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Abstract

Understanding the functional relevance of DNA variants is essential for all exome and genome sequencing projects.
However, current mutagenesis cloning protocols require Sanger sequencing, and thus are prohibitively costly and labor-
intensive. We describe a massively-parallel site-directed mutagenesis approach, ‘‘Clone-seq’’, leveraging next-generation
sequencing to rapidly and cost-effectively generate a large number of mutant alleles. Using Clone-seq, we further develop a
comparative interactome-scanning pipeline integrating high-throughput GFP, yeast two-hybrid (Y2H), and mass
spectrometry assays to systematically evaluate the functional impact of mutations on protein stability and interactions.
We use this pipeline to show that disease mutations on protein-protein interaction interfaces are significantly more likely
than those away from interfaces to disrupt corresponding interactions. We also find that mutation pairs with similar
molecular phenotypes in terms of both protein stability and interactions are significantly more likely to cause the same
disease than those with different molecular phenotypes, validating the in vivo biological relevance of our high-throughput
GFP and Y2H assays, and indicating that both assays can be used to determine candidate disease mutations in the future.
The general scheme of our experimental pipeline can be readily expanded to other types of interactome-mapping methods
to comprehensively evaluate the functional relevance of all DNA variants, including those in non-coding regions.
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Introduction

Owing to rapid advances in next-generation sequencing

technologies, tens of thousands of disease-associated mutations

[1] and millions of single nucleotide polymorphisms (SNPs) [2,3]

have been identified in the human population. With the large

number of ongoing whole-exome and whole-genome sequencing

projects [2,3], hundreds of thousands of new SNPs are now being

discovered every month. Hence, there is an urgent need to develop

high-throughput methods to sift through this deluge of sequence

data and rapidly determine the functional relevance of each

variant. Here, we focus on coding variants, firstly because trait-

and disease-associated SNPs are significantly over-represented in

nonsynonymous sites [4], and secondly because the vast majority

of disease-associated mutations identified to date reside within

coding regions [1]. We evaluate the functional impact of coding

variants by examining their effects on corresponding protein-

protein interactions, because most proteins carry out their

functions by interacting with other proteins [5].

Recent studies have begun to use large-scale protein interaction

networks to understand human diseases and their associated

mutations [5,6]. By integrating structural details with high-quality

protein networks, we created a 3D interactome network where the

interface for each interaction has been structurally resolved [7].

Using this 3D network, we demonstrated that in-frame disease

mutations (missense mutations and in-frame insertions/deletions)

are significantly enriched at the interaction interfaces of the

corresponding proteins [7]. Our results indicate that alteration of

specific interactions is very important for the pathogenesis of many

disease genes, highlighting the importance of 3D structural models
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of protein interactions in understanding the functional relevance of

coding variants. However, many important questions still remain

unanswered – for example, what fraction of protein-protein

interactions is altered by disease mutations to cause the

corresponding disorders? Furthermore, do structural details of

the interacting proteins, especially the position of the mutation

relative to the interaction interface, affect the ability of a given

disease mutation to alter a specific interaction?

To address these questions, we decided to focus on proteins with

known disease mutations that participate in interactions with

available co-crystal structures in the Protein Data Bank (PDB) [8].

To detect the alteration of the interactions by disease mutations, it

is necessary to first detect the interactions of the wild-type proteins

using an assay of choice. This turns out to be a major bottleneck

because all high-throughput interaction-detection assays have very

limited sensitivity [9,10]. Our assay of choice is Y2H because there

are over 16,000 human protein interactions detected by our

version of Y2H that can serve as the reference interactome for

comparison [11,12,13,14], the largest for any assay performed to

date (Figure S1). In total, there are 217 interactions detected by

our version of Y2H with available co-crystal structures; 51 of these

also have known missense disease mutations on corresponding

proteins in the Human Gene Mutation Database (HGMD) [1] and

the corresponding interactions for the wild-type proteins can be

detected in our experiments with strong Y2H-positive phenotypes

(Figure S2; Materials and Methods). Here, we focused on

missense mutations because they are intrinsically more likely to

generate interaction-specific disruptions [6]. We established a

high-throughput comparative interactome-scanning pipeline to

clone disease mutations and examine their molecular phenotypes

(Fig. 1). The methodologies established here can be readily

applied to any non-synonymous variant in the coding region,

including nonsense mutations.

Results

Clone-seq: A massively parallel site-directed mutagenesis
pipeline using next-generation sequencing

The first step of our pipeline is a massively parallel approach,

termed Clone-seq, designed to leverage the power of next-

generation sequencing to generate a large number of mutant

alleles using site-directed mutagenesis in a rapid and cost-effective

manner. Current protocols for site-directed mutagenesis require

picking individual colonies and sequencing each colony using

Sanger sequencing to identify the correct clone [15]. This standard

approach is both labor-intensive and expensive; therefore, it does

not scale up to genome-wide surveys. In Clone-seq, we put one

colony of each mutagenesis attempt into one pool (Fig. 1a; in

other words, each pool contains one and only one colony for each

desired mutation) and combine multiple pools through multiplex-

ing for one Illumina sequencing run [16]. Colonies for generating

different mutations of the same gene can be put into the same

pool, which can be easily distinguished computationally when

processing the sequencing results. This is true even for mutations

occurring at the same site (Fig. 2a, Text S1).

For the 51 selected interactions, we chose 27 disease-associated

mutations of residues at the interface (‘‘interface residue’’), 100

mutations in the rest of the interface domain (‘‘interface domain’’)

and 77 mutations away from the interface (‘‘away from the

interface’’; Fig. 3a,b). These interfaces were determined using

solvent accessible surface area calculations as previously described

[17,18] on 7,340 co-crystal structures (Materials and Meth-
ods). To set up our Clone-seq pipeline, we first started with 39

mutations from these 204 and picked 4 colonies for each mutation.

As a reference, we also pooled together all the wild-type alleles in

our human ORFeome library to be sequenced together with the 4

pools of the mutagenesis colonies. In total, there were 40.1 million

Illumina HiSeq 16100 bp reads for our Clone-seq samples (Text
S1) for an average of .2,5006 coverage on all desired mutation

sites. Therefore, our Clone-seq pipeline has the capacity to

generate .3,000 mutations in one full lane of a HiSeq run with

16100 bp reads, drastically improving the throughput and

decreasing overall sequencing costs by at least 10-fold (Text S1).

Fig. 2a presents a schematic of the criteria we use to determine

which clones contain the desired mutation and can be used for

subsequent steps. For example, in pool 1, all reads (ignoring

sequencing errors) confirm that genes I and II each contain the

desired mutation – T116A and G298T, respectively. For gene III,

we want to generate two separate clones with two separate

mutations – IIIA41T and IIIC194T. Since half the reads contain T41

(instead of A41) and the other half contain T194 (instead of C194),

and we normalize DNA concentrations across all samples, we can

infer that both mutant clones were generated successfully. In

contrast, for gene IV, we see that while half the reads contain

A511 (instead of G511), all the reads are wild-type at C74. Thus,

we infer that while the IVG511A clone is successfully generated, the

IVC74T clone is not. For gene V, although both mutant clones are

successfully generated, half the reads contain an additional

mutation, C436G. Since it is impossible to know which of the

two clones for V contains this unwanted mutation, neither clone is

usable. Similarly, we can determine mutant clones IT116A, IIIA41T,

IIIC194T, IVC74T, IVG511A, VT53G, and VG272A as usable clones in

pool n. Based on these criteria, we developed the S score

calculation and used it to determine successful mutagenesis

attempts (Materials and Methods). Out of 156 colonies for

39 mutations, 125 of them contain the desired mutations (S.0.8),

an overall 80% PCR-mutagenesis success rate. In fact, we were

able to pick correct clones for all 39 mutant alleles using only the

first two pools in Clone-seq. All 78 clones from the first two pools,

from which the correct ones were selected for use in subsequent

steps, were also Sanger sequenced for verification. 55 Clone-seq

positive results with S.0.8 were all confirmed and there is a clear

separation in the S scores between the successful and failed

mutagenesis attempts (Fig. 2b).

One major advantage of our Clone-seq pipeline is that it

allows us to carefully examine whether other unwanted

Author Summary

With rapid advances in sequencing technologies, tens of
millions of DNA variants have now been discovered in the
human population. However, there are currently no
experimental methods available for examining the impact
of DNA variants in a high-throughput fashion. As a result,
we have no functional data on the vast majority of these
variants, which is a major roadblock to generating novel
biological insights and developing new disease prevention
therapeutic strategies. To address this issue, we have
successfully developed the first massively-parallel site-
directed mutagenesis approach, Clone-seq, to leverage the
power of next-generation sequencing to generate a large
number of mutant alleles in a fast and cost-effective
manner. In conjunction with Clone-seq, we established a
high-throughput comparative interactome-scanning pipe-
line to experimentally elucidate the effect of variants on
protein stability and interactions. Additionally, Clone-seq
can be used to generate clones for all DNA variants,
including those in non-coding regions.

Cloning and Examining Molecular Phenotypes of Human Disease Mutations

PLOS Genetics | www.plosgenetics.org 2 December 2014 | Volume 10 | Issue 12 | e1004819



mutations have been inadvertently introduced during PCR-

mutagenesis in comparison with the corresponding wild-type

alleles, since we obtain reads spanning the entire gene. We

found that there are on average 4–5 unwanted mutations

introduced in each pool of 39 colonies. This corresponds to a

0.013% PCR error rate (Materials and Methods), in

agreement with previous studies [19]. The detection of

unwanted mutations, especially those distant from the muta-

tion of interest, is achieved in traditional site-directed

mutagenesis pipelines by Sanger sequencing through the gene

of interest. This is costly and labor-intensive, especially

because multiple sequencing runs are needed for one long

gene. However, since Clone-seq yields reads spanning the

entire gene, we were able to determine which of the generated

clones definitely do not have unwanted mutations in the full

length of their sequences as illustrated in Fig. 2a (Materials
and Methods), and we pick only these clones for subsequent

assays.

To further test our Clone-seq pipeline, we applied it to generate

clones for 113 SNPs on 66 genes from the recently published

Exome Sequencing Project dataset [3]. Using the same approach

as described above, we sequenced 4 colonies each for the 113

alleles of interest using one third of a 16100 bp MiSeq run. We

obtained 4.7 million reads for these 113 alleles. With a threshold of

S.0.8, we were able to determine that 370 out of the 452 colonies

(82%) contain the desired mutation, in perfect agreement with the

PCR-mutagenesis success rate obtained earlier. We were able to

choose colonies that contain only the desired mutation for all 113

alleles. Because the whole MiSeq run produced 17.7 million reads

and we only used 4.7 million for generating the 113 mutant clones,

Figure 1. Schematic of our comparative interactome-scanning pipeline. Our pipeline begins with Clone-seq (a), a massively-parallel low-cost
site-directed mutagenesis pipeline leveraging next-generation sequencing. This is followed by a high-throughput GFP assay (b) to determine protein
stability, and a high-throughput Y2H assay (c), along with SILAC-based mass spectrometry (d) to determine the impact of DNA coding variants on
protein interactions.
doi:10.1371/journal.pgen.1004819.g001
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Figure 2. Identifying usable clones from Clone-seq. (a) Schematic illustrating criteria used to determine which of the clones generated by our
Clone-seq pipeline are usable for further assays – green ticks indicate usable clones, while red crosses indicate clones that cannot be used. (b)
Variation of S across different mutagenesis attempts that either contain or do not contain the desired mutation as confirmed by Sanger sequencing.
doi:10.1371/journal.pgen.1004819.g002

Figure 3. Examples of disease mutations in different structural loci of protein-protein interactions and examples of our GFP assay
results. (a) Crystal structure (PDB id: 3W4U) depicting a D100Y mutation (on Hbb) at an interface residue and a F104L mutation in the interface
domain for the Hbb-Hbz interaction. (b) Crystal structure (PDB id: 1G3N) depicting a V31L mutation (on Cdkn2c) away from the Cdkn2c-Cdk6
interaction interface. (c) GFP assays that determine the stability of wild-type Rrm2b and the R41P and L317V mutations on Rrm2b that are at an
interface residue and away from the interface for the Rrm2b-Rrm2b interaction; GFP assays that determine the stability of wild-type Hprt1 and the
C206Y mutation on Hprt1 that is away from the interaction interface of Hprt-Hprt1. Empty vector was used as a negative control.
doi:10.1371/journal.pgen.1004819.g003
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the capacity of our Clone-seq pipeline using one full lane of a

16100 bp HiSeq run is estimated to be .3,000, exactly the same

as our previous assessment (Text S1).

Finally, we generated the remaining 165 disease mutations (of

the 204) and 717 other coding variants from the Exome

Sequencing Project and the Catalog of Somatic Mutations in

Cancer [20] using a full 16100 bp HiSeq run, including 40

mutations on a single gene – MLH1. Using 111.2 million reads

for these 882 alleles, we found that 2,958 of the 3,528 colonies

(84%) contain the desired mutation, again in excellent agree-

ment with our previously obtained PCR-mutagenesis success

rate. There was at least one colony with only the desired

mutation for all 882 alleles, including all 40 MLH1 mutations

(Table S1). Therefore, our Clone-seq pipeline can generate a

large number of mutations (.40) even for a single gene. In fact,

to generate even more mutations for one gene, we can

implement a two-round barcoding approach: generate groups

of 40 mutations and barcode them differently for one HiSeq run

(Figure S3). Ten such groups will enable us to generate ,400

mutations for a single gene (Text S1). Since the average

coverage of these 882 alleles is .3006, the capacity of our

Clone-seq pipeline using one full lane of a 16100 bp HiSeq run

is estimated to be .3,000, again in agreement with our previous

two estimates (Text S1).

Overall, our pipeline has been significantly optimized to make it

very efficient. We established a web tool (http://www.yulab.org/

Supp/MutPrimer) to design mutagenesis primers both individually

and in batch. MutPrimer can design ,1,000 primers for ,500

mutations in one batch in less than one second. All of the 2,068

primers for the 1,034 mutations in this study were generated by

MutPrimer. All mutagenesis PCRs are performed in batch using

automatic 96-well procedures. Since single colony picking after

bacterial transformation of mutagenesis PCR product is a rate-

limiting step, we rigorously optimized this step and found that

adding 10 mL mutagenesis PCR products to 100 mL competent

cells and plating 50 mL transformed cells give the best transfor-

mation yield and well-separated single colonies. Furthermore,

rather than individually streaking transformed cells onto agar

plates one sample at a time, we were able to significantly increase

throughput by spreading colonies using glass beads onto four

sector agar plates which are partitioned into four non-contacting

quadrants (Materials and Methods). In this manner, a 96-well

plate of transformed bacteria can be plated out onto 24 four-sector

agar plates in ,15 minutes. Traditional site-directed mutagenesis

pipelines require miniprepping each of the selected colonies and

sequencing them separately by Sanger sequencing. To drastically

improve the throughput of our Clone-seq pipeline, we pooled

together the bacteria stock of a single colony for each mutagenesis

attempt to perform one single maxiprep, which makes the library

construction step much more efficient and amenable to high-

throughput (Text S1). Furthermore, existing variant calling

pipelines [21] cannot be applied to our Clone-seq results because

the expected allelic ratios built into these pipelines are a function of

the ploidy of the organism. However, in our Clone-seq pipeline

there is no concept of ploidy. We pool together many mutations

for one gene in the same pool (e.g., 40 mutations for MLH1) and

different genes often have different numbers of mutations. Our S
score calculation and unwanted mutation detection pipeline was

designed according to our pooling strategy (Materials and
Methods).

In total, we have used the novel Clone-seq pipeline successfully

to generate 1,034 (39+113+882) mutant clones without any

additional unwanted mutations, confirming the scalability, accu-

racy, and throughput of our Clone-seq pipeline.

A high-throughput GFP assay to determine the impact of
mutations on protein stability

For the 204 mutations on proteins with co-crystal structures,

we first examined whether the mutant proteins can be stably

expressed in human cells. To do this, we tagged every wild-type

and mutant protein with GFP at the C-terminus using high-

throughput Gateway cloning (Fig. 1b). The GFP constructs

were transfected into HEK293T cells and fluorescence inten-

sities were measured by a plate reader (Fig. 3c; Materials
and Methods). All fluorescence intensity readings were also

confirmed manually under a microscope. Compared with the

corresponding wild-type proteins, the expression levels of 3 of

the 27 ‘‘interface residue’’ mutants, 8 of the 99 ‘‘interface

domain’’ mutants and 6 of the 77 ‘‘away from the interface’’

mutants are significantly diminished (Fig. 3c; Materials and
Methods; S2 Table). To validate these findings, we also

performed Western blotting for 8 random mutants that are

stably expressed and 8 random mutants with significantly

diminished expression levels (Fig. 4a). Western blotting results

confirm our GFP intensity readings.

A high-throughput Y2H assay to determine the impact of
mutations on protein interactions

Next, we investigated whether these mutations could affect

protein-protein interactions using Y2H (Fig. 1c; Materials and
Methods). We found that 21 of the 27 (78%) ‘‘interface residue’’

mutations, 57 of the 100 (57%) ‘‘interface domain’’ mutations, and

only 22 of the 77 (29%) ‘‘away from the interface’’ mutations

disrupt the corresponding interactions, thereby demonstrating a

clear difference (Fig. 4b; P = 361026 between ‘‘interface residue’’

and ‘‘interface domain’’ and P = 8610210 between ‘‘interface

domain’’ and ‘‘away from the interface’’) in terms of ability to

interfere with protein-protein interactions between mutations at

different structural loci within the same protein. Furthermore,

comparing with the GFP results, we found that all destabilizing

mutations were shown to disrupt the corresponding interactions in

our Y2H experiments. By considering only the mutations that do

not affect protein expression based on the GFP experiments, we

found the same difference: 13 out of 18 (72%) ‘‘interface residue’’

stable mutations, 42 out of 83 (51%) ‘‘interface domain’’ stable

mutations, and only 9 out of 52 (17%) ‘‘away from the interface’’

stable mutations disrupt the corresponding interactions (Fig. 4b;

P = 261025 between ‘‘interface residue’’ and ‘‘interface domain’’

and P = 9610213 between ‘‘interface domain’’ and ‘‘away from

the interface’’; Table S2). Since these interfaces are obtained

from actual co-crystal structures, our results suggest that accurate

structural information can help determine the functional impact of

mutations on protein-protein interactions. Wild-type proteins

corresponding to 113 of the 153 stably expressed mutant proteins

also interact with other proteins as determined by our Y2H

experiments (114 interactions in total, termed ‘‘other interac-

tions’’); however, for these interactions, there are currently no co-

crystal structures available in the PDB. Using these other

interactions, we calculated the likelihood of a given mutation

disrupting a specific interaction without any structural information

to be 32% (Fig. 4b).

Relationships between measured molecular phenotypes
and corresponding disease phenotypes

We then analyzed whether the molecular phenotypes measured

by our high-throughput GFP and Y2H assays are correlated with

corresponding disease phenotypes. We first examined how

mutation pairs on the same gene affect protein stability and its

Cloning and Examining Molecular Phenotypes of Human Disease Mutations

PLOS Genetics | www.plosgenetics.org 6 December 2014 | Volume 10 | Issue 12 | e1004819

http://www.yulab.org/Supp/MutPrimer
http://www.yulab.org/Supp/MutPrimer


relationship to their corresponding diseases. We find that pairs of

mutations that are either both stable or both unstable cause the

same disease in 68% and 70% of cases, respectively. However,

pairs comprising one stable and one unstable mutation cause the

same disease in only 30% of cases (P = 661029 and 8610210,

respectively, Fig. 5a). For example, we find that the mutations

R727C and L844F on the spindle checkpoint kinase Bub1b both

cause the protein to become unstable and lose all its interactors.

These mutations are both associated with the same disease, mosaic

variegated aneuploidy, an autosomal recessive disorder that causes

predominantly trisomies and monosomies of different chromo-

somes [22,23]. Since our GFP assay shows that these two

mutations cause loss of protein product, our results are consistent

with Matusuura et al.’s finding that a more than 50% decrease in

Figure 4. Effect of disease mutations on protein stability and protein-protein interactions. (a) Western blotting with anti-GFP antibody
confirming the protein expression levels of wild-type Rrm2b, Actn2, Hprt1, Pnp, Tpk1, Gnmt, Gale, Fbp1, Klhl3, Tp53, Pnp, Smad4, and corresponding
mutant alleles. b-tubulin and c-tubulin were used as loading controls. Red denotes ‘‘interface residue’’ mutations, orange denotes ‘‘interface domain’’
mutations and blue denotes ‘‘away from the interface’’ mutations. (b) Likelihood of disruption of interactions by ‘‘interface residue’’, ‘‘interface
domain’’ and ‘‘away from the interface’’ mutations – overall and for stable mutants only; likelihood of a disease mutation disrupting a given
interaction in the absence of structural information. Error bars indicate +SE. (N = 204 mutations).
doi:10.1371/journal.pgen.1004819.g004
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Bub1b activity leads to abnormal mitotic spindle checkpoint

function and mosaic variegated aneuploidy [24].

We then examined whether mutation pairs on the same gene

disrupt the same set or different sets of interactions (i.e., their

interaction disruption profiles) and investigated whether their

disruption profiles correlates with disease phenotypes. We found

that mutation pairs with the exact same disruption profile are

significantly more likely to cause the same disease than those with

different profiles (70% and 61% respectively, P = 361025,

Fig. 5b). For example, we found that two mutations on Smad4,

R361C and Y353S, disrupt its interactions with Smad3 and

Smad9 while leaving the interactions with Lmo4 and Rassf5

unaltered (Fig. 5c). These two mutations both cause juvenile

polyposis coli [25,26], a disease is known to be caused by

disruption of the core Smad/Bmp signaling pathways [27]. Our

Y2H results clearly demonstrate that the R361C and Y353S

mutations disrupt the Smad4-Smad3 and Smad4-Smad9 interac-

tions (Fig. 5c) leading to disruption of core Smad signaling

pathways. However, the mutation N13S on Smad4 does not

disrupt any of these interactions (Fig. 5c) and is associated with a

different disease, pulmonary arterial hypertension. Our results

agree with Nasim et al.’s finding that the N13S mutation does not

alter downstream Smad signaling [28]. Our findings provide

support for the hypothesis that the N13S mutation either impacts

pathways outside the core Smad signaling network or are

pathogenic only when combined with other environmental and

genetic factors [29].

Overall, these results show that mutation pairs with similar

molecular phenotypes in terms of both protein stability and

interactions are significantly more likely to cause the same disease

than those with different molecular phenotypes. This confirms that

the molecular phenotypes measured by our high-throughput GFP

and Y2H assays are biologically relevant in vivo. Furthermore, by

comparing the molecular phenotypes, in particular the protein

interaction disruption profiles, of mutations/variants to those of

known disease mutations, potential candidate mutations for a

variety of diseases can be identified.

A high-throughput mass spectrometry assay to
determine the impact of mutations on protein
interactions

While we use only those interactions that are supported by co-

crystal structures to estimate the fraction of interactions that are

disrupted by mutations at different structural loci, the described

procedures can also be applied to interactions with predicted

interfaces and structural models [30,31,32,33]. This is of

particular importance because over 90% of known interactions

do not currently have corresponding co-crystal structures [33,34].

For example, Mlh1 is known to interact with Pms2, both of which

are well-studied DNA mismatch repair genes frequently mutated

in hereditary nonpolyposis colorectal cancer [35]. Although the

structural basis of the Mlh1-Pms2 interaction still remains

unknown, both our previous 3D reconstruction of the human

interactome network [7,32] and the newly-established Inter-

actome3D [33] database suggest that the HATPase_c domain is

part of the interface for Mlh1’s interaction with Pms2. Previous

work has shown that a point mutation (I107R) on the

HATPase_c domain of Mlh1 is associated with colorectal cancer

and disrupts the Mlh1-Pms2 interaction [7,35,36]. First, using

Y2H, we were able to confirm the disruption (Figure S4). Next,

we developed a high-throughput-amenable mass spectrometry

pipeline using Stable Isotope Labeling by Amino acids in Cell

culture (SILAC) [37,38], which was designed to reveal both lost/

weakened and gained/enhanced interactions of the target

proteins (Fig. 1d) [39]. We added an HA-tag to the N-terminus

of both wild-type and mutant Mlh1, as well as to GFP as a

control, and performed four SILAC experiments: wild-type Mlh1

(heavy) vs. GFP control (light), mutant Mlh1 (heavy) vs. GFP

control (light), wild-type (heavy) vs. mutant (light) Mlh1, and

mutant (heavy) vs. wild-type (light) Mlh1 (Fig. 6a; Materials
and Methods). Interactors of wild-type/mutant Mlh1 are

defined as those that bind wild-type/mutant Mlh1 more than

26 stronger than GFP control (Materials and Methods). For

a lost/weakened interaction, we required that the interaction be

more than 26 stronger with wild-type Mlh1 than with mutant

Mlh1 as confirmed both in wild-type (heavy) vs. mutant (light)

and in mutant (heavy) vs. wild-type (light) experiments; we further

required that the interaction be detected in the wild-type vs.

control experiment (Fig. 6a; Materials and Methods). For a

gained/enhanced interaction, we required that the interaction be

more than 26 stronger with mutant Mlh1 than with wild-type

Mlh1 as confirmed both in wild-type (heavy) vs. mutant (light)

and in mutant (heavy) vs. wild-type (light) experiments; we further

required that the interaction be detected in the mutant vs. control

experiment (Fig. 6a; Materials and Methods). We were able

to detect Pms2 as the only specifically weakened interactor caused

by the mutation (Figs. 6b,c; E = 21.77; P = 361024), in

agreement with our Y2H results and previous studies [7,36].

Additionally, we were able to detect Hspa8 as the only specifically

enhanced interactor of the mutant protein (Figs. 6b,c; E = 2.71;

P = 761028). Two other known interactors of Mlh1, Pms1

(Figs. 6b,c; E = 20.32; P = 0.21) [40] and Brip1 (Fig. 6b,c;

E = 0.18; P = 0.32) [41], were also detected, although their

interactions with Mlh1 are not affected by this particular

mutation (Materials and Methods).

Hspa8 was not previously known to interact with Mlh1 and

the impact of the Mlh1 I107R mutation on its interactions with

Pms1 and Brip1 has not been reported in the literature. To

verify our SILAC results, we performed in vivo co-immuno-

precipitation using HA-tagged wild-type and mutant Mlh1 and

tagged Hspa8 and Brip1 with V5 (Materials and Methods).

Our co-immunoprecipitation results confirm that Hspa8 only

weakly interacts with wild-type Mlh1, but the interaction is

dramatically enhanced by a single amino acid substitution

(I107R) (Fig. 6d, lanes 3 and 4), whereas the interaction

between Mlh1 and Brip1 is not affected by this mutation

(Fig. 6d, lanes 6 and 7; Materials and Methods). Hspa8 is a

constitutively expressed member of the heat shock protein 70

family [42]. It functions as a chaperone to facilitate protein

folding [42] and also functions as an ATPase in the disassembly

of clathrin-coated vesicles during membrane trafficking [43]. A

recent study reported that Hspa8 is specifically recruited to

Figure 5. Relationships between molecular phenotypes and disease phenotypes. (a) Fraction of mutation pairs on the same gene that
cause the same disease: for the same and different effects on protein stability. (b) Fraction of mutation pairs on the same gene that cause the same
disease: for the same and different interaction disruption profiles. Error bars indicate +SE. (c) Crystal structure (PDB id: 1U7F) depicting the Y353S and
R361C mutations (on Smad4) at interface residues for the Smad4-Smad3 interaction. (d) Y2H analysis of the effects of Smad Y353S, R361, and N13S
mutations on its interactions with Smad3, Lmo4, Rassf5, and Smad9. Western blotting with anti-GFP antibody confirming the protein expression
levels of wild-type Smad4 and its 3 mutant alleles – Y353S, R361C and N13S. c-tubulin was used as a loading control.
doi:10.1371/journal.pgen.1004819.g005
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reovirus viral factories, independent of its chaperone function

[44]. Our Western blotting results demonstrate that the

expression level of Mlh1 is not affected by the I107R mutation

(Figure S5). Therefore, our SILAC results suggest that Hspa8

may play an important role in colorectal cancer and that its

function could be independent of its role as a chaperone.

Discussion

We have successfully developed the first massively parallel site-

directed mutagenesis pipeline, Clone-seq, using next-generation

sequencing. Our Clone-seq pipeline is entirely different from

previously described random mutagenesis approaches

[45,46,47,48]. Clone-seq is used to generate a large number of

specific mutant clones with desired mutations; each individual

mutant clone has a separate stock and different clones can therefore

be used separately for completely different downstream assays. In

random mutagenesis, a pool of sequences containing different

mutations for one gene is generated using error-prone PCR or

error-prone DNA synthesis. Therefore, it is not possible to separate

one mutant sequence from another and the whole pool can only be

used for the same assay(s) together. Furthermore, it is not possible to

control which or how many mutations are generated on each DNA

sequence. In fact, to improve coverage, most random mutagenesis

pipelines generate on average two or more mutations on each DNA

sequence [45], which makes it impossible to distinguish the

functional impact of each individual mutation on the same

sequence. Site-directed mutagenesis and random mutagenesis are

designed for different goals: if one wants to generate all possible

mutations for a certain protein without the need to separate

different clones, it would be more favorable to use random

mutagenesis; whereas if one needs to have separate clones for each

mutation, site-directed mutagenesis is required. As a result, the two

approaches are complementary and not comparable.

While there are highly efficient methods for random mutagen-

esis [45,46,47,48], current protocols for site-directed mutagenesis

are low-throughput and become prohibitively expensive if a large

number of clones needs to be generated. Clone-seq directly

addresses the necessity for a high-throughput site-directed

mutagenesis pipeline. It is a robust, cost-effective and efficient

method that can be used to generate a total of ,3,000 distinct

mutant clones in one full lane of a 16100 bp HiSeq run. Clone-

seq is suitable both for generating mutations across many genes as

well as a large number of mutations on a few genes. The former

situation is applicable when one wants to generate many

mutations/variants from large-scale studies (e.g., whole-genome

or whole-exome sequencing) since they typically identify muta-

tions/variants on a large number of genes [49,50]. The latter

situation usually arises in a study focused on a single pathway with

a few genes of interest (e.g., an alanine-scanning mutagenesis to

determine functional sites on a gene of interest [51]).

Integrating with Clone-seq, we also established a comprehensive

comparative interactome-scanning pipeline, including high-

throughput GFP, Y2H, and mass spectrometry assays, to

systematically evaluate the impact of human disease mutations

on protein stability and interactions. We examine each mutation

individually, rather than looking at their combinatorial effects

because these inherited germline disease mutations are extremely

rare. Therefore, the probability of having even two of these in the

same individual becomes infinitesimally small. Our results reveal

that the overall likelihood of a given disease mutation disrupting a

specific interaction is 32%. Accurate structural information of

these interactions obtained from co-crystal structures greatly

improves our understanding of the impact of disease mutations:

13 out of 18 (72%) ‘‘interface residue’’ stable mutations, 42 out of

83 (51%) ‘‘interface domain’’ stable mutations, and only 9 out of

52 (17%) ‘‘away from the interface’’ stable mutations disrupt the

corresponding interactions, unveiling a clear dependence of the

molecular phenotypes of disease mutations on their structural loci.

These estimates are not affected by the false negative rate of our

Y2H assay as we only use those interactions for which we can

detect the wild-type interaction with strong Y2H phenotypes.

Thus, any observed disruption is due to the mutation of interest

and not an assay false negative. Furthermore, our Y2H pipeline

has been shown to be of high quality and has an experimentally

measured false positive rate of ,5% or lower in different

organisms [9,12,52,53]. In addition, the interactions used to

understand the relationship between molecular phenotypes and

structural loci of disease mutations are all supported by co-crystal

structures, therefore these interactions are not assay false positives.

We also find that the molecular phenotypes detected by our GFP

and Y2H assays correlate with known disease phenotypes,

confirming the in vivo biological significance of our measure-

ments.

Moreover, as shown by the Mlh1 example (Fig. 6), our

comparative interactome-scanning pipeline can also be used with

predicted structural models [30,31,32,33]. The consequent exper-

imental results will clearly be affected by the quality of these

predictions, which is not part of our pipeline. In fact, our

experimental interactome-scanning pipeline can be applied to

evaluate or improve these predicted models by testing mutations at

different loci of a protein of interest and examining how these

mutations disrupt different interactions of this protein.

Our comparative interactome-scanning pipeline described and

validated here can be applied to experimentally determine in a

high-throughput fashion the impact on protein stability and

protein-protein interactions for thousands of DNA coding variants

and disease mutations, which can directly lead to hypotheses of

concrete molecular mechanisms for follow-up studies. Further-

more, the elucidation of molecular phenotypes of disease

mutations is also vital for selecting actionable drug targets and

ultimately for making therapeutic decisions. Finally, the general

scheme of our pipeline can be readily expanded to other

interactome-mapping methods, particularly other protein-protein

[10], protein-DNA [54,55], protein-RNA [56], and protein-

metabolite interaction assays [57], to comprehensively evaluate

the functional relevance of all DNA variants, including those in

non-coding regions.

Figure 6. Identifying interactions of Mlh1 that are affected by the I107R mutation using SILAC-based mass spectrometry. (a)
Schematic illustrating criteria used to identify interactions that are lost/weakened, unchanged, and gained/enhanced due to the I107R mutation on
Mlh1. Blue denotes samples cultured in light media and black denotes samples cultured in heavy media. (b) Scatter plot illustrating fold change (FC;
log scale) in the amount of protein pulled down by wild-type Mlh1 and mutant Mlh1 (I107R). Values are computed based on the wild-type (heavy) vs.
mutant (light) (X-axis) and mutant (heavy) vs. wild-type (light) (Y-axis) experiments. Green denotes enhancement of interaction, red denotes
weakening of interaction, and gold denotes no change. Mlh1 is shown in grey. (c) Fold changes and read counts (r) for interactors of Mlh1 that can be
reliably identified as weakened, unchanged, and enhanced due to the I107R mutation. (d) Anti-HA immunoprecipitation followed by Western
blotting with anti-V5 antibody confirming that the Mlh1-Brip1 interaction remains unchanged and that the Mlh1-Hspa8 interaction is dramatically
enhanced due to the I107R mutation.
doi:10.1371/journal.pgen.1004819.g006
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Materials and Methods

Selecting interactions with mutations on and away from
the interface

To calculate atomic-resolution interaction interfaces, we

systematically examined a comprehensive list of 7,340 PDB co-

crystal structures. To define the interface, we used a water

molecule of diameter 1.4 Å as a probe and calculated the relative

solvent accessible surface areas of the interacting pair as well as the

individual proteins involved in the interaction. Residues whose

relative accessibilities change by more than 1 Å2 are considered as

potential interface residues, because amino acids at the interface

reside on the surfaces of the corresponding proteins, but will tend

to become buried in the co-crystal structure as the two proteins

bind to each other [58]. So, for these residues, there should be a

significant decrease in accessible surface area when we compare

the bound and unbound states of the protein chains.

To identify interface domains, we required at least one of the

following criteria to hold:

1. 3did [59] or iPfam [60] have identified the domain pair as

interacting and each of the interface domains contains at least

one interface residue based on our calculations.

2. The domain pair contains 5 or more interface residues for each

protein according to our calculations.

We then identified the subset of these interactions that contain

at least one disease mutation and are amenable to our version of

Y2H [11,12,13,14]. Subsequently, we performed a pairwise retest

of all these interactions and selected the ones that yield strong Y2H

phenotypes, because subsequent steps involve detecting a signif-

icant decrease in these phenotypes.

Primer design for site-directed mutagenesis
Primers for site-directed mutagenesis were selected based on a

customized version of the protocol accompanying the Stratagene

QuikChange Site-Directed Mutagenesis Kit (200518). The

following criteria are used:

1. The primer should be of length 30–50 bp and should contain

the mutation of interest in the center or one base away.

2. The GC content of the primer should be $40% and the primer

should start and end with a G or a C.

3. The Tm for the primer should be $78uC. Tm was calculated

using the following expression:

Tm~81:5z0:41|(%GC){
675

N
{%mismatch

where N is the primer length in bases, %GC is the percentage

of G or C nucleotides in the primer, and %mismatch is the

percentage of mismatched bases in the primer. Values for

%GC and %mismatch are whole numbers.

For cases where no primer satisfies all three criteria simulta-

neously, we relaxed criterion 2 to GC content $30%.

We established a supplementary web tool (http://www.yulab.

org/Supp/MutPrimer) to design mutagenesis primers individually

or in bulk.

Construction of mutant alleles using high-throughput
site-directed mutagenesis PCR

All wild-type clones were obtained from the human ORFeome

v8.1 collection [61]. To generate mutant alleles, sequence-verified

single-colony wild-type clones and their corresponding mutagenic

primers were aliquoted into individual wells of 96-well PCR plates.

Mutagenesis PCR was then performed as specified by the New

England Biolabs (NEB) PCR protocol for Phusion polymerase

(M0530L), noting that PCR was limited to 18 cycles. The samples

were then digested by DpnI (NEB R0176L) according to the

manufacturer’s manual. After digestion, samples were transformed

into competent E. coli. Since single colony picking after bacterial

transformation of mutagenesis PCR product is a rate-limiting step,

we rigorously optimized this step. First, we tried different volumes

of competent cells for transformation and found that single colony

yields peak when ,100 mL of competent cells are used. It is also

necessary to use ,10 mL of mutagenesis PCR product: any lower

volume of PCR product results in significantly reduced colony

yields, while higher volumes of PCR product do not increase yield.

Finally, colony picking was done using four-sector agar plates

(VWR 25384-308) that are partitioned into four non-contacting

quadrants with glass beads poured onto each plate quadrant. Each

bead-filled quadrant was inoculated with ,50 mL of transformed

bacteria. This was then spread by lightly shaking the four-sector

agar plate. Our optimized transformation protocol results in a

large number of well-separated single colonies that can be easily

picked the next day. Upon recovery, single colonies from each

quadrant were then picked and arrayed into 96-deepwell plates

filled with 300 mL of antibiotic media. Four colonies per allele

were picked for next-generation sequencing.

DNA library preparation for Illumina sequencing
DNA library preparation was performed using NEBNext DNA

Library Prep Master Mix Set for Illumina (NEB E6040S) according

to the manufacturer’s manual. Briefly, 5 mg of pooled plasmid DNA

(,100 mL, all samples were normalized to the same concentration)

was sonicated to ,200 bp fragments. The fragmented DNA was

first mixed with NEBNext End Repair Enzyme for 30 mins at

20uC. Blunt-ended DNA was then incubated with Klenow

Fragment for 30 mins at 37uC for dA-Tailing. Subsequently,

NEBNext Adaptor was added to dA-Tailed DNA. Adaptor-ligated

DNA (,300 bp) was size-selected on a 2% agarose gel. Size-selected

DNA was then mixed with one of the NEBNext Multiplex Oligos

(NEB E7335S) and Universal PCR primers for PCR enrichment. At

each step, DNA was purified using a QIAquick PCR purification kit

(Qiagen 28104). Multiplexed DNA samples were combined and

analyzed in one lane of a 16100 bp run by Illumina HiSeq 2500.

Identifying successful instances of site-directed
mutagenesis based on next-generation sequencing

The mutant colonies were barcoded and pooled as shown in

Fig. 1a. The multiplexed colonies were then run on an Illumina

sequencer (2 HiSeq runs and 1 MiSeq run) to give 16100 bp reads.

These reads were then de-multiplexed and mapped to the genes of

interest using the BWA ‘‘aln’’ algorithm [62]. For each allele, we

identified all reads that mapped to the position of the mutation of

interest (Rall) and those that actually contained the desired mutation

(Rmut). We then calculated a normalized score (S) that quantifies the

fraction of reads containing the desired mutation:

S~
Rmut

1

k
Rall

~
k|Rmut

Rall

where k is the number of different mutations for the same gene.

For 39 mutations, we Sanger sequenced two mutant colonies

per mutagenesis attempt to quantify the correlation between S and
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observation of the desired mutation. We found that all clones with

S.0.44 are confirmed to be correct via Sanger sequencing with a

clear separation between those that are correct and those that are

not (Fig. 2b). However, to further ensure that the clones we

picked were correct, we require S.0.8 for a colony to be scored as

containing the desired mutation.

Identifying unwanted mutations
One major advantage of our Clone-seq pipeline over traditional

site-directed mutagenesis protocols using Sanger sequencing [15]

is that we can now carefully examine whether there are other

unwanted mutations inadvertently introduced during the PCR

process, in comparison with the corresponding wild-type alleles. It

is essential to use clones with no unwanted mutations for

downstream experiments, as the presence of these will make it

impossible to determine whether the observed disruption is due to

the desired or other undesirable mutation(s).

We use samtools ‘‘mpileup’’ [63] to obtain read counts for

different alleles at each nucleotide for all the clones. We calculate

the background sequencing error rate by calculating the average

fraction of non-reference alleles across all nucleotides where we

did not attempt to introduce a mutation. Any site that has a

significantly higher fraction of non-reference alleles (using a P
value cutoff of 0.2 from a cumulative binomial test) is considered to

have an unwanted mutation. A lenient P value cutoff (0.2 as

opposed to the more traditionally used 0.05 or 0.01) implies more

stringent filtering in this case because we want to eliminate type II

errors i.e., we want to identify all unwanted mutations at the cost

of discarding a few clones that actually do not have any unwanted

mutations.

We identified an average of 4–5 unwanted point mutations per

pool. The overall per-base point mutation rate of Phusion polymerase

was calculated to be ,1024. NEB’s advertised error rate for Phusion

polymerase varies from 4.4–9.561027 per PCR cycle. Since we

perform 18 PCR cycles, the expected overall error rate is ,1025.

Our calculated mutation is within an order of magnitude of this

advertised error rate. It is slightly higher than the advertised rate as we

use stringent filtering criteria as described above.

GFP assay
All wild-type and mutant clones were moved into the pcDNA-

DEST47 vector with a C-terminal GFP tag using automated

Gateway LR reactions in a 96-well format. After bacterial

transformation, minipreps were prepared on a Tecan Freedom

Evo 200, and DNA concentrations were determined by OD 260/

280 with a Tecan Infinite M1000 plate reader in 96-well format. A

100 ng aliquot of each expression clone plasmid was used for

transfection into HEK293T cells in 96-well plates using Lipofec-

tamine 2000 (Invitrogen 11668019) according to the manufactur-

er’s instructions. At approximately 48 hrs post-transfection, cells

were processed with Tecan M1000. Fluorescence intensities were

measured at 395 nm for excitation and 507 nm for emission,

according to Invitrogen’s manual. As negative controls, the

fluorescence intensities corresponding to cells transfected with

the empty vector were measured. The normalized fluorescence

intensity was calculated as:

Inorm~I{Ibackground

where I corresponds to the measured intensity and Ibackground

corresponds to the average intensity of the empty vector controls

for each plate. All Inorm values greater than K are considered to

correspond to stable protein expression. K corresponds to the

range (maximum – minimum) of background fluorescence

intensities of the empty vector controls for each plate. For this

study, all fluorescence intensity readings were also confirmed

manually under a microscope. All transfection and GFP experi-

ments were repeated 3 times.

Y2H assay
Y2H was performed as previously described [7]. All wild-type/

mutant clones were transferred by Gateway LR reactions into our

Y2H pDEST-AD and pDEST-DB vectors. All DB-X and AD-Y

plasmids were transformed individually into the Y2H strains MATa
Y8930 and MATa Y8800, respectively. Each of the DB-X MATa
transformants (wild-type and mutants) were then mated against

corresponding AD-Y MATa transformants (wild-type and mutants)

individually using automated 96-well procedures, including inocu-

lation of AD-Y and DB-X yeast cultures, mating on YEPD media

(incubated overnight at 30uC), and replica-plating onto selective

Synthetic Complete media lacking leucine, tryptophan, and

histidine, and supplemented with 1 mM of 3-amino-1,2,4-triazole

(SC-Leu-Trp-His+3AT), SC-Leu-His+3AT plates containing

1 mg/l cycloheximide (SC-Leu-His+3AT+CHX), SC-Leu-Trp-

Adenine (Ade) plates, and SC-Leu-Ade+CHX plates to test for

CHX-sensitive expression of the LYS2::GAL1-HIS3 and GAL2-
ADE2 reporter genes. The plates containing cycloheximide select

for cells that do not have the AD plasmid due to plasmid shuffling.

Growth on these control plates thus identifies spontaneous auto-

activators [64]. The plates were incubated overnight at 30uC and

‘‘replica-cleaned’’ the following day. Plates were then incubated for

another three days, after which positive colonies were scored as

those that grow on SC-Leu-Trp-His+3AT and/or on SC-Leu-Trp-

Ade, but not on SC-Leu-His+3AT+CHX or on SC-Leu-Ade+
CHX. Disruption of an interaction by a mutation was defined as at

least 50% reduction of growth consistently across both reporter

genes, when compared to Y2H phenotypes of the corresponding

wild-type allele as benchmarked by 2-fold serial dilution experi-

ments. All Y2H experiments were repeated 3 times.

Construction of plasmids
Wild-type MLH1, HSPA8, and BRIP1 entry clones are from the

human ORFeome v8.1 collection [61]. Using Gateway LR reactions,

wild-type MLH1, mutant MLH1 (I107R), and GFP were transferred

into the pMSCV-N-FLAG-HA-PURO vector [65]; HSPA8 and

BRIP1 were transferred into the pcDNA-DEST40 vector that

contains a C-terminal V5 tag (Invitrogen 12274-015).

Analysis of interacting proteins by SILAC and LC-MS/MS
HEK293T cells were grown in SILAC media comprising

SILAC DMEM (Thermo Scientific) and 10% dialyzed FBS (JR

Scientific) supplemented with either 0.1 mg/ml L-lysine and L-

arginine (light media) or 0.1 mg/ml L-lysine 13C6, 15N2 and L-

arginine 13C6, 15N4 (heavy media). Heavy- or light-media

cultured HEK293T cells were transfected using Lipofectamine

2000 (Invitrogen) in three 10 cm plates. 48 hrs after transfection,

cells were washed three times in cold PBS and then resuspended in

5 ml RIPA buffer [1% NP-40, 50 mM Tris-HCl pH 7.5, 150 mM

NaCl, 5 mM EDTA, 16EDTA-free Complete Protease Inhibitor

tablet (Roche)]. Cells were lysed for 30 mins on ice before

centrifuging at 13,000 rpm for 10 mins. Cell lysates were

incubated with 60 mL EZview Red Anti-HA Affinity Gel

(Sigma-Aldrich) for 3 hrs. After 3 washes with RIPA buffer,

bound proteins were eluted with 3 resin volumes elution buffer

(100 mM Tris-HCl pH 8.0, 1% SDS). Eluted proteins from light and

heavy media were mixed together, reduced with 5 mM DTT,

alkylated with 15 mM of iodoacetamide, and then precipitated with 3
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volumes PPT solution (50% acetone, 49.9% ethanol, 0.1% acetic

acid). Proteins from pull-down experiments were solubilized with

50 mL Urea/Tris solution (8 M Urea, 50 mM Tris-HCl pH 8.0) and

150 mL NaCl/Tris (50 mM Tris-HCl pH 8.0, 150 mM NaCl)

followed by the addition of 1 mg Trypsin Gold (Promega). Protein

digestion was performed overnight at 37uC after which trifluoroacetic

acid and formic acid were added to a final concentration of 0.2%.

Peptides were de-salted with Sep-Pak C18 columns (Waters

Corporation), dried in a speed-vac, and reconstituted in 85 mL of a

solution containing 80% acetonitrile and 1% formic acid. Samples

were fractionated by Hydrophilic Interaction LIquid Chromatogra-

phy (HILIC) using a TSK gel Amide-80 column (Tosoh Bioscience).

HILIC fractions were dried in a speed-vac, reconstituted in 0.1%

trifluoroacetic acid, and analyzed by LC-MS/MS using a 125 mM ID

capillary column packed in-house with 3 mm C18 particles (Michrom

Bioresources) and a Q-Exactive mass spectrometer (Thermo Fisher

Scientific) coupled with a Nano LC-Ultra system (Eksigent). Xcalibur

2.2 software (Thermo Fischer Scientific) was used for the data

acquisition and Q-Exactive was operated in the data-dependent

mode. Survey scans were acquired in the Orbitrap mass analyzer

over the range of 380 to 2000 m/z with a mass resolution of 70.000

(at m/z 200). Up to the top 10 most abundant ions with a charge state

higher than 1 and less than 5 were selected within an isolation

window of 2.0 m/z. Selected ions were fragmented by Higher-energy

Collisional Dissociation (HCD) and the tandem mass spectra were

acquired in the Orbitrap mass analyzer with a mass resolution of

17.500 (at m/z 200). The fragmentation spectra were searched by

using the SEQUEST software on a SORCERER system (Sage-N

Research) and a human database downloaded from the International

Protein Index (version 3.80). In all database searches, trypsin was

designated as the protease, allowing for one non-tryptic end and two

missed-cleavages. The following parameters were used in the

database search: a mass accuracy of 15 ppm for the precursor ions,

differential modification of 8.0142 Daltons for lysine and 10.00827

Daltons for arginine. Results were filtered based on probability score

to achieve a 1% false positive rate. The Xpress software, part of the

Trans-Proteomic Pipeline (Seattle Proteome Center), was used to

process the raw data and quantify the light/heavy peptide isotope

ratios. Results were also manually inspected.

Identifying loss and gain of interactors for Mlh1
We performed four SILAC experiments using both wild-type

and mutant Mlh1, as well as GFP as a control: wild-type (heavy)

vs. control (light) [WT_Control]; mutant (heavy) vs. control (light)

[Mutant_Control]; wild-type (heavy) vs. mutant (light) [WT_Mu-

tant]; and mutant (heavy) vs. wild-type (light) [Mutant_WT].

We use the following variables and define four ratios for all

subsequent calculations. In the WT_Control experiment, the

relative abundance of protein p pulled down by wild-type Mlh1 to

protein p pulled down by GFP (WTp) is quantified by the inverse of

the geometric mean of rwc reads with Xpress values Xi. In the

Mutant_Control experiment, the relative abundance of protein p
pulled down by mutant Mlh1 (I107R) to protein p pulled down by

GFP (Mutp) is quantified by the inverse of the geometric mean of

rmc reads with Xpress values Yi. In the WT_Mutant experiment,

the relative abundance of protein p pulled down with mutant

Mlh1 (I107R) to protein p pulled down by wild-type Mlh1 is

quantified by the geometric mean of rwm reads with Xpress values

Pi. The amount of mutant Mlh1 (I107R) to wild-type Mlh1 is

quantified by the geometric mean of twm reads with Xpress values

Cj. In the Mutant_WT experiment, the relative abundance of

protein p pulled down with mutant Mlh1 (I107R) to protein p
pulled down by wild-type Mlh1 is quantified by the inverse of the

geometric mean of rmw reads with Xpress values Qj. The amount

of mutant Mlh1 (I107R) to wild-type Mlh1 is quantified by the

inverse of the geometric mean of tmw reads with Xpress values Di.
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where both FCwm and FCmw denote the fold change in protein

abundance as the normalized ratio of the amount of protein pulled

down with mutant Mlh1 to that with wild-type Mlh1.

To identify interactors that are lost/weakened due to the I107R

mutation, we required the following criteria to hold simultaneously:

1. The protein has to be identified as an interactor of wild-type

Mlh1: WTp.2, rwc$5.

2. The protein has to be identified as a lost interactor based on

both Mutant_WT: FCmw,0.5, rmw$5, and WT_Mutant:

FCwm,0.5, rwm$5.

The first criterion ensures that the protein identified is a true

interactor of wild-type Mlh1. The second criterion ensures that the

loss of interaction is significant and reliably observed across both

WT_Mutant and Mutant_WT experiments.

Similarly, to identify interactors that are gained/enhanced due

to the I107R mutation, we required the following criteria to hold

simultaneously:

1. The protein has to be identified as an interactor of mutant

Mlh1 (I107R): Mutp.2, rmc$5.

2. The protein has to be identified as a gained interactor based on

both Mutant_WT: FCmw.2, rmw$5, and WT_Mutant:

FCwm.2, rwm$5.

The first criterion ensures that the protein identified is a true

interactor of the I107R mutant of Mlh1. The second criterion

ensures that the gain of interaction is significant and reliably

observed across both WT_Mutant and Mutant_WT experiments.

We also identify interactors of Mlh1 that are unaffected by the

I107R mutation using the following criteria:

1. The protein has to be identified as an interactor of both wild-

type Mlh1: WTp.2, rwc$5, and mutant Mlh1 (I107R): Mutp.

2, rmc$5.
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2. The protein has to be identified as an unchanged interactor

based on both Mutant_WT: 0.5,FCmw,2, rmw$5, and

WT_Mutant: 0.5,FCwm,2, rwm$5.

Integrating both WT_Mutant and Mutant_WT experiments,

we calculated a weighted average of the individual fold changes:

E~
rmw|log2(FCmw)zrwm|log2(FCwm)

rmwzrwm

P values are calculated using a two-sided Kolmogorov-Smirnov

test (with bootstrapping).

Cell culture, co-immunoprecipitation, and Western
blotting

HEK293T cells were maintained in complete DMEM medium

supplemented with 10% FBS. Cells were transfected with Lipofecta-

mine 2000 (Invitrogen) at a 6:1 (mL/mg) ratio with DNA in 6-well

plates and were harvested 24 hrs after transfection. Cells were gently

washed three times in PBS and then resuspended using 200 mL 1%

NP-40 lysis buffer [1% Nonidet P-40, 50 mM Tris-HCl pH 7.5,

150 mM NaCl, 16EDTA-free Complete Protease Inhibitor tablet

(Roche)] and kept on ice for 20 mins. Extracts were cleared by

centrifugation for 10 mins at 13,000 rpm at 4uC. 15 mL EZview Red

Anti-HA Affinity Gel (Sigma-Aldrich) and 100 mL protein lysate were

used for each co-immunoprecipitation reaction. The samples were

rotated gently at 4uC for 2 hrs. HA beads were then washed three

times with protein lysis buffer, treated with 66protein sample buffer,

and subjected to SDS-PAGE. Proteins were then transferred from the

gel onto PVDF (Amersham) membranes. Anti-HA (Sigma H9658),

anti-V5 (Invitrogen 46-0705), anti-b-tubulin (Promega G7121), and

anti-GFP (Santa Cruz sc-9996) antibodies were used at 1:3,000

dilutions for immunoblotting analysis.
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