMI is the fraction of cross-
link identifications from a false search space (from an unrelated
organism) among all the identified cross-links. It can be calculated
using the following equation:

FMI 	%
 �
Number of mis � identifications
Total number of identifications

� 100 (Eq. 1)

In this study, we searched the E. coli proteome-wide XL-MS fractions
(12) against E. coli � S. cerevisiae database for FMI calculations.
Where, PeptideE. coli � PeptideS. cerevisiae, PeptideS. cerevisiae � Pep-
tideE. coli and PeptideS. cerevisiae � PeptideS. cerevisiae were considered
as mis-identifications and everything else as true identifications (in-
cluding pairs with shared peptides between homologous proteins
from E. coli and S. cerevisiae). Additionally, we also utilized the fol-
lowing equation adapted from Fischer and Rappsilber (22) to account
for the significantly larger size of the S. cerevisiae database compared
with that of E. coli database.

FMI corrected 	%
 �

TD � DD�1 �
TDDB

DDDB
�

TT
� 100 (Eq. 2)

where, TT is the number of target-target matches, DD is the number
of decoy-decoy matches, and TD is number of target-decoy and
decoy-target matches. Here, PeptideE. coli � PeptideE. coli were con-
sidered as TT (pairs with shared peptides between homologous pro-
teins from E. coli and S. cerevisiae were categorized as TT); Pep-
tideE. coli � PeptideS. cerevisiae, PeptideS. cerevisiae � PeptideE. coli were
considered as TD; PeptideS. cerevisiae � PeptideS. cerevisiae were con-
sidered as DD. TDDB is the number of all possible unique target-decoy
and decoy-target peptide pairs, and DDDB is the number of all pos-
sible unique decoy-decoy peptide pairs. We repeated the analysis
shown in Fig. 1A using equation 2 to verify if the drastic difference in
database sizes between E. coli and S. cerevisiae has any potential
implications on the results. As observed in supplemental Fig. S2, we
found no considerable effect of the database sizes on our conclusions
from Fig. 1A.

Fraction of Interprotein Cross-links from Known Interactions (FKI)—
FKI for proteome-wide XL-MS studies can be defined as the fraction
of the identified interprotein cross-links from previously known pro-
tein-protein interactions. It can be derived using the following
equation:

FKI 	%
 �
Number of true positives
Total number of postives

� 100 (Eq. 3)

where, “positives” refer to all the identified interprotein cross-links,
and “true positives” refer to cross-links from known protein-protein
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interactions. We compiled the known protein-protein interactions for
E. coli (24,745) and H. sapiens (336,033) from seven primary interac-
tion databases. These databases include IMEx (23) partners IntAct
(24), MINT (25), and DIP (26); IMEx observer BioGRID (27); and addi-
tional sources HPRD (28), MIPS (29), and iRefWeb (30). Furthermore,
iRefWeb combines interaction data from CORUM (31), BIND (32),
MPPI (29) and OPHID (33). We converted all gene identifiers in each
database to Entrez gene IDs and then mapped to uniport IDs. Fur-
thermore, to ensure the reliable quality of the compiled set of inter-
actions, we compared the FKI calculated for the datasets shown in
Fig. 1 using these interactions with the FKI calculated using interac-
tions from STRING database (34) filtered at a stringent probability
score cutoff (�0.7). We observed a great agreement between FKI
calculated using both the interaction sets, confirming the utility of our
set of compiled known interactions (supplemental Table S1).

Data Processing—The raw data files were converted, and the spec-
tra were exported as “.mgf” (MS1 spectra as “.dta”) files using Pro-
teome Discoverer 2.1 software (PD 2.1). SEQUEST (35) searches were
performed using PD 2.1 with the following settings: precursor mass
tolerance: 20 ppm (10 ppm for MS2 rescue module); MS3 fragment
ion mass tolerance: 0.6 Da (0.05 Da for MS2 rescue module); fixed
modification: Cys carbamidomethylation; variable modifications: Met
oxidation, Long arm of DSSO, Short arm of DSSO; max. equal mod-
ification per peptide: 3; Enzyme: Trypsin (full); max. missed cleavages:
3, minimum peptide length: 5. Concatenated target-decoy databases
are used for various PSM searches performed during the study.
Target sequences were downloaded from Uniprot database (36) (with
filter “reviewed”) and a corresponding decoy database was generated
by randomizing the sequences using an in-house python script. ((1)
Escherichia coli: 5268 sequences; downloaded on 28th October 2017,
(2) Saccharomyces cerevisiae: 7904 sequences; downloaded on 28th

September 2017, and (3) Homo Sapiens: 42202 sequences; down-
loaded on 23rd June 2017).

For XlinkX searches, all the raw files were processed using XlinkX
v2.0 implemented in Proteome Discoverer software version 2.2 (PD
2.2). PD templates for different XlinkX search methodologies were
obtained from Rosa Viner (Thermo fisher Scientific). We understand
that XlinkX available in PD 2.2 estimates FDR at CSM level on MS2-
based identification and MS3-based identifications separately for
MS2-MS3 acquisition strategy and then merges the information to
infer a unique list of cross-links (https://assets.thermofisher.com/
TFS-Assets/CMD/Reference-Materials/pp-structural-biology-cross-
linking-studies-msum2017-en.pdf). All the searches were performed
at 1% FDR cut-off (at redundant CSM level) and the CSMs were
exported (after applying filter “Is Decoy: False”). For “MS3-Only”
category, results from “CID-MS2-MS3” were reprocessed with option
“Reprocess: Last Consensus Step” with “Ignore reporter scan: True”
in “Xlinkx Crosslink Grouping” node. This set contained a list of all
CSMs (includes multiple identifications representing a cross-linked
peptide pair i.e. redundant). This set of data was used for compari-
sons shown in supplemental Fig. S1. Next, Those CSMs for were
further processed to obtain a list of unique CSMs (In case of multiple
CSMs with different cross-link positions, only one of them was re-
tained to avoid potential biases because of over-representation of
certain peptide pairs). The resulting set of CSMs were used for
comparisons shown in Fig. 1, Fig. 3A, 3B, 3C, 3D, 3E, 3F, supple-
mental Fig. S4, supplemental Fig. S5, supplemental Fig. S8. Same
procedure was followed to obtain the unique CSMs for GLUD1 anal-
ysis shown in Fig. 4B, 4C, and 4D. For obtaining CSMs that were
exclusively identified using MS2 spectrum by XlinkX from MS2-MS3
acquisition strategy, the raw files were first processed using XlinkX’s
“MS2-MS3 workflow”. Then they were re-processed separately using
“MS2-MS3 workflow with Ignore reporter scan: True”, and “MS2-only
workflow”. Then, the CSMs from the initial MS2-MS3 workflow that

were non-overlapping with that of MS2-MS3 workflow with Ignore
reporter scan: True and overlapping with that of “MS2-only workflow”
were labeled as exclusive identifications from MS2 spectra.

Description of MaXLinker—MaXLinker runs in two steps: (1) pre-
processing generates a “.MS2_rescue.mgf” file, which is needed for
the PSM search in PD 2.1 to be eventually used in the main search. (2)
cross-link search accepts .mgf files with different levels of MS spec-
tra(MS1, MS2, and MS3), and two files containing the list of PSMs
from PD2.1 SEQUEST search on MS3 spectra and MS2_rescue spec-
tra. The key steps of the search process are described in Fig. 2 and
manual available at https://www.yulab.org/resources/MaxLinker/
(along with MaXLinker download). After the search, a final MaXLinker
score is assigned to each cross-link and it is derived using the
following equation:

MaXLinkerScore � ��qrescaled � WXL�� N (Eq. 4)

where, qrescaled � Rescaled Percolator37q-value(i.e1-q)

WXL � Weights for cross-link PSM confidence

N � No. of recurrences

where WXL were systematically optimized to minimize mis-identifica-
tions through a rigorous training procedure. Moreover, MaXLinker
utilizes the target-decoy strategy to establish the FDR. A concate-
nated database consisting target and decoy (random) sequences is
used for the PSM search and the FDR is calculated using the follow-
ing equation (11):

FDR �
FP

FP � TP
(Eq. 5)

where, FP denote false positive hits and TP denote true positive hits.
For cross-link identification, TP represent the number of cross-links
with both linked peptides from the target database and FP represent
the number of cross-links with at least one of the linked peptides from
decoy database. After the search is complete, the identified cross-
links are annotated as “interprotein” if neither of the linked peptides
were derived from a common protein (with the exception where, both
the linked peptides from a common protein, were identical or one of
them was a complete subset of the other and the peptide occurs only
once in the protein sequence). Cross-links that did not satisfy the
aforementioned criteria were annotated as “intraprotein.”

For a potential protein-protein interaction analysis using the iden-
tified set of cross-links, we suggest filtering at the desired FDR cutoff
and utilize the unambiguous interprotein cross-links to infer and ob-
tain a non-redundant list of protein-protein interactions. In the current
study, for cross-link search on E. coli proteome-wide XL-MS fractions
(12) using MaXLinker, we also performed an FDR estimation using
equation from Fischer and Rappsilber (22) (an adapted version for FMI
calculation is shown as Eq. 2) separately, and found that the list of
cross-links was identical to the one obtained using Eq. 5.

Statistics—Statistical analyses were performed using a two-sided
Z test or a one-sided Welch Two Sample t test, as indicated in the
figure captions. Exact p values are provided for all compared groups.

Code Availability—MaXLinker software is freely available for
download as Supplementary Software at “https://www.yulab.org/
resources/MaxLinker/”.

RESULTS

Current MS2-centric Approach for DSSO Cross-link Identi-
fication Is Limited in Its Sensitivity and Specificity —When
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compared with traditional PSM searches, the identification of
CSMs from a proteome-wide study is markedly more com-
plex. This fact motivated us to thoroughly examine the MS2-
centric approach (where the search is initiated at MS2 level
even when data from MS3 level is available) for XL identifica-
tion from proteome-wide XL-MS studies. XlinkX (12) is cur-
rently the most popular MS2-centric search engine for DSSO
(39–43). It is important to note that other purely MS2-based
software packages are available that presumably perform
better than XlinkX on MS2-only acquisitions (such as MeroX
for MS-cleavable linkers (44)). However, we define MS2-cen-
tric approaches as the ones that have the capability to proc-
ess and utilize fragment ions from multiple MS levels (MS2
and MS3) for cross-link identification, and start their search
from the MS2 spectra. Hence, to the best of our knowledge
XlinkX is the only MS2-centric search engine available for the
identification of DSSO cross-linked peptides on a proteome-
scale. Thus, we introduce a new quality metric called “fraction
of mis-identifications” (FMI) to perform a systematic quality
comparison of cross-links identified by XlinkX from data
across multiple XL-MS acquisition strategies described in Liu
et al. (12) (Experimental Procedures). First, we obtained cor-
responding raw files for the three fragmentation schemes
CID-MS2-ETD-MS2, CID-MS2-MS3 and CID-MS2-MS3-
ETD-MS2 (through E-mail request to Dr. Fan Liu). Then we
performed cross-link search using XlinkX software (Proteome
Discoverer 2.2) at 1% FDR with a concatenated database
containing sequences from E. coli proteome (true search
space) and S. cerevisiae (false search space). It is important to
note that XlinkX by default, generates a reversed version of

the input database and uses it as a decoy database to esti-
mate FDR. In other words, the target database would consist
of protein sequences from E. coli proteome and S. cerevisiae
proteome. On the other hand, the decoy database would
consist of reversed version of sequences from E. coli pro-
teome and S. cerevisiae proteome. As a next step, we com-
pared the three fragmentation strategies in terms of the num-
ber of incorrect unique CSMs (CSMs with at least one peptide
from the S. cerevisiae search space, i.e. mis-identifications).
However, CSMs with shared peptides between homologous
proteins from E. coli and S. cerevisiae were considered as true
identifications to avoid over-estimation of mis-identifications.
The aim of this search is to re-assess the quality of cross-links
at 1% FDR, with expected fraction of incorrect CSMs involv-
ing unambiguous peptides from S. cerevisiae to be less than
1%. Surprisingly, the fraction of incorrect CSMs range from
14.8% to as high as 26.9% across the three acquisition
strategies (Fig. 1A). Upon closer examination, we observed
that among the three strategies, CID-MS2-MS3 showed sig-
nificantly lower proportion of incorrect CSMs (14.8%) fol-
lowed by CID-MS2-ETD-MS2 (25.1%), and CID-MS2-MS3-
ETD-MS2 (26.9%) strategies. This analysis clearly indicates
that the methodology implemented in XlinkX does not ade-
quately evaluate the quality of the identified CSMs. Therefore,
utilizing only the number of identifications for comparative
evaluations (12) might not yield accurate conclusions about
the capability of different acquisition strategies. We further
repeated the analysis at redundant CSM level and observed
results consistent with what was found at the unique CSM
level (supplemental Fig. S3). The high false positive rate for

FIG. 1. Comparative quality assessment between various acquisition methods for Cross-linking Mass-Spectrometry on six E. coli
fractions from Liu et al. (12) A, Comparison between different acquisition methods based on fraction of mis-identifications (FMI). (The search
was performed using a database consisting amino acid sequences of E. coli and S. cerevisiae proteomes. Any CSM with either of the peptides
exclusively from S. cerevisiae proteome was considered as a mis-identification). B, Quality comparison across multiple acquisition methods
using the fraction of XLs from known interactions (FKI). A separate search was performed for panel “B” using only the E. coli database in order
to avoid underestimation of FKI. (Significance was determined by a two-sided Z-test; The error bars represent the estimated standard error of
mean).
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XlinkX identifications observed in our analysis was corrobo-
rated by a recent independent study that employed a spike-in
strategy using cross-linked bovine serum albumin samples
(45).

The Most Reliable Sequence Information for Cross-linked
Peptides Come from the MS3-Level—We also evaluated the
quality of identifications from CID-MS2-MS3 strategy, with
sequence information obtained exclusively from MS3 spectra
(MS3-only) (Fig. 1A). Strikingly, we observed a drastically
lower fraction of incorrect CSMs for MS3-Only (3.3%), which
is a subset of CID-MS2-MS3 (with 14.8% FMI). This result
clearly demonstrates that MS3 which is the most advanced
MS level, provides higher quality sequence information com-
pared with MS2-level. Furthermore, we explored different pa-
rameters available in the XlinkX output based on their descrip-
tions and selected “� XlinkX score” (a measure of confidence
for each CSM) to further filter the identifications, aiming to
obtain a set with higher quality compared with that of the
original 1% FDR set . As a next step, we filtered the CSMs
using five different � XlinkX score cutoffs in the increasing
order of stringency (namely �10, �20, �30, �40, and �50)
and re-assessed their quality across different acquisition
strategies. We observed that, overall, increasing the strin-
gency based on � XlinkX score significantly reduced the
number of incorrect CSMs for all three acquisition strategies
(supplemental Fig. S4). However, even after filtering by �

XlinkX score, the trend across the different strategies was
similar to what was observed before the filtering (Fig. 1A and
supplemental Fig. S4), with data from the MS3-level yielding
the highest fraction of reliable CSMs.

Fraction of Interprotein Cross-links from Known Interactions
Is a Reliable Metric for Comparative Quality Assessment for
Proteome-wide XL-MS Data Sets —To perform a more com-
prehensive and rigorous quality evaluation, we next utilized
the “fraction of interprotein cross-links from known interac-
tions” (FKI) to compare the quality across the three acquisition
strategies (EXPERIMENTAL PROCEDURES). FKI is analogous
to a widely used metric in machine learning known as “pre-
cision” which has been previously utilized for evaluating the
quality of large-scale interaction screens, where it is derived
using known interactions (as training set) (1). Furthermore,
some of the previous studies utilized the known protein-
protein interaction networks to visualize and infer biological
insights from XL-MS datasets (46, 47). However, none of the
reported XL-MS studies have adapted it as a quality estimate
for their data sets to the best of our knowledge. Here we
present FKI as a measure to assess quality of cross-link data
sets from proteome-wide XL-MS studies. FKI for XL-MS es-
sentially represents the fraction of identified interprotein
cross-links that correspond to known protein-protein interac-
tions. Remarkably, FKI complements the result obtained in
the above FMI analysis using additional S. cerevisiae search
space (Fig. 1B, supplemental Fig. S4).

Most of the Reliable Cross-link Identifications Are Contrib-
uted by CID-MS2-MS3 Methodology—It is important note
that CID-MS2-MS3-ETD-MS2 (combination CID-MS2-MS3
and CID-MS2-ETD-MS2 methodologies) resulted in higher
FMI when compared with CID-MS2-MS3 strategy (Fig. 1A).
Upon closer examination of the quality of CSMs identified by
the inherent CID-MS2-MS3 and CID-MS2-ETD-MS2 method-
ologies, we observed that at 1% FDR, CSMs identified exclu-
sively by CID-MS2-ETD-MS2 contains almost 2-fold higher
FMI compared with exclusive identifications by CID-MS2-
MS3 (supplemental Fig. S5). We repeated the analysis after
filtering the CSMs at different � XlinkX score cut-offs. It is
interesting to note that, as the cut-off score increases, the
number of identifications contributed exclusively by CID-
MS2-ETD-MS2 reduces consistently, to as low as 6% when
compared with the exclusive identifications by CID-MS2-MS3
(at � XlinkX score � 50) (supplemental Fig. S5). These results
reveal that, for CID-MS2-MS3-ETD-MS2, at higher quality
cut-offs, CID-MS2-ETD-MS2 fails to yield additional cross-
links than what were already captured by CID-MS2-MS3.
Nonetheless, given that our analysis is based on the results
obtained from XlinkX, which is the only available software for
processing complex and ensemble acquisition strategies
such as CID-MS2-MS3-ETD-MS2 utilizing DSSO, we cannot
completely rule out the utility of ETD fragmentation for cross-
linked peptides. Future studies may explore the potential of
ETD in conjunction with other cross-linkers, modified acqui-
sition strategies and improved cross-link identification pipe-
lines. Moreover, the performance of such pipelines can be
evaluated using our proposed quality metrics and validation
approaches.

Our observations provide captivating evidence that, among
the three widely used strategies, CID-MS2-MS3 results in
cross-links with significantly better quality, most of which rely
on MS3 spectra for sequence information. However, the high
number of incorrect identifications for CID-MS2-MS3 strategy
at 1% FDR strongly demonstrates the need for an improved
search algorithm that can efficiently eliminate false positives
while maintaining a minimum number of false negatives.

MaXLinker: A Novel MS3-centric Approach for Cross-link
Identification—To address the limitations of current MS2-cen-
tric approach for DSSO MS2-MS3 fragmentation strategy, we
designed a novel MS3-centric approach (Fig. 2). XlinkX starts
the search at MS2-level by calculating the potential precursor
mass for the linked peptides and attempts to identify CSMs
exclusively from the MS2 spectrum, for cases with no avail-
able sequence information from MS3-level. However, our
analyses revealed that such MS2-centric approach could lead
up to 14.8% false identifications (Fig. 1A) with �26% of the
identified cross-links not relying on MS3 information at all
(Experimental Procedures). On the contrary, our approach
starts the search from MS3-level (which is confirmed through
our analyses to be most informative level for the sequences of
cross-linked peptides; Fig. 1) and requires at least one of the
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two peptides to be identified from the MS3 level. Additionally,
our approach utilizes MS2-level to rescue candidate CSMs
(MS2 Rescue node) only if one of the two cross-linked pep-
tides could be reliably identified from the MS3 spectra (Fig. 2
Node “C”). Finally, we require all cross-link candidates to pass
through an additional validation filter that performs theoretical
reconstruction of cross-link using the identified peptide se-
quences (Fig. 2 Node “D”) and perform correction for mis-
assigned monoisotopic MS1 precursor masses (Fig. 2 Node
“B”). It is important to note that the novel aspect of MaXLinker
does not claim utilizing only MS3 fragment ions for cross-link
identification (it has been previously implemented by Huang
lab’s in-house algorithm for DSSO (7) and Bruce lab’s ReACT
algorithm for PIR (48)). The most important novel feature of
MaXLinker is its MS3-centric workflow that involves efficient
and prioritized utilization of fragment ions from MS3 spectra
over that of the MS2 spectra. Other crucial components of our
workflow include its MS2 rescue module, and thorough vali-
dation filters to eliminate potential false positives. Further-
more, a final MaXLinker score is assigned to each cross-link,
which is designed using a machine learning approach to
integrate various measurements of the confidences of the
PSM for each peptide, and the occurrence of the peptide pair.

Key feature of the MaXLinker score is its systemically opti-
mized weights for the utilized parameters through a rigorous
training procedure. One of the major advantages of this scor-
ing scheme is its versatility and adaptability that allows incor-
poration of new features for further optimization and improve-
ment in better ranking the identified cross-links based on their
quality. Overall, although the MS2 rescue module contributes
to MaXLinker’s high sensitivity (rescues cross-link candidates
that otherwise would not be identified), its high specificity is
accorded by its stringent MS3-centric design (described in
the following text) and optimized scoring scheme which labels
candidate pairs that lack reliable information as potential false
positives and discards them. Most importantly, it is the com-
bination of all the individual modules/components that make
the MaXLinker’s work-flow unique, and its reliability has been
thoroughly demonstrated using our new quality metrics and
validation approaches.

The well-established general experimental methodology for
MS2-MS3 acquisition strategy for DSSO (7) in a typical Tribrid
mass spectrometer involves precursor selection at multiple
stages of mass spectrometry. First, ions above certain thresh-
old charge state (typically � �3 or �4) will be selected for
fragmentation at MS2 stage to yield signature ions with pre-

FIG. 2. Overview of MaXLinker’s strategy for identification of cross-links from XL-MS.
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defined mass difference (�m � 31.97 for DSSO). Further, an
iterative search known as “targeted inclusion” is performed by
mass spectrometer on-the-fly to select ion pairs with signa-
ture �m, following certain prioritization criteria to perform
fragmentation at MS3-level to yield two MS3 spectra per
peptide in an ideal scenario.

To perform the XL search, MaXLinker accepts “.mgf” files
consisting different levels of MS spectra exported using Pro-
teome discover (PD), along with PSM annotations from PD as
input (Experimental Procedures). MaXLinker initiates the
search from MS3-level by performing the mandatory precur-
sor-based mass validation (Fig. 2 Node “A”). Initiating the
search from MS3, the most informative level in terms of the
peptide sequence information, provides a key advantage to
MaXLinker in eliminating potential false positives. If a set of
MS3 spectra representing a potential cross-link pass the pre-
cursor-based mass validation step (Fig. 2 Node “A”) (Case 1
in Fig. 2), it is verified through multiple validation filters (Fig. 2
Node “D”). It is important to note that typically larger size of
crosslinked peptides can often result in the mis-assignment of
the monoisotopic MS1 precursor mass (49), thus for cases
that fail to pass through the precursor mass-based filter (Fig.
2 Node “A”), MaXLinker inspects the corresponding MS1
spectrum to verify mis-assignment of the monoisotopic MS1
precursor mass (Fig. 2 Node “B”). Such cases are systemat-
ically examined and passed on to the next filter if they satisfy
the mass validation step with the adjusted precursor mass.
The remaining failed candidates are sent to the MS2 Rescue
Module (Fig. 2 Node “C”).

MS2 Rescue Module is another important and unique fea-
ture of MaXLinker. As mentioned earlier, this module is trig-
gered if the candidate spectra failed to pass the precursor-
based mass validation step (Fig. 2 Node “A”) and could not be
validated through precursor mass re-assignment. We found
that failure to pass these filters often coincided with poor or
“uninformative” MS3 spectral data for one of the cross-linked
peptides (case 2 in Fig. 2). In this case, considering a scenario
where the mass spectrometer picked an incorrect �m pair
from the MS2-level having the signature just by chance,
MaXLinker attempts to “rescue” sequence information for the
peptide by utilizing fragment ions from the corresponding
MS2 spectrum (Fig. 2 Node “C”). First, precursor masses for
the peptide with poor MS3 spectra are derived using MS2
precursor mass and MS3 precursor masses of the “informa-
tive” MS3 spectra (with account for the linker long and short
arm modifications) (supplemental Fig. S6). An additional vali-
dation search is performed on the ions of the corresponding
MS2 spectrum to confirm presence of the derived MS3 pre-
cursor masses. Subsequently, a PSM search is performed on
the deconvoluted MS2 spectrum with the derived masses
(both long and short) as the precursor mass. If the search
returns at least one reliable PSM, the cross-link candidate
(along with sequence information for the “rescued” peptide) is
directed to the general validation pipeline for further evalua-

tion (Fig. 2 Node “D”). Additionally, the MS2 Rescue module
also accounts for cases where the mass spectrometer selects
two pairs with signature �m for MS3, however both pairs
represent different charge states of one of the two cross-
linked peptides (supplemental Fig. S7). Upon completion of
the search, a unique list of cross-links is obtained by merging
the redundant CSM entries, and a confidence score is as-
signed to each identification (equation 2 in Experimental Pro-
cedures). Finally, a target-decoy strategy is employed to es-
tablish the FDR at the level of unique cross-linked peptide
pairs.

MaXLinker Outperforms XlinkX in Both Specificity and Sen-
sitivity—We evaluated the performance of MaXLinker utilizing
MS2-MS3 XL-MS raw files for six E. coli fractions from Liu et
al. (12) . First, we utilized the strategy employed in Fig. 1A and
performed the search using MaXLinker at 1% FDR. We noted
that the FMI was less than 1% (supplemental Table S1), and
for majority of the identifications (�80%), the peptide se-
quence information was obtained from MS3 spectra, which
agrees with MaXLinker’s fundamental algorithmic design.
Next, we compared the results with unique CSMs identified
using XlinkX at 1% FDR on the same set of raw files (Fig. 3A).
Our analysis showed that MaXLinker evidently outperforms
XlinkX, indicated by the extremely significant difference (18-
fold lower) in the fraction of mis-identifications (Fig. 3B). We
then examined the overlap between identifications from the
two search engines. It clearly reveals that the overlapping
fraction from XlinkX has only 0.6% mis-identifications,
whereas the non-overlapping CSMs which were identified
exclusively by XlinkX contained a large fraction (33.1%) of
mis-identifications. Further, using FKI as a complementary
quality metric, we observed similar results (Fig. 3D, 3E). When
we repeated these quality analyses by filtering the identifica-
tions from XlinkX at different � XlinkX score cutoffs, we ob-
served that MaXLinker consistently finds 13–31% more
cross-links than XlinkX at comparable quality (supplemental
Fig. S8). Importantly, the CSMs identified exclusively by
MaXLinker are of 3-fold higher quality than the exclusive
identifications by XlinkX, even at the highly stringent cutoff �

XlinkX score � 50 (Fig. 3C, 3F). All these results demonstrate
that MaXLinker outperforms XlinkX for CSM identifications in
both specificity and sensitivity.

Next, we cross-linked commercially available Bovine Glu-
tamate Dehydrogenase 1 (GLUD1) using DSSO and per-
formed a CID-MS2-HCD-MS3 experiment in our own lab (Ex-
perimental Procedures). We employed MaXLinker to perform
two individual CSM searches at 1% FDR, search1: using
Bovine GLUD1 sequence as the search database yielding 43
unique CSMs, and search2: with a concatenated database
with Bovine GLUD1 and a full proteome of Saccharomyces
cerevisiae, yielding 36 unique CSMs. We then examined the
overlap between CSMs from search1 and search2 to inspect
MaXLinker’s ability to find true CSMs from single protein in a
plethora of false search space. Strikingly, we observed that 33
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of 36 (92%) CSMs from search2 were overlapping with the
ones from search1 (Fig. 4A). Out of the remaining 3 CSMs,
2 were known mis-identifications having one of the peptides
in the pair from S. cerevisiae proteome (false search space).
Of note, 10 CSMs were identified exclusively in search1.
Upon close examination, we noted that MaXLinker rejected
those 10 CSM candidates because of either (1) its stringent
validation filters or (2) lower confidence in their PSM assign-
ments, attributable to the drastic increase in the number of
competing candidate peptides for individual spectra.

On the other hand, when we performed similar analysis
using XlinkX at 1% FDR, search1 and search2 yielded 35 and
140 unique CSMs, respectively. Out of the 140 CSMs from
search2, 30 were overlapping with search1 and the remaining

110 had at least one of the peptides unambiguously from S.
cerevisiae proteome (known mis-identifications) (Fig. 4B). We
examined the overlap between search2 identifications from
MaXLinker and XlinkX, and observed that most of the mis-
identifications from XlinkX (109 of 110) were not found by
MaXLinker (Fig. 4C). Further, we filtered CSMs from XlinkX
using � XlinkX score � 50 and re-inspected the overlap with
MaXLinker’s identifications. This filtering step resulted in dras-
tic elimination of false positives (Fig. 4D). However, all the
non-overlapping CSMs from XlinkX were observed to be mis-
identifications. On the other hand, MaXLinker identified 12
CSMs (containing 11 true CSMs) that were missed by XlinkX.
For further validation of MaXLinker’s identifications, we
mapped CSMs from search1 on to a three-dimensional struc-

FIG. 3. Comparison of MaXLinker’s performance on proteome-wide XL-MS with that of XlinkX. A, Comparison of the fraction of
mis-identifications from MaXLinker and XlinkX at 1% FDR using six E. coli MS2-MS3 XL-MS fractions from Liu et al. (12). B, Overlap between
CSMs from MaXLinker and XlinkX at 1% FDR showing the respective fraction of mis-identifications in the parentheses. C, Overlap between
CSMs at 1% FDR from MaXLinker and additional filtering on 1% FDR with “�XlinkX score” � 50 for XlinkX, showing the respective fraction
of mis-identifications in the parentheses. D, Comparison between MaXLinker and XlinkX in terms of fraction of XLs from known interactions
(FKI) using six E. coli MS2-MS3 XL-MS fractions from Liu et al. (12). E, Overlap between interprotein CSMs from MaXLinker and XlinkX at 1%
FDR showing the respective FKI values in the parentheses. F, Overlap between interprotein CSMs at 1%FDR from MaXLinker and additional
filtering on 1% FDR with “�XlinkX score” � 50 for XlinkX, showing the respective FKI values in the parentheses. (Significance was determined
by a two-sided Z-test; The error bars represent the estimated standard error of mean).
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ture (Fig. 4E) of Bovine GLUD1. We observed that 15 of the 18
mapped CSMs were within the theoretical distance constraint
(30Å), and the remaining three CSMs were within 38Å, vali-
dating reliable quality of our identifications. This analysis
serves as a revealing case study for MaXLinker’s unique
ability to identify cross-links with high sensitivity and speci-
ficity. Furthermore, estimation of FDR at redundant CSM-level
might be a potential reason for high fraction of false positives
from XLinkX (�2-fold increase in mis-identifications at the
peptide pair level compared with the redundant-CSM level;
supplemental Fig. S3 and Fig. 1). Moreover, it is unclear how
XlinkX handles FDR at different levels, which would greatly
influence the number of residue pairs passing a given FDR
threshold (22, 50).

Our Proteome-wide K562 XL-MS Study—Having estab-
lished the MaXLinker software and optimized the experimen-
tal pipeline in our lab, we carried out a comprehensive pro-
teome-wide XL-MS study on human K562 cell lysates, us-
ing the CID-MS2-HCD-MS3 acquisition strategy. Previous
proteome-wide XL-MS studies implemented the strong cation
exchange chromatography (SCX) for pre-fractionation of
crosslinked proteome samples. Here, to capture a more com-
prehensive set of cross-links, we employed both SCX and
hydrophilic interaction chromatography (HILIC) for our pro-
teome-wide XL-MS study (Experimental Procedures). We then
employed MaXLinker for cross-link identification. Our study
yielded 9319 unique cross-links at 1% FDR (8051 intraprotein
and 1268 interprotein, representing 585 unambiguous interac-

FIG. 4. Validation and Comparison of MaXLinker’s performance with that of XlinkX using bovine GLUD1 XL-MS. Search1 was
performed using sequence of only GLUD1 protein as the search database and Search2 was performed using a concatenated database
consisting sequence for GLUD1 along with the entire S. cerevisiae proteome. A, Overlap between MaXLinker’s identifications from Search1 and
Search2 at 1% FDR. B, Overlap between identifications from XlinkX from Search1 and Search2 at 1% FDR. C, Overlap of Search2
identifications at 1% FDR from MaXLinker and XlinkX. D, Overlap of Search2 identifications from MaXLinker at 1% FDR and with additional
filtering (“�XlinkX Score” � 50) at 1% FDR from XlinkX. E, Validation of cross-links from GLUD1 identified using MaXLinker, by mapping them
onto its three-dimensional structure (PDB: 5K12). Cross-links exceeding theoretical distance constraint for DSSO (30Å) is shown in red. The
cross-links are shown in default mode, where all possible mappings are visualized for a homo-oligomer (GLUD1 is a homo-hexamer). The
histogram shows distance distribution for all the cross-links mapped on to the structure (cross-links with distance �30Å shown in red). The
structure mappings were performed using Xlink Analyzer(55) implemented in UCSF Chimera (56).
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tions with 74.2% FKI; among the 585 unambiguous interac-
tions, 410 were inferred through single cross-links and the
remaining were inferred using cross-links in the range of 2–21
per interaction; supplemental Table S3). In comparison, some
of the previous proteome-wide studies on human reported
cross-links in the range of few hundreds to few thousands.
Specifically, Liu et al. (12) reported �3300 cross-links from
HeLa cell lysates.

Systematic Experimental Validation of Novel Protein-Protein
Interactions Identified in Our Proteome-wide XL-MS Study—
Currently, a common way of confirming the quality of cross-

links is to map them onto available three-dimensional struc-
tures of representative complexes and identify the fraction of
cross-links that satisfy the theoretical restraint of the cross-
linker. Although we believe that such a structure-based vali-
dation approach often under-estimates the underlying error
rate of proteome-wide cross-link data sets (51), we still
mapped our identified cross-links from 26S proteasome onto
its available three-dimensional structure (Fig. 5A, 5B). Out of
the 100 cross-links mapped to the structure, 90 were within
the theoretical constraint i.e. 30Å. Additionally, we observed
that one cross-link that was exceeding 30Å, was within the

FIG. 5. Validation of cross-links and novel interactions identified in the proteome-wide human K562 XL-MS study at 1% FDR. A,
Mapping cross-links from 26S proteasome complex on to a recently published structure (PDB: 5GJQ; cross-links exceeding maximum
theoretical constraint 30Å are shown in red). B, A circular plot showing interprotein cross-links between various subunits from 26S proteasomal
complex.(cross-links exceeding maximum theoretical constraint 30Å are shown in red; the plot was generated using Circos (57).) C, Validation
of a cross-link from 26S proteasome that violate distance constraints (�30Å) in one structure (PDB: 5GJQ) and obey in a different structure
(PDB: 5T0J), suggesting potential conformational changes. D, Network map showing protein-protein interactions identified in the current study.
(known interactions are shown in green and novel interactions are shown in orange). E, Experimental validation of a representative set of 49
novel interactions identified in the current study using Protein-fragment complementation assay (PCA) (mean fraction positive: 0.130) (PRS:
Positive Reference Set (45 interactions; mean fraction positive: 0.133); RRS: Random Reference Set (45 interactions; mean fraction positive:
0.029); The error bars represent the standard deviation; Significance was determined by a one-sided Welch Two Sample t test; 95% confidence
interval; t-statistic 0.53 for “PRS - This Study,” and 164.75 for “RRS - This Study”; 2 degrees of freedom).
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distance constraint in a different structure (Fig. 5C), suggest-
ing potential conformational changes in the corresponding
subunits. Six out of the remaining nine cross-links were within
35Å, and all the others were within 50Å.

Furthermore, it should be noted that FDR would be signif-
icantly higher in more convoluted levels (e.g. unique sites and
protein-protein interactions) compared with that of lower lev-
els such as CSM and unique peptide pair (22, 50). Hence in
order to evaluate the quality of our dataset at the level of
protein-protein interactions and to address the limitations of
the current structure-based validation approach in validating
the interprotein cross-links (51), we performed an orthogonal
experimental validation of the novel protein-protein interac-
tions identified in our study, thereby confirming the quality of
the interprotein cross-links from which they were inferred.
Such an orthogonal experimental validation is indispensable
since majority fraction of false positive cross-links tends to be
interprotein (50, 52). Moreover, the true positive and false
positive interprotein cross-links do not have equal probability
of successfully mapping to an existing 3D structure, leading to
massive underestimation of false positives (51). In other
words, the distance-based validation effectively pre-filters the
data set, ignoring most of the potential false positive cross-
links during the validation procedure.

We tested a representative subset of 49 interactions (ran-
domly-chosen out of the 160 novel interactions identified in
our study) individually using a Protein Complementation As-
say (PCA). PCA facilitates high-throughput validation of novel
protein-protein interactions in a mammalian cellular environ-
ment (Experimental Procedures). The fraction of PCA-positive
interactions among the novel interactions identified in our
XL-MS study is statistically indistinguishable (p � 0.325) from
that of the positive reference set containing well-established
interactions in the literature, but significantly higher (p � 1.8 �

10�5) than that of a negative reference set containing random
protein pairs (Fig. 5E) (53). This large set of experimental
results demonstrate the high quality of the novel cross-links
and the corresponding interactions identified in our pro-
teome-wide XL-MS study, and further confirm the reliability
and accuracy of MaXLinker.

DISCUSSION

Machine learning approaches have been an integral part of
conventional mass spectrometry-based methods (54). Here,
we extended their applications for comparative quality as-
sessment among multiple proteome-wide XL-MS data sets. In
addition to using search space from an un-related organism
(FMI), we demonstrated fraction of interprotein cross-links from
known interactions (FKI) as an effective additional metric for
comparative quality assessments. It should be noted that, be-
cause a large fraction of true protein interactions is yet to be
discovered, FKI should not be used as an absolute measure for
data quality. Nevertheless, it can be an orthogonal and reliable
quality metric for comparative assessments of proteome-wide

XL-MS studies. Moreover, even though we performed FKI-
based comparative analysis at the level of unique peptide pair in
this study, it is noteworthy that FKI can also be adapted to be
estimated at the level of unique sites and interactions.

Our systematic analyses revealed for the first time, the
limitations of current quality assessment strategies and the
drawbacks of the current MS2-centric cross-link identification
approach for DSSO MS2-MS3 strategy with high mis-identi-
fication rates (Fig. 1A). Our analyses also revealed that for
MS2-MS3 strategy, the MS3-level provides sequence infor-
mation with significantly higher quality when compared with
that of the MS2-level, and identification of cross-links exclu-
sively from MS2-level could result in alarmingly high mis-
identification rate. To address these issues, we designed and
implemented a novel MS3-centric approach (MaXLinker) (Fig.
2). The current MS2-centric methods for DSSO MS2-MS3
strategy such as XlinkX start the search from the MS2-level
and attempts cross-link identifications without any informa-
tion from MS3-level, resulting in high fraction of false posi-
tives. On the contrary, MaXLinker starts the search from MS3-
level and discards any cross-link candidate without reliable
sequence information from MS3-level for at least one of the
two cross-linked peptides. Furthermore, the MS2-Rescue
module utilizes MS2-level information to rescue XLs that
have partial information because of selection of incorrect
signature pairs by the mass spectrometer (supplemental Fig.
S6, supplemental Fig. S7), which provides a key advantage to
MaXLinker in terms of sensitivity. MS2-Rescue module adds
more than 20% to the number of XLs identified by just con-
sidering the MS3 information alone, with comparable quality
(p � 0.09; supplemental Table S2). The MS2 Rescue module
along with other novel features including the strict validation
filters and thoroughly optimized score (Fig. 2), play a crucial
role in MaXLinker’s superior sensitivity over the previously
established approach, without compromising on the specific-
ity. Overall, MaXLinker significantly outperforms XlinkX with
18-fold lower mis-identification rate and up to 31% higher
number of identifications.

One can argue that our observations might suggest XlinkX’s
drastically different efficiency in identifying cross-links from
MS2 spectra compared with that from MS3 spectra with the
MS2-MS3 acquisition strategy. We hypothesize that such
drastic difference in cross-link quality could be because of the
inherently distinct information available in MS3 spectra for
individual peptides constituting the cross-link (two individual
spectra for each cross-linked peptide; with “long” and “short”
modification of DSSO). However, we do not completely dis-
regard the scope for an improved methodology in the future
that better utilizes the MS2 information from strategies such
as CID-MS2-MS3-ETD-MS2 DSSO acquisitions to signifi-
cantly minimize the error rates while achieving comparable
sensitivity. Moreover, XlinkX is the only publicly available
search engine capable of processing DSSO cross-linked pep-
tides with composite acquisition strategies such as CID-MS2-
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MS3 and CID-MS2-MS3-ETD-MS2, enabling us to perform
such analyses. Furthermore, all observations from our analy-
ses were from DSSO cross-linked samples, and other cleav-
able linkers such as DSBU, PIR, CDI etc. might behave dif-
ferently given their drastically different chemical properties.

Having MaXLinker in hand, we report a comprehensive set
of 9319 cross-links at 1% FDR (supplemental Table S3), rep-
resenting 160 unambiguous novel interactions (supplemental
Table S4). Furthermore, considering the limitations of current
structure-based validation approach, we used an orthogonal
experimental approach to validate the identified novel inter-
actions and thereby affirming the quality of the interprotein
cross-links reported by our study. Moreover, to our knowl-
edge, this is the first study that performed a large-scale or-
thogonal experimental validation of novel interactions identi-
fied from a proteome-wide XL-MS study. Overall, we believe
that our robust cross-link search engine along with the new
quality assessment metrics and validation approaches con-
stitute a significant contribution of this study.

With the constant technical advancements in XL-MS meth-
odologies, reliable search algorithms such as MaXLinker will
play a highly significant role in the success of future cross-
linking studies. Moreover, the expanding size of cross-link
datasets would allow researchers to investigate interaction
networks in many disease phenotypes more thoroughly,
thereby enabling us to better understand the underlying mo-
lecular mechanisms.
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L., Stümpflen, V., Tyers, M., Uetz, P., Xenarios, I., and Hermjakob, H.
(2012) Protein interaction data curation: the International Molecular Ex-
change (IMEx) consortium. Nat. Methods 9, 345

24. Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen,
C., Duesbury, M., Dumousseau, M., Feuermann, M., Hinz, U., Jandrasits,
C., Jimenez, R. C., Khadake, J., Mahadevan, U., Masson, P., Pedruzzi, I.,
Pfeiffenberger, E., Porras, P., Raghunath, A., Roechert, B., Orchard, S.,
and Hermjakob, H. (2012) The IntAct molecular interaction database in
2012. Nucleic Acids Res. 40, D841–D846

25. Licata, L., Briganti, L., Peluso, D., Perfetto, L., Iannuccelli, M., Galeota, E.,
Sacco, F., Palma, A., Nardozza, A. P., Santonico, E., Castagnoli, L., and
Cesareni, G. (2012) MINT, the molecular interaction database: 2012
update. Nucleic Acids Res. 40, D857–D861

26. Salwinski, L., Miller, C. S., Smith, A. J., Pettit, F. K., Bowie, J. U., and
Eisenberg, D. (2004) The Database of Interacting Proteins: 2004 update.
Nucleic Acids Res. 32, D449–D451

27. Chatr-aryamontri, A., Breitkreutz, B.-J., Oughtred, R., Boucher, L., Hei-
nicke, S., Chen, D., Stark, C., Breitkreutz, A., Kolas, N., O’Donnell, L.,
Reguly, T., Nixon, J., Ramage, L., Winter, A., Sellam, A., Chang, C.,
Hirschman, J., Theesfeld, C., Rust, J., Livstone, M. S., Dolinski, K., and
Tyers, M. (2015) The BioGRID interaction database: 2015 update. Nu-
cleic Acids Res. 43, D470–D478

28. Keshava Prasad, T. S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar,
S., Mathivanan, S., Telikicherla, D., Raju, R., Shafreen, B., Venugopal, A.,
Balakrishnan, L., Marimuthu, A., Banerjee, S., Somanathan, D. S., Se-
bastian, A., Rani, S., Ray, S., Harrys Kishore, C. J., Kanth, S., Ahmed, M.,
Kashyap, M. K., Mohmood, R., Ramachandra, Y. L., Krishna, V., Rahi-
man, B. A., Mohan, S., Ranganathan, P., Ramabadran, S., Chaerkady,
R., and Pandey, A. (2009) Human Protein Reference Database—2009
update. Nucleic Acids Res. 37, D767–D772

29. Pagel, P., Kovac, S., Oesterheld, M., Brauner, B., Dunger-Kaltenbach, I.,
Frishman, G., Montrone, C., Mark, P., Stümpflen, V., Mewes, H.-W., Ruepp,
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