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Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, 08036 Barcelona, Catalonia, Spain and
5Department of Medicine, Weill Cornell College of Medicine, NY 10021, USA

Received February 18, 2017; Revised April 18, 2017; Editorial Decision April 26, 2017; Accepted April 28, 2017

ABSTRACT

Integrative analysis of whole-genome/exome-
sequencing data has been challenging, especially
for the non-programming research community, as it
requires simultaneously managing a large number of
computational tools. Even computational biologists
find it unexpectedly difficult to reproduce results
from others or optimize their strategies in an end-
to-end workflow. We introduce Germline Mutation
Scoring Tool fOr Next-generation sEquencing data
(GeMSTONE), a cloud-based variant prioritization
tool with high-level customization and a compre-
hensive collection of bioinformatics tools and data
libraries (http://gemstone.yulab.org/). GeMSTONE
generates and readily accepts a shareable ‘recipe’
file for each run to either replicate previous results
or analyze new data with identical parameters and
provides a centralized workflow for prioritizing
germline mutations in human disease within a
streamlined workflow rather than a pool of program
executions.

INTRODUCTION

Next-generation sequencing (NGS) has significantly re-
duced the cost of obtaining genomic data for increasingly
large sample sizes (1), facilitating discovery of causal genes
and mutation candidates for various disorders (2), and
providing sizable genetic variant datasets (3). As a result,
the process of filtering, annotating and prioritizing vari-
ants from large-scale studies has grown in complexity and
computational burden. It has become increasingly difficult

to organize, maintain and standardize the variant analysis
workflows, increasing the time and monetary investment for
less computationally oriented biologists and labs. Some in-
tegrative frameworks (4–7) have been developed to enhance
the reproducibility and accessibility of NGS studies. This
same initiative inspired the framework for GeMSTONE:
recording all analysis metadata for reproducible computa-
tional experiments, specifically focusing on germline muta-
tion prioritization in human disease.

Although other platforms bring together different bioin-
formatics tools and allow users to schedule their analyzes
online, none of them are built with an emphasis on stream-
lined single-run scheduling and automatic fetching of the
necessary supplementary public data. Platforms like Galaxy
(4), for instance, allow the user to combine many differ-
ent tools from an impressive catalog, but require the user
to reformat their data depending on the particular input
format of the database or tool that they want to add to
their analysis. A major design goal in the development
of GeMSTONE is the ability to maximize customization
for studies in a streamlined workflow rather than a pool
of program executions. Within the GeMSTONE interface,
databases required by the user-selected tools are pre-loaded
and the user-input data will be automatically reformatted
to fit query requirements. Therefore, adding an extra layer
of analysis to any workflow requires minimal effort.

There is a large research community focusing on ge-
netic variation study relating to human disease (8–18). This
community often performs their analysis in-house rather
than using any of the currently available tools for variant
analysis. GeMSTONE facilitates the process of integrating
and assessing evidence for causal inferences while automat-
ing the whole workflow in a reproducible way. Through
its design GeMSTONE fills a significant gap in the on-
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line analysis landscape. GeMSTONE provides centralized
workflows: embedding key features of variant prioritization
for DNA sequencing data, focused on but not limited to
germline mutations, with a collection of current bioinfor-
matics tools and data libraries in a highly-customizable and
reproducible manner. In short, we created GeMSTONE to
organize, schedule, document and reproduce our variant
analysis workflows from a single interface.

We show that the GeMSTONE workflow is consistent
with consensus guidelines for interpreting sequence vari-
ants in human disease (19,20) (Supplementary Table S1).
A demo study is fully described and explained as it is de-
signed, scheduled and analyzed through the chained GeM-
STONE functionalities (http://gemstone.yulab.org/manual.
html); we also demonstrate its feasibility and efficiency in
a proof-of-concept case by recapitulating results of a pub-
lished variant analysis (9).

MATERIALS AND METHODS

GeMSTONE serves as an online variant prioritization
framework that leverages seven popular bioinformatics
suites [VT (21), VCFtools (22), BCFtools (23), SnpEff (24),
GEMINI (25), dbNSFP (26) and PLINK/SEQ (27)] in con-
nection to 46 meta-information and prediction resources
(Figure 1; Supplementary Table S2) to provide a smooth,
customizable workflow for variant analysis.

Users of the GeMSTONE web portal can customize their
analyzes of genomic data from Variant Call Format (VCF)
files by using tools from a range of different classes (Figure
1). These include (i) variant normalization for unified repre-
sentation of genetic variants using VT, (ii) variant/genotype
quality filters on matrices encoded in the VCF file such as
QUAL (Phred-scaled quality score), GQ (genotype qual-
ity), DP (read depth) and filter status using VCFtools,
(iii) variant type filters on variant consequence and tran-
script biotype based on SnpEff annotations, (iv) common
variant filter on allele frequency in the general popula-
tion [ExAC (28), 1000 Genomes (29), ESP6500 (30) and
TAGC (31)], (v) variant function filters on predicted dam-
aging effects [18 methods (e.g. Polyphen-2 (32), SIFT (33),
CADD (34)) complied in dbNSFP (Supplementary Table
S2), Rosetta ddG (35)] and protein domains [Pfam (36)],
and (vi) comprehensive annotations (and filters) on gene
and gene product attributes [Gene Ontology (37)], biolog-
ical pathways [KEGG (38), BioCarta (39) and Reactome
(40) complied in MSigDB (41)], human disease associa-
tion [HGMD (42), ClinVar (43), OMIM (44)] and mouse
model knockout phenotypes [MGI (45)], gene-based scores
on accumulated mutational damage [GDI (46)] and genic
intolerance [RVIS (47)], gene expression [GTEx (48), HPA
(49)], protein–protein interaction network [IntAct (50), Bi-
oGRID (51) and ConcesusPathDB (52) complied in db-
NSFP, and HINT (53)], and (vii) pathway enrichment anal-
ysis using a fisher exact test. Users may also choose to in-
clude supplementary files, such as a pedigree (PED) file for
co-segregation analysis, a list of genes for personalized an-
notation, or a second VCF file with a control cohort for ge-
netic association tests [BURDEN (27), Calpha (54), vt (55)
and SKAT (56) implemented in PLINK/SEQ]. All these

options come together to provide a holistic filtering, anno-
tation and prioritization pipeline (Figure 1).

The customized pipeline is then scheduled for process-
ing on a protected server, alleviating the user’s burden to
update software, parse data libraries, store large deriva-
tive files and dedicate processing time. The web server and
database server are running as virtual machines (VMs) on
shared physical infrastructure. Both the database and web
host VMs can be expanded or moved to an upgraded phys-
ical machine or granted more resources in their current de-
pending on demand, making the hardware setup easily scal-
able to more traffic. The average turnaround time is about
11 min for a 1MB VCF input file containing ∼13,800 vari-
ants under default settings, of which querying up to 18 in sil-
ico predictions takes a static 8 min searching through 76GB
dbNSFP database on all chromosomes. Although the pro-
cessing time will vary depending on the choice of options
and the number of concurrent users, GeMSTONE in gen-
eral can handle a single ∼500M VCF input per run within
1 day. Once the job is finished, the user can log into the
GeMSTONE portal to interact with the completed work-
flow by selectively downloading step-by-step snapshots of
their workflow, interactively visualizing their variant statis-
tics and downloading their recipe (JSON) file, which can be
uploaded or shared to replicate or modify the same work-
flow.

An essential design to reinforce GeMSTONE’s repro-
ducibility function and to ensure the sustainability of our
web tool is our rigorous versioning system. We keep in our
system static versions of all the external resources, where
all the tools and datasets that we use for GeMSTONE are
loaded onto our server so that it does not go to any exter-
nal program or server when running. Thus we are able to
ensure backward compatibility as we add updated versions
of software or new tools. GeMSTONE records the versions
of each tool and database used in a job in the recipe file and
if users submit a recipe whose workflow uses older software
or datasets, they will be prompted on the fly asking whether
they want to use the legacy version or the latest version of
the resources. GeMSTONE also records the versions in a
human-readable summary file for easy access and reference.

One important function for germline mutation prioriti-
zation in human disease is GeMSTONE’s co-segregation
analysis, which provides six common inheritance models
(autosomal dominant, autosomal recessive, recessive com-
pound heterozygous (via GEMINI (25)), X-linked dom-
inant, X-linked recessive and Y-linked dominant) based
on the user-defined pedigree structure in PED file. GeM-
STONE screens sample genotypes (using BCFtools (23)) in
each family and seeks for variants that are co-segregating
with disease status under selected mode of inheritance. Ad-
ditionally, a recurrence filter constrains the degree to which
co-segregation events are allowed across multiple families
and the prevalence of the variants in sporadic samples. We
found this option to be seldom implemented by previous
web tools yet often recommended by American College of
Medical Genetics and Genomics (ACMG) and Association
for Molecular Pathology (AMP) (20). The benefits of this
analysis are many-fold: (i) increasing segregation data in
families or (ii) high mutation frequency affecting multiple
sporadic cases suggests stronger evidence for pathogenicity;

http://gemstone.yulab.org/manual.html
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Figure 1. GeMSTONE pipeline overview. The schematic represents the GeMSTONE’s central analysis pipeline. The fundamental backbone filter cascade
can be seen in blue, prioritizing rare and putatively damaging variants and genes. Different libraries are grouped in orange, used in annotation or filtering
steps throughout the workflow as indicated.

(iii) whereas a upper limit of such recurrence can help elim-
inate potential false positives in large samples. This process
of user-driven development by which GeMSTONE morphs
to the community’s needs is the key behind GeMSTONE’s
ability to grow as a knowledge bank with a robust and up-
dated set of functionalities. Small but necessary prioritiz-
ing steps like these, now explicitly documented in the GeM-

STONE summary and recipe files, can become an active
component of study replication.

Another supporting evidence for disease association
comes from in silico predictions of variant functional effects.
Predictions from different algorithms are considered as a
single piece of evidence in sequence interpretation in part
due to the underlying similarities in the basis in these soft-
ware suites (19,20). GeMSTONE’s variant functional pre-
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diction step allows the user to choose up to 19 different in
silico predictors (Supplementary Table S2) with customiz-
able thresholds. More dedicatedly, a ‘global deleteriousness
filter’ allows users to set a threshold on the number of se-
lected predictors needed for a variant to pass the filter. This
set of filters is useful in that it allows users to adjust the strin-
gency of each algorithm while balancing and investigating
any inconsistency among different predictions. The avail-
ability of these filters and annotations also provide an envi-
ronment in which users can choose predictive metrics solely
based on their relative merit rather than the programming
investment that it would take to install, query and customize
them for a study.

Most options within the GeMSTONE workflow can
serve dual purposes, acting as either filters or annotations.
For the ‘global deleteriousness filter’ mentioned above, the
count of deleterious predictions and their individual scores
will be annotated next to each variant, providing informa-
tion that can be used for variant prioritization without be-
ing part of any filter. We also provide the option to com-
bine information across libraries, for example, we allow for
known disease gene annotation on candidates to be supple-
mented with their interaction partners as reported in other
databases, asking whether those interactors were previously
implicated in the disease of interest. This distribution and
coverage of tools (Figure 1) have never been collected and
connected in a centralized workflow before.

By maintaining an updated set of bioinformatics tools for
variant analysis, GeMSTONE decreases the barrier to en-
try, for less computationally oriented research groups and
establishes a central bioinformatics hub for researchers who
study sequence variants implicated in severe familial dis-
eases as well as rare, large-effect risk variants in complex
disease. The options offered by the web interface also serve
as a way for users to explore and learn about new tools and
data sources while providing developers with an overview of
the current variant analysis landscape to fill any gaps in the
current tool-space. New tools can be easily added to GeM-
STONE and presented to the community through the web
interface, removing platform-specific barriers.

RESULTS

As an example of a GeMSTONE use case, we replicated a
published analysis of rare pathogenic variants in new pre-
disposition genes for familial colorectal cancer (CRC) (9).
A side-by-side demonstration of the study’s workflow and
GeMSTONE’s reimplementation using the same dataset
and prioritization criteria is shown in Figure 2. The orig-
inal analyzes were conducted in two sequences of priori-
tization, progressively looking for predisposing mutations
with stronger evidence for causality to CRC as they under-
went increasingly stringent criteria (lower allele frequency
in general populations; rarer presence among the affected
samples; more deleterious molecular impact by in silico
predictions; more interesting biological functions of the
genes and their protein product, e.g. domains and inter-
actions) (9). While formerly requiring in-house scripting
for co-segregation analysis, in silico analysis and a series
of gene function annotations querying and parsing several
databases, the entirety of each sequence of prioritization

pipeline can be performed with a single run through our
interactive, lightweight web form using GeMSTONE.

Perhaps the most convenient feature within GeMSTONE
is its recipe file generator. The recipe file from any given run
can be shared and readily uploaded to our site to modify any
part of the filtering and annotation pipeline for more strin-
gent prioritization in a follow-up run. Once uploaded, the
recipe file (JSON) will populate the web form dynamically,
giving the user the ability to modify the run using the same
interface that created it. In our CRC case, we lowered the
upper-bound of allele frequency filter from 0.5% to 0.1% [in
1000 Genomes (29) and ESP6500 (30)] and recurrence filter
from 9 to 4, requiring variants to be present in ≤4 individ-
uals in our dataset. Next, we increased the lower-bound of
deleteriousness filter from 4 to 5 without changing the user-
defined deleterious thresholds of any single predictor [Phy-
loP (33) score >0.85, SIFT (57) score <0.05, PolyPhen-2
(32) score >0.85, GERP++ (58) score >2, Mutation Taster
(59) score >0.5 and LRT (60) score >0.9]. Finally, we added
variant and gene annotations with interesting gene func-
tion, interactions and locations in protein domains. This
workflow leverages a variety of public databases, including
Gene Ontology (37), KEGG (38), Reactome (40), HINT
(53), Pfam (36) and HGMD (42), as well as a complemen-
tary list of cancer terms collected by the authors. This mod-
ified workflow was automatically recorded in a JSON recipe
file and packaged with corresponding results and interme-
diate output files. Through the above two automated runs,
GeMSTONE recapitulated every step of the original priori-
tization workflow. A total of 27 out of 28 candidate variants
were identified (the missing variant was filtered out due to
slightly higher allele frequency in a sub-population database
from 1000 Genomes), as well as all hereditary CRC and
CRC Genome-wide Association Study (GWAS) variants
(9) (Figure 2).

DISCUSSION

GeMSTONE provides a code-free portal for variant filter-
ing, annotation and prioritization, which not only helps
standardize genetic variation analyzes (Supplementary Ta-
ble S1) but also offers the means to replicate and share
computational protocols easily. From a user’s perspective,
GeMSTONE is a reliable one-stop shop for variant anal-
ysis where they can find a collection of tools spanning
a broad range of applications through an intuitive, uni-
fied user interface subsuming all general-purpose workflows
from comparable toolkits (Figure 3).

Although currently most of other variant prioritization
tools accept VCF and pedigree files as inputs and can per-
form routine filtering on quality control and variant con-
sequence (Figure 3A), GeMSTONE stands out as a more
powerful tool by including annotations at the variant, gene,
pathway and network level (Figure 3B) and co-segregation
analysis using different inheritance models for potential
germline mutation prioritization (Figure 3C). We consider
certain features in GeMSTONE to be ‘more powerful’ in
the aspect of comprehensiveness or/and flexibility: GeM-
STONE often provides more comprehensive options for fil-
tering and annotation linking to external resources than
others and most of the GeMSTONE options flexibly allow
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Figure 2. Recapitulation of a published colorectal cancer (CRC) study. As a proof-of-concept case study, GeMSTONE recapitulated every step in the
original Colorectal-cancer prioritization workflow1, rescuing 27 out of 28 candidate variants from the ∼30,000 variants in the raw whole exome sequencing
dataset and hitting all hereditary CRC and CRC GWAS variants.
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Figure 3. Heatmap comparison of GeMSTONE and other variant prioritization tools. This heatmap compares with other tools that have similar objectives
on the aspects of (A) raw data inputs and prioritization, (B) knowledge-based annotation from external data resources and libraries, (C) inheritance models
for co-segregation analysis and (D) strategy of reproducibility. Each row represents a different tool, while each column represents a specific feature. Dark
blue indicates that a tool has similar capacity for a specific function while light blue indicates that a tool has a similar feature but with less powerful
functionality than GeMSTONE (see Discussion).

for annotation or filtering, or both. See detailed reasons in
Supplementary Table S3.

A keystone of GeMSTONE is the recipe file (Figure 3D),
which records all workflow parameters in a single file that
can be shared and uploaded onto the site to reproduce a
previous run. The recipe file can be used to (i) replicate re-
sults by rerunning the same workflow on the same dataset,
(ii) process new data with a known workflow or (iii) modify
parameters in a known workflow to evaluate study design.
This approach has the potential to bring more transparency
and openness to the bioinformatics community by enhanc-
ing the reproducibility of large-scale genomic studies.

CONCLUSIONS

GeMSTONE allows for accessible, collaborative, replica-
ble and holistic analysis of genetic variants. First, it seam-
lessly knits together filters and annotations through differ-
ent tools with either stringent, study-specific parameters
or general best-practice settings. Second, it eliminates the
time and space burdens associated with modern variant
analysis tools, saving users dozens of gigabytes of poten-
tial disk space per run for the same workflow on a medium-
sized dataset. Third, it significantly lowers the barrier to en-
try for traditional biologists by eliminating the installation
and scripting sinkholes that may dissuade researchers from
pursuing large-scale analysis or trying new tools. Fourth,
it provides a readable, shareable log––both programmatic
and human––to allow other researchers to understand and
replicate study results given the same starting data. Finally,
GeMSTONE encourages the growth of the genomics re-
search community by maintaining and updating a bank
of best-practice bioinformatics methods and tools. We ex-
pect our GeMSTONE will greatly aid in automating the

(re)analysis of genome-wide genetic variation data and en-
hance the reproducibility of large-scale genomic studies.
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