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Abstract

In light of increased co-prescription of multiple drugs, the ability to discern and predict drug-

drug interactions (DDI) has become crucial to guarantee the safety of patients undergoing

treatment with multiple drugs. However, information on DDI profiles is incomplete and the

experimental determination of DDIs is labor-intensive and time-consuming. Although previ-

ous studies have explored various feature spaces for in silico screening of interacting drug

pairs, their use of conventional cross-validation prevents them from achieving generalizable

performance on drug pairs where neither drug is seen during training. Here we demonstrate

for the first time targets of adversely interacting drug pairs are significantly more likely to

have synergistic genetic interactions than non-interacting drug pairs. Leveraging genetic

interaction features and a novel training scheme, we construct a gradient boosting-based

classifier that achieves robust DDI prediction even for drugs whose interaction profiles are

completely unseen during training. We demonstrate that in addition to classification power

—including the prediction of 432 novel DDIs—our genetic interaction approach offers

interpretability by providing plausible mechanistic insights into the mode of action of DDIs.

Author summary

Adverse drug-drug interactions are adverse side effects caused by taking two or more

drugs together. As co-prescription of multiple drugs becomes an increasingly prevalent

practice, affecting 42.2% of Americans over 65 years old, adverse drug-drug interactions

have become a serious safety concern, accounting for over 74,000 emergency room visits

and 195,000 hospitalizations each year in the United States alone. Since experimental

determination of adverse drug-drug interactions is labor-intensive and time-consuming,

various machine learning-based computational approaches have been developed for pre-

dicting drug-drug interactions. Considering the fact that drugs effect through binding and

modulating the function of their targets, we have explored whether drug-drug interactions

can be predicted from the genetic interaction between the gene targets of two drugs,

which characterizes the unexpected fitness effect when two genes are simultaneously

knocked out. Furthermore, we have built a fast and robust classifier that achieves accurate
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prediction of adverse drug-drug interactions by incorporating genetic interaction and sev-

eral other types of widely used features. Our analyses suggest that genetic interaction is an

important feature for our prediction model, and that it provides mechanistic insight into

the mode of action of drugs leading to drug-drug interactions.

Introduction

Drug-drug interactions (DDIs) refer to the unexpected pharmacologic or clinical responses

due to the co-administration of two or more drugs [1]. With the simultaneous use of multiple

drugs becoming increasingly prevalent, DDIs have emerged as a severe patient safety concern

over recent years [2]. According to The Center for Disease Control and Prevention (CDC), the

percentage of Americans taking three or more prescription drugs in the past 30 days increased

from 11.8% in 1988–1994 to 21.5% in 2011–2014, and the occurrence of polypharmacy,

defined as the concurrent use of five or more drugs, increased from 4.0% to 10.9% within the

same time period [3,4]. Polypharmacy is especially common among elderly people, affecting

42.2% of Americans aged 65 years and older, exposing them to a higher risk of adverse DDIs.

Indeed, DDIs were estimated to be responsible for 4.8% of hospitalization in the elderly, a

8.4-fold increase compared to the general population [5]. Overall, DDIs contribute to up to

30% of all adverse drug events (ADEs) [6] and account for about 74,000 emergency room visits

and 195,000 hospitalizations each year in the United States alone [3]. Therefore, it has become

a medical imperative to identify and predict interacting drug pairs that lead to adverse effects.

In order to facilitate identification of interacting drug pairs, a number of in vitro and in vivo
methods have been developed. For example, drug pharmacokinetic parameters and drug

metabolism information collected from in vitro pharmacology experiments and in vivo clinical

trials can be used to predict interacting drug pairs [7,8]. However, these methods are labor-

intensive and time-consuming, and are thus not scalable to all unannotated drug pairs [9]. In

the past decade, machine learning-based in silico approaches have become a new direction for

predicting DDIs by leveraging the large amount of biological and phenotypic data of drugs

available. The advantage of machine learning-based approaches lies in their ability to perform

large-scale DDI prediction in a short time frame. So far, various features have been explored

for building DDI prediction models, including similarity-based features and network-based

features, among others. Similarity-based features characterize the similarity of the two drugs at

question in terms of chemical structure, side effect profile, indication, target sequence, target

docking, ATC group, etc. [10–24]. Network-based features exploit the topological properties

of the drug-drug interaction network or the protein-protein interaction network, which relates

to DDIs through drug-target associations [16,25–27]. While these methods have yielded

important information about DDIs, few methods to date have been able to provide insight

into the molecular mechanisms of drug-drug interactions.

To this end, in this study, we employ the genetic interaction between genes that encode the

targets of two drugs as a novel feature for predicting interacting drug pairs that cause adverse

drug reactions. We show that targets of adversely interacting drugs tend to have more syner-

gistic genetic interactions than targets of non-interacting drugs. Exploiting this finding, we

apply a machine learning framework (S1 Fig) and build a gradient boosting-based classifier

for adverse DDI prediction by integrating genetic interaction and three widely used features–

indication similarity, side effect similarity and target similarity. We show that our model pro-

vides accurate DDI prediction even for pairs of drugs whose interaction profiles are completely

unseen during training. Furthermore, we find that excluding the genetic interaction features
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significantly decreases the performance of our model. Through genetic interactions, our

method provides insight into the mode of action of drugs that lead to adverse combinatory

effects.

Results

Genetic interaction profiles provide complementary information for

distinguishing interacting and non-interacting drugs

In order to explore the separating power of various features to distinguish adversely interacting

drug pairs from non-interacting drug pairs, we constructed a high-confidence set of adversely

interacting drug pairs from all DDIs labeled “the risk or severity of adverse effects can be

increased” in DrugBank [28] (S1 Table). This resulted in a set of 117,045 adversely interacting

drug pairs involving 2,261 drugs. 2,195,023 non-interacting drug pairs were generated by tak-

ing all other combinations of these drugs before removing any drug pair that has been reported

in DrugBank, TWOSIDES [29] or a complete dataset of DDIs compiled from a variety of

sources [30]. Furthermore, we required that all features, including indication similarity, side

effect similarity, target sequence similarity and genetic interaction, should be available for each

drug pair. After this filtering step, 1,113 adversely interacting drug pairs and 11,313 non-inter-

acting drug pairs involving 262 drugs remained.

Interacting and non-interacting drug pairs exhibit different distributions in terms of the

four groups of properties that we investigated. Indications and side effects of drugs were

mapped to four levels of the MedDRA hierarchy [31] (Fig 1A). At every level, adversely inter-

acting drugs are associated with significantly more similar side effects as well as indications

than non-interacting drugs (Fig 1B and 1C, S2A and S2B Fig, S2 Table). On another front,

target similarity was calculated by aligning the sequences of the protein targets with the Smith-

Waterman algorithm [32]. Since a drug may have multiple protein targets, aggregation was

performed by taking the minimum, mean, median or maximum alignment score for each

drug pair (Fig 1D). As expected, the maximum, mean and median target similarity between

targets of adversely interacting drug pairs are significantly higher than those of non-interacting

drug pairs (Fig 1E, S2 Table). Interestingly, interacting drug pairs manifest a significantly

lower minimum target similarity than non-interacting drug pairs (Fig 1E, S2 Table). This

could be due to the fact that interacting drugs possess a higher number of protein targets com-

bined, thereby having a higher chance of targeting vastly different targets (S3A Fig). These

results establish indication similarity, side effect similarity and target similarity as informative

predictors of adverse DDIs.

Genetic interaction refers to deviation from the expected phenotype when two genes are

simultaneously mutated [33]. In short, the genetic interaction score quantifies the extent to

which the fitness of a double mutant carrying mutations on two genes deviates from what is

expected from the fitness defects of the corresponding single mutants. A negative score indi-

cates synergistic genetic interaction, where the double mutant exhibits a fitness defect that is

more extreme than expected from single mutants, while a positive score suggests buffering

genetic interaction, where the double mutant exhibits a greater fitness than expected [34].

Since binding of drugs modulates the function of their targets, the genetic interaction between

protein targets of two drugs might be associated with their joint effects. On this account, we

investigated whether targets of adversely interacting drugs and targets of non-interacting

drugs display divergent genetic interaction profiles. For each pair of drugs, we mapped their

protein targets to the corresponding yeast homologs and obtained genetic interaction scores

between the yeast genes from a global yeast genetic interaction network [35]. When the mini-

mum, mean, median or maximum genetic interaction score was taken for targets of each drug

Adverse drug-drug interaction prediction
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pair, adversely interacting drugs showed significantly lower scores than non-interacting drugs

irrespective of the aggregation function applied (Fig 1F, S2C Fig). This trend can be recapitu-

lated using two recently published human genetic interaction datasets (S3B and S3C Fig). Fur-

thermore, genetic interaction provides complementary information that is not captured by

target similarity, indication similarity, or side effect similarity, as seen from their poor correla-

tion (S4 Fig). Therefore, genetic interaction profiles of drug targets provide new information

as a predictor of adverse DDIs.

Building a machine learning model for predicting adverse DDIs

To divide drug pairs into a training set and a test set for building a machine learning model,

most previous studies randomly split their data with a specified ratio [10,16,17,19,22,23,36,37],

without considering the fact that drugs appearing in both sets may carry extra information

about their interaction propensity. Considering the scenario of predicting interactions of

drugs without prior information about their interaction profiles, this splitting scheme becomes

inappropriate. To address this problem, we draw on a method that partitions drug pairs based

on drugs [14,20,21]. All drugs in our constructed dataset were randomly split into “training

drugs” and “test drugs” with a ratio of 2:1. The training set consists of all drug pairs where

both drugs are “training drugs” and the test set comprises all drug pairs where both drugs are

“test drugs” (Fig 2A). As a result, 475 interacting drug pairs and 4,802 non-interacting drug

pairs involving 175 drugs went into the training set; 131 interacting drug pairs and 1,322 non-

interacting drug pairs involving 87 drugs went into the test set.

Fig 1. Adversely interacting drug pairs and non-interacting drug pairs significantly differ with regard to the 11 features selected. (a) Schematics of

calculating indication similarity and side effect similarity features. (b) Indication similarity score of hierarchy level PT, HLGT and SOC between two drugs. (c)

Side effect similarity score of hierarchy level HLT and HLGT between two drugs. (d) Schematics of calculating target sequence similarity and genetic

interaction features. Genetic interaction scores indicate the deviation from the expected phenotype when two genes are simultaneously knocked out, and were

obtained from a global genetic interaction network in yeast by mapping targets of drugs to their yeast homologs. A negative score denotes synergistic

interaction while a positive score indicates buffering interaction. (e) Minimum, mean, median and maximum target sequence similarity score between targets

of two drugs. (f) Minimum and maximum genetic interaction score between targets of two drugs. Statistical significance was determined by the two-sided

permutation test on the sample mean. PT, preferred term; HLT, high level term; HLGT, high level group term; SOC, system organ class. � p< 0.001; ��

p< 0.0001; ��� p< 0.00001.

https://doi.org/10.1371/journal.pcbi.1007068.g001
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To build a more interpretable model and speed up the training process, we applied a feature

selection method known as group minimax concave penalty (MCP) [38] that has been previ-

ously employed on biological datasets [39]. This resulted in a final group of 11 features whose

value distributions were all significantly different between adversely interacting drugs and

non-interacting drugs (Fig 1B, 1E and 1F). An extreme gradient boosting (XGBoost) classifier

[40] was then built because of its speed and outstanding performance in data science competi-

tions. We optimized hyperparameters of the classifier using the tree-structured Parzen Estima-

tor (TPE) approach [41], which has been shown to drastically improve the performance in a

recent study predicting protein-protein interaction interfaces [42]. Notably, instead of doing

cross-validation, we adopted the same drug-based splitting scheme on the training set for

hold-out validation (Fig 2A). This enables the model to be best tuned for predicting interact-

ing drug pairs without any prior information about the interaction profiles of the drugs

involved. Indeed, a previous report by Liu et al. showed that classifier performance dropped

significantly when evaluated on a test set consisted of pairs of drugs completely unseen in the

training set if conventional cross-validation was performed [21], and this flaw in the generaliz-

ability of cross-validation performance has been shown to be true in general for pair-input

data [43]. Our novel training strategy resulted in an average area under the receiver operating

characteristic curve (AUROC) of 0.727 and an average area under the precision-recall curve

Fig 2. The train-test splitting scheme and model performance on the test set. (a) The train-test splitting scheme. Drugs are randomly divided into “training

drugs” and “test drugs” with ratio of 2:1. Training set only consists of drug pairs constituted by “training drugs” and test set only consists of drug pairs

constituted by “test drugs”. Training drugs are further split into “training drugsi” and “validation drugsi” with the same splitting scheme to obtain training seti

and validation seti in the training phase. For each iteration of hold-out validation, the classifier is fit with training seti and evaluated with validation seti. Purple

squares represent non-interacting drug pairs in training seti. Blue squares represent non-interacting drug pairs in validation seti. Green squares represent non-

interacting drug pairs in test set. Red squares represent interacting drug pairs in each set. Grey squares represent unused drug pairs. (b) Approximate receiver

operating characteristic (ROC) curves on the training set. (c) Approximate precision-recall curves on the training set. (d) AUROCs and AUPRs on the training

set and the test set. (e) Receiver operating characteristic (ROC) curve on the test set. (f) Precision-recall curve on the test set.

https://doi.org/10.1371/journal.pcbi.1007068.g002
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(AUPR) of 0.326 over 1,000 trials of hold-out validation on the training set (Fig 2B–2D).

When evaluated on the test set, our classifier achieved an AUROC of 0.689 (Fig 2D and 2E)

and an AUPR of 0.280 (Fig 2D and 2F), demonstrating the robustness of our model. As

shown in Table 1, our classifier attained a precision of 100% on the top 10 predictions, and a

precision of 65% on the top 20 predictions (Table 1). Since there is no gold-standard set of

non-interacting drugs, it is plausible that our non-interacting drug pairs might actually contain

adverse DDIs. Not surprisingly, some non-interacting drug pairs with the high predicted prob-

abilities can be found with evidence supporting their possible adverse interactions. For exam-

ple, the drug pair with a non-interacting label with the highest predicted interacting

probability in the test set, liothyronine and tretinoin, has been indicated to potentially cause

intracranial pressure increase and a higher risk of pseudotumor cerebri when taken together

[44]. Furthermore, diazoxide and spironolactone, predicted with an interacting probability of

0.846, have been reported to induce asthma, cardice hypertrophy and pulmonary edema

according to FDA reports when co-administrated [45].

In order to showcase the competitiveness of the XGBoost algorithm, we implemented a

number of alternative classification algorithms including support vector machine (SVM), ran-

dom forest and the standard gradient boosting algorithm and performed the same prediction

task using exactly the same dataset and features. We found that XGBoost achieved better or

comparable performance than the other algorithms (S3 Table). Furthermore, XGBoost is sub-

stantially faster than its closest contenders in terms of performance, gradient boosting and ran-

dom forest. These results highlight the advantage of XGBoost over other algorithms in both

predictive performance and speed. To further demonstrate the efficacy of our method, we

compared it against a previously published similarity-based method for DDI prediction [18]

using our training and test sets. Our method exhibited a substantial advantage both in training

and on the test set (S3 Table).

Table 1. Top 20 DDI predictions in the test set.

ID1 ID2 Drug Name1 Drug Name2 Label Probability

1 DB01076 DB01098 Atorvastatin Rosuvastatin 1 0.9943

2 DB01076 DB01095 Atorvastatin Fluvastatin 1 0.9938

3 DB00381 DB00421 Amlodipine Spironolactone 1 0.9889

4 DB00880 DB00887 Chlorothiazide Bumetanide 1 0.9704

5 DB00313 DB01356 Valproic Acid Lithium cation 1 0.9614

6 DB00887 DB00999 Bumetanide Hydrochlorothiazide 1 0.9463

7 DB00880 DB01119 Chlorothiazide Diazoxide 1 0.8835

8 DB00421 DB01076 Spironolactone Atorvastatin 1 0.8815

9 DB00421 DB00622 Spironolactone Nicardipine 1 0.8753

10 DB00999 DB01119 Hydrochlorothiazide Diazoxide 1 0.8723

11 DB00279 DB00755 Liothyronine Tretinoin 0 0.8677

12 DB00162 DB00755 Vitamin A Tretinoin 1 0.861

13 DB00477 DB01098 Chlorpromazine Rosuvastatin 0 0.8601

14 DB00421 DB01119 Spironolactone Diazoxide 0 0.8457

15 DB00313 DB00523 Valproic Acid Alitretinoin 0 0.8419

16 DB05015 DB06176 Belinostat Romidepsin 0 0.8378

17 DB01065 DB01069 Melatonin Promethazine 1 0.8342

18 DB00622 DB01076 Nicardipine Atorvastatin 1 0.7995

19 DB00755 DB00900 Tretinoin Didanosine 0 0.7962

20 DB00162 DB01212 Vitamin A Ceftriaxone 0 0.7858

https://doi.org/10.1371/journal.pcbi.1007068.t001
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To demonstrate the utility of our method, we obtained 5,039 drug pairs involving 295 drugs

that had not been used for training and testing (S6 Fig). After refitting our model on all 12,426

drug pairs that were used to develop our method, we predicted 432 novel DDIs (S4 Table).

Remarkably, out of the top 20 newly predicted adversely interacting drug pairs, 9 can be veri-

fied in the TWOSIDES database (Table 2), manifesting the reliability of our method.

Genetic interaction provides mechanistic insight into drug-drug

interactions

We investigated the contribution of genetic interaction features to classifier performance by

building and tuning a new model without them. Excluding genetic interaction features signifi-

cantly decreases classifier performance when either AUROC or AUPR is examined (P< 10−20

for both AUROC and AUPR, two-sided Welch’s t-test). More interestingly, the performance

drop is not as profound when other groups of features are excluded (Fig 2B–2D). Further-

more, prediction with genetic interaction features alone rendered significantly better perfor-

mance than prediction with target similarity features alone (P< 10−20 for both AUROC and

AUPR, two-sided Welch’s t-test, S3 Table). These results establish genetic interaction as an

important feature in our model for predicting DDIs, providing complementary information

that other features cannot capture.

More importantly, genetic interaction can help us generate plausible mechanistic explana-

tions for drug-drug interactions. For example, mesalazine and dexamethasone, both of which

are anti-inflammatory drugs, are a pair of drugs in the test set that have been labeled as

adversely interacting. Mesalazine can target the IKBKB protein, whereas dexamethasone can

target NOS2, which plays important roles in nitric oxide signaling. In yeast, double knockout

of ATG1 and TAH18, the respective yeast homologs of IKBKB and NOS2, exhibits a more neg-

ative impact on cell viability than expected from single knockout phenotypes [35]. In human,

Table 2. Top 20 new adverse DDI predictions.

ID1 ID2 Drug Name1 Drug Name2 Probability In Twosides

1 DB00347 DB01189 Trimethadione Desflurane 0.975 No

2 DB00136 DB00630 Calcitriol Alendronic acid 0.9739 Yes

3 DB00417 DB01050 Phenoxymethylpenicillin Ibuprofen 0.9699 Yes

4 DB00228 DB00347 Enflurane Trimethadione 0.968 No

5 DB00347 DB00753 Trimethadione Isoflurane 0.9668 No

6 DB00347 DB01236 Trimethadione Sevoflurane 0.9656 No

7 DB00887 DB01586 Bumetanide Ursodeoxycholic acid 0.9567 Yes

8 DB00532 DB01189 Mephenytoin Desflurane 0.9531 No

9 DB00532 DB01236 Mephenytoin Sevoflurane 0.9521 No

10 DB00228 DB00532 Enflurane Mephenytoin 0.9466 No

11 DB01067 DB01083 Glipizide Orlistat 0.9456 Yes

12 DB00731 DB01016 Nateglinide Glyburide 0.943 Yes

13 DB01050 DB01053 Ibuprofen Benzylpenicillin 0.9422 No

14 DB00532 DB00753 Mephenytoin Isoflurane 0.9368 No

15 DB00421 DB01216 Spironolactone Finasteride 0.9333 Yes

16 DB00162 DB00165 Vitamin A Pyridoxine 0.926 No

17 DB01236 DB04930 Sevoflurane Permethrin 0.925 No

18 DB00284 DB00731 Acarbose Nateglinide 0.9199 Yes

19 DB00136 DB00273 Calcitriol Topiramate 0.9132 Yes

20 DB00877 DB01586 Sirolimus Ursodeoxycholic acid 0.9122 Yes

https://doi.org/10.1371/journal.pcbi.1007068.t002
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IKBKB can phosphorylate the NF-κB inhibitor and activate NF-κB [46], which is a family of

transcription factors involved in inflammation and immunity. Notably, the transcription of

NOS2 is induced by NF-κB activity [47]. Mesalazine has been shown to inhibit IKBKB, thereby

inhibiting the activation of NF-κB, while dexamethasone is a negative modulator of NOS2. A

previous study has reported that dexamethasone can decrease NOS2 translation and facilitate

NOS2 degradation in rat [48] (Fig 3A). The combined use of mesalazine and dexamethasone

may largely reduce the amount of NOS2, potentially affecting neurotransmission, antimicro-

bial and antitumoral activities.

As another example, arsenic trioxide and mexiletine are a pair of drugs not labelled as

adversely interacting in DrugBank, but predicted by our model to interact with high probabil-

ity. As a chemotherapy drug for acute promyelocytic leukemia (APL), arsenic trioxide has

been reported to decrease the activity of a serine/threonine-protein kinase AKT1 [49]. On the

other side, mexiletine is a sodium channel blocker that has also been used as part of a prophy-

lactic therapy to treat APL patients to reduce cardiac complications [50]. PKC1, the yeast

homolog of AKT1, exhibits strong synergistic interaction with CCH1 [35,51], which is the

homolog of SCN5A, the gene encoding the sodium channel NAv1.5 targeted by mexiletine. In

human, the transcription of SCN5A is repressed by FOXO1, whose transcriptional repression

activity is in turn inactivated by AKT1-dependent phosphorylation [52] (Fig 3B). Therefore,

the simultaneous inhibition of AKT1 and the sodium channel by the two drugs may reduce

sodium influx in cardiac cells to a greater extent, potentially causing undesired adverse effects.

Fig 3. Genetic interaction provides possible mechanistic insights into DDIs. (a) Mesalazine inhibits IKBKB, a positive regulator of NF-κB activity, and NF-

κB is a transcription factor which induces NOS2 transcription. Dexamethasone can inhibit the transcription of NOS2 and facilitate degradation of NOS2. The

combined use of dexamethasone and mesalazine could potentially reduce the amount of NOS2 in cells to a large extent, which may affect neurotransmission,

antimicrobial and antitumoral activities. (b) Mexiletine targets NAv1.5, a sodium channel encoded by SCN5A, while arsenic trioxide targets AKT1. The

transcription of SCN5A is repressed by the transcriptional repressor FOXO1. AKT1 can activate the transcription of SCN5A by phosphorylating FOXO1. The

combined use of mexiletine and arsenic trioxide could inactivate the transcription of SCN5A and at the same time block the existing sodium channel, which

may largely reduce sodium influx in cardiac cells.

https://doi.org/10.1371/journal.pcbi.1007068.g003
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Indeed, this pair of drugs is reported by TWOSIDES as interacting, providing additional sup-

porting evidence to their adverse interaction.

Discussion

In the past decade, many methods have been developed for predicting DDIs based on various

types of features. In this study, we have incorporated a novel feature, namely genetic interac-

tion, to build a gradient boosting-based model for fast and accurate adverse DDI prediction.

We have shown that our classifier can robustly predict drug-drug interactions even for drugs

whose interaction profiles are completely unseen during training. Furthermore, we have pre-

dicted 432 novel DDIs, with additional evidence supporting our top predictions, demonstrat-

ing the usefulness of our approach.

Most previous efforts of predicting DDIs suffer from an inability to make predictions for

newly developed drugs due to train-test split based on drug pairs rather than drugs

[10,16,17,19,22,23,36,37]. Three studies attempted to address this problem by dividing the

entire dataset based on drugs [14,20,21]. However, they failed to do so during the training

phase, resulting in an inflated performance on the training set. We have followed the drug-

based train-test splitting scheme and have adopted a hold-out validation approach to avoid

using overlapping drug sets for fitting the model and evaluating its performance. By doing so,

we have achieved robust performance on the training set and the test set, which establishes the

ability of our method to predict new DDIs for drugs whose interaction profiles are completely

unknown.

By examining genetic interactions, our method provides mechanistic insights into how two

drugs may interact in a detrimental fashion. The combined modulatory effect resulted from

binding of two drugs to their respective targets might underlie adverse DDIs, and genetic

interaction gives valuable information about the nature of such combined effect. Indeed, we

have observed that genetic interaction features are indispensable to our classifier performance.

Notably, target sequence similarity features and genetic similarity features capture conceptu-

ally different mechanisms by which DDIs can occur. While the former can capture dosage

effects where two drugs target same or similar genes, as exemplified by prolonged QT interval

caused by concomitant administration of terfenadine and ketoconazole, both of which are

strong CYP3A4 inhibitors [53], the latter captures DDIs resulting from drug pairs targeting

genes with an epistatic relationship. For example, asthma patients receiving leukotriene-modi-

fying drugs often show attenuated response to β2-agonists, including albuterol. This drug-drug

interaction has been implicated to be associated with the epistasis between ALOX5AP and

LTA4H [54].

Nevertheless, our work is limited by the lack of a global human genetic interaction network.

As a surrogate for human genetic interactions, genetic interactions of yeast homologs were

used in this study. Fortunately, large-scale human genetic interaction studies are coming into

sight. Using a recently published dataset of human genetic interactions in K562 cells encom-

passing 222,784 gene pairs [55], we have found that the distribution of human genetic interac-

tion scores vary significantly between adversely interacting drugs and non-interacting drugs

(S3B Fig). Notably, the same trends could be recapitulated with a smaller dataset of genetic

interactions [56] in the HEK293T cell line, demonstrating the generalizability of genetic inter-

actions across different cell contexts (S3C Fig), although certain genetic interactions can exist

in a cell type-dependent manner. For example, interactions between cancer driver genes are

frequently specific to the cancer type [57]. In addition to DDI prediction, a similar machine

learning method leveraging genetic interaction features can potentially be developed for pre-

dicting beneficial drug combinations. Indeed, current combination therapy for cancers have
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typically been developed to induce synthetic lethal genetic interactions in cancer cells [58,59].

While there have been some efforts aimed at predicting synergistic drug effects [60,61] or

directly predicting drug combinations for disease therapy, especially cancer treatment [62–64],

incorporating cell type-specific genetic interaction data from the matching cell type can be

crucial for developing combination therapies that specifically target certain cell types. With the

continuous advancement of technologies for probing human genetic interactions including

CRISPR interference, we anticipate that more comprehensive maps of human genetic interac-

tions for multiple cell lineages will become available in the near future, which could illuminate

predictions of adverse DDIs and beneficial drug combinations to a larger extent.

Methods

Data collection

We obtained DDI data from DrugBank (version 5.0.10) [28]. Among the 5 major interaction

categories in DrugBank (S1 Table), we only considered the first category as they were clearly

defined as adverse DDIs. Non-interacting drug pairs were constructed by taking all other com-

binations using the same set of drugs, removing drug pairs also appearing in other categories

in DrugBank, TWOSIDES [29], or a complete dataset of DDIs [30] compiled from a number

of sources. This minimizes the chance of having actual adverse DDIs in the non-interacting set

given the absence of a gold standard set of non-interacting drug pairs. From DrugBank, we

also collected human protein targets of drugs and their sequences.

Side effects were obtained from SIDER 4.1 [65] and OFFSIDES [29]. Both databases use

UMLS concept IDs as their side effect identifiers. However, as reported by Zhang et al. [20],

some side effect terms are similar, and synonyms could cause biases when calculating side

effect similarity. To solve this problem, we obtained mapping from UMLS concept IDs to

MedDRA concept IDs from the 2017AB release of UMLS [66]. Furthermore, we obtained the

full MedDRA hierarchy from MedDRA (version 21.0) [31]. This allowed us to map UMLS

concept IDs to different levels (PT, HLT, HLGT and SOC) of the MedDRA hierarchy. Similar

to side effect data, indications of drugs were acquired from SIDER 4.1 [65] and mapped to the

same 4 levels of the MedDRA hierarchy.

For genetic interactions, we obtained yeast genetic interactions from Costanzo et al. [35].

We first filtered all genetic interactions by a p-value cutoff of 0.05 and aggregated the scores of

all combinations of alleles of each yeast gene pair by applying the arithmetic mean. Drug tar-

gets in the form of UniProt IDs were mapped to gene names by UniProt [67] and these human

genes were mapped to their yeast homologs via SGD YeastMine [68]. For human gene pairs

mapped to multiple yeast gene pairs, we obtained a single score for each human gene pair by

applying the arithmetic mean.

Feature extraction and the train-test split

For a drug pair (A,B), four groups of features were calculated (Fig 1A and 1D): indication sim-

ilarity scores between A and B, side effect similarity scores between A and B, target sequence

similarity scores between targets of drug A and targets of drug B, and genetic interaction scores

between targets of drug A and targets of drug B. Indications and side effects of drugs were

mapped to 4 different levels of the MedDRA hierarchy as described above. At each level, indi-

cation similarity was calculated by taking the Jaccard index between the respective indication

vectors of drug A and drug B (Fig 1A). Similarly, side effect similarity was calculated by apply-

ing the same measure on the side effect vectors at the 4 different MedDRA hierarchy levels

(Fig 1A). For genetic interactions, since each drug can have multiple targets, we obtained a sin-

gle score for each drug pair by aggregating the genetic interaction scores of all their
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corresponding target pairs using 4 different functions, namely taking the minimum, mean,

median or maximum (Fig 1D). Similarly, the same 4 functions were used for constructing tar-

get similarity features, which were calculated from the target sequences with the Smith-Water-

man algorithm using the scikit-bio Python library. The raw scores were normalized as

described in Bleakley et al. [69]. Overall, 16 features belonging to 4 feature groups were con-

structed. Only drug pairs with all features available were considered when building the

machine learning model. All drugs were randomly split into “training drugs” and “test drugs”

with a 2:1 ratio. The training set consisted of all drug pairs where both drugs were “training

drugs” and the test set consisted of all drug pairs where both drugs were “test drugs” (Fig 2A,

S5 Table). We constrained the fraction of adversely interacting drug pairs in the training set

and that in the test set to be fairly balanced. To obtain the optimal feature combination, we cal-

culated all features for the training set and applied group minimax concave penalty (MCP)

[38] with the ‘grpreg’ R package with default parameters. All subsequent training was done

using this optimal set of features.

Hyperparameter optimization and classifier training

The gradient boosting-based algorithm XGBoost [40] was used in this study. To find the best

combination of hyperparameters for the XGBoost classifier, the tree-structured Parzen estima-

tor (TPE) approach [41] was adopted. Because of the drug-based approach by which we split

our dataset into training and test sets, we applied the same splitting scheme on the training set

multiple times to obtain training seti and validation seti instead of simply using cross-valida-

tion. Each split on the training set can be seen as a hold-out validation, as we used training seti

to fit the model and validated model performance on validation seti. We selected one minus

the average AUPR of 50 trials of hold-out validation as the loss function to minimize for TPE,

and we ran TPE for 2,000 iterations to obtain set of hyperparameters that minimized the loss

function for our XGBoost classifier (S5 Fig). After finding the optimal set of hyperparameters,

we fit the model on the complete training data.

Model evaluation

Model performance on training set was evaluated by 1,000 runs of hold-out validation on the

training set. For each hold-out validation, we fitted the model on training seti and obtained

AUROC and AUPR. We averaged AUROC and AUPR over 1,000 runs of hold-out validation

as measurements of the performance of the model. Approximate ROC curve and precision-

recall curve (Fig 2B and 2C) were plotted by averaging the 1,000 ROC curves and 1,000 preci-

sion-recall curves respectively at every thousandth of a point on the x-axis. In order to evaluate

the ability of the classifier to identify drug-drug interactions between drugs whose interaction

profiles were completely unknown during training, the model was evaluated on the test set

which had no overlap with the training set in terms of the drugs involved. Predictions were

ranked according to their raw prediction scores to produce the ROC curve and the precision-

recall curve.

Making new predictions

To make novel adverse DDI predictions, we examined all combinations of drugs that appeared

in DrugBank, excluding drug pairs where both drugs were involved in the first category of

DDIs (S6 Fig), which we used for building the machine learning model. We then predicted

6,690 drug pairs involving 336 drugs for which all features could be calculated using the classi-

fier retrained on the whole dataset. The probability cutoff that produced the maximum
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averaged F1 score over 1,000 runs of hold-out validation on the training set was chosen for

determining new DDI predictions.

Supporting information

S1 Fig. Schematics of our DDI prediction framework. Four groups of features were calcu-

lated for each drug pair. Drug pairs were then divided into a training set and a test set. A gradi-

ent boosting-based model was built on the training set after feature selection. Model

performance was evaluated on the training set using hold-out validation and also on the test

set. We demonstrate the importance of our novel feature with a case study and provide novel

DDI predictions at the end.

(TIF)

S2 Fig. The distribution of adversely interacting drug pairs and non-interacting drug pairs

in terms of the 5 unused features. (a) Indication similarity score of hierarchy level HLT

between two drugs. (b) Side effect similarity score of hierarchy levels PT and SOC between two

drugs. (c) Mean and median genetic interaction score between targets of two drugs. Statistical

significance was determined by the two-sided permutation test on the sample mean. �

p< 0.001; �� p< 0.0001; ��� p< 0.00001.

(TIF)

S3 Fig. (a) The total number of protein targets between two drugs. (b) Minimum, mean,

median and maximum human K562 cell line genetic interaction score between targets of two

drugs. (Statistical significance determined by two-sided Mann-Whitney U test) (c) Minimum,

mean, median and maximum human HEK293T cell line genetic interaction score between tar-

gets of two drugs. (Statistical significance determined by two-sided Mann-Whitney U test).

(TIF)

S4 Fig. The correlation between genetic interaction features and other features.

(TIF)

S5 Fig. Values of hyperparameters of the XGBoost model over 2000 TPE iterations.

(TIF)

S6 Fig. Construction of a set of drug pairs used for new predictions. (a) All combinations

between drugs that appear in the first category in DrugBank and other drugs, as well as all pair-

wise combinations of drugs not in the first category, are taken for new predictions. Green

squares represent drug pairs used for building the classifier. Grey squares represent unused

drug pairs. Blue squares represent drug pairs used for new predictions. (b) Maximum target

similarity feature distribution of drug pairs used for model building (green triangular section

in (a)), drug pairs where one drug appears in the dataset used for model building (blue rectan-

gular section in (a)), and drug pairs where neither drug appears in the dataset used or model

building (blue triangular section in (a)).

(TIF)

S1 Table. Five main DDI categories in DrugBank.

(DOCX)

S2 Table. Summary statistics including mean, standard error of the mean and p-value of

each feature. Statistical significance was determined by the two-sided permutation test on the

sample mean.

(XLSX)
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S3 Table. Tab 1: Performance comparison of XGBoost with several other algorithms with

and without genetic interaction features. Tab 2: comparison of our method with Zhao and

Cheng, 2014. Tab 3: model performance using only genetic interaction features of target

sequence similarity features.

(XLSX)

S4 Table. A list of 432 new adverse DDI predictions.

(XLSX)

S5 Table. A list of all drug pairs in the training set and a list of all drug pairs in the test set.

(XLSX)

S6 Table. Side effects, indications, human gene targets and their yeast homolog of all drugs

that appear in the training set or the test set.

(XLSX)
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