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ABSTRACT: With the rapid growth of structural ge-
nomics, numerous protein crystal structures have be-
come available. However, the parallel increase in knowl-
edge of the functional principles underlying biological
processes, and more specifically the underlying molecu-
lar mechanisms of disease, has been less dramatic. This
notwithstanding, the study of complex cellular networks
has made possible the inference of protein functions on
a large scale. Here, we combine the scale of network
systems biology with the resolution of traditional struc-
tural biology to generate a large-scale atomic-resolution
interactome-network comprising 3,398 interactions be-
tween 2,890 proteins with a well-defined interaction in-
terface and interface residues for each interaction. Within
the framework of this atomic-resolution network, we have
explored the structural principles underlying variations
causing human-inherited disease. We find that in-frame
pathogenic variations are enriched at both the interface
and in the interacting domain, suggesting that variations
not only at interface “hot-spots,” but in the entire inter-
acting domain can result in alterations of interactions. Fur-
ther, the sites of pathogenic variations are closely related to
the biophysical strength of the interactions they perturb.
Finally, we show that biochemical alterations consequent
to these variations are considerably more disruptive than
evolutionary changes, with the most significant alterations
at the protein interaction interface.
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Introduction
The functions of a protein are inherently bound up with its three-

dimensional structure—both regular secondary structures and dis-
ordered elements play a role in modulating function [Lahiry et al.,
2010]. Protein structures are often so intricate that even compar-
atively minor structural alterations can cause dramatic changes in
function. Since such disruptions often lead to disease [Celli et al.,
1999; Haberle et al., 2011], a significant amount of effort has been
invested in attempting to determine the principles underlying com-
plex structure–function relationships in human proteins. To date,
however, most of this effort has been directed toward understand-
ing how individual folds, domains, or structural motifs carry out
specific cellular functions [Pearl et al., 2005; Andreeva et al., 2008].
Furthermore, most proteins carry out their functions by interact-
ing with other proteins, all of which are part of a complex cellular
network termed the “interactome” [Vidal, 2005; Vidal et al., 2011].

Recently, studies have become focused on how protein networks
can be used to infer function and how changes in these networks
can lead to human disease [Barabasi et al., 2011; Vidal et al., 2011].
However, these efforts have had only limited success because protein
networks are still incomplete [Vidal et al., 2011] and studies to date
have treated proteins as mere graph-theoretical points in a math-
ematical network rather than as biological entities with their own
structural details and chemical properties [de Souza, 2012; Wang
et al., 2012]. The importance of structural considerations has been
well recognized in predicting protein–protein interactions [Tuncbag
et al., 2011; Zhang et al., 2012] and functional residues for each in-
teraction [Marks et al., 2012]. However, although structure has been
widely employed to understand the evolutionary impact of single-
nucleotide polymorphisms (SNPs) [Sunyaev et al., 2001; Bao and
Cui, 2005; David et al., 2012], the number of studies that have exam-
ined pathogenic variations in a structural context has been limited
[Studer et al., 2013]. To address this deficiency, we previously used a
domain-level interaction network to show that in-frame pathogenic
variations tend to be enriched within interacting domains [Wang
et al., 2012]. However, interacting domains comprise not only in-
terface residues that are directly involved in the physical interaction
between the two proteins but also other noncontact residues. In
our earlier study, we did not differentiate between these two cate-
gories of amino acid residues. Since it is generally considered that
interface residues mediate protein–protein interactions [Jones and
Thornton, 1996], it is of paramount importance to examine the
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differential distribution of pathogenic variations between interface
and noninterface residues within interacting domains. Moreover,
only at the resolution of individual amino acid residues is it possible
to ascertain structural (i.e., biophysical and biochemical) principles
governing pathogenic processes.

To this end, we present here a large-scale atomic-resolution hu-
man interactome network by systematically identifying the inter-
action interfaces and corresponding residues mediating all interac-
tions with available cocrystal structures in the Protein Data Bank
(PDB) [Berman et al., 2000]. Using this atomic-resolution interac-
tome network, we analyze the distribution of pathogenic variations
in different regions of human proteins focusing on interface and
noncontact residues within interacting domains. We also explore
how the locational specificity of these variations is directly associ-
ated with the strength of the interactions they disrupt. Finally, we
examine biochemical properties of human pathogenic variations
and compare them with their evolutionary counterparts.

Methods

Calculating Atomic-Resolution Interface Residues for
Human Protein Interactions

To calculate atomic-resolution interaction interfaces (Supp.
Fig. S1), we systematically examined a comprehensive list of 7,340
PDB cocrystal structures and were able to determine atomic-
resolution interaction interfaces for 3,398 unique human protein–
protein interactions between 2,890 proteins. To define the interface,
we used a water molecule of diameter 1.4 Å as a probe and calcu-
lated the relative solvent accessible surface areas of the interacting
pair as well as the individual proteins involved in the interaction
[Hubbard and Thornton, 1993]. All calculations were performed us-
ing Naccess [Hubbard and Thornton, 1993]. Residues whose relative
accessibilities changed by more than 1 Å2 were considered as po-
tential interface residues. Amino acids at the interface reside on the
surfaces of the corresponding proteins, but tend to become buried
in the cocrystal structure as the two proteins bind to each other. It
follows that these residues should experience a significant decrease
in accessible surface area when the bound and the unbound states of
the protein chains are compared [Franzosa and Xia, 2011]. In most
cases, our calculations incorporated multiple instances of the same
interaction from different chains within the same PDB structure or
entirely different PDB structures representing the same interaction.
This allows us to accurately determine the exact interface, and nor-
malize differences due to specific crystallization conditions [Chayen
and Saridakis, 2008]. We take the union over all such instances sub-
ject to the constraint that the particular protein pair contains at least
five interface residues for both interacting proteins. This ensures that
all the interfaces included in our calculations represent significant
regions of molecular contact, eliminating potential crystal contacts.
Furthermore, 1,689/3,398 (49.7%) interactions used in this study
have been detected by at least one other assay and were reported
independently in a separate publication. This confirms that interac-
tions used in this study are not only real but also reproducible using
other assays.

To further refine the set of identified interface residues, we re-
quired that they be necessarily present on the surface of the protein.
To determine which residues were on the surface, we calculated the
fraction of surface area for each residue in the individual protein
chains that was accessible to the water molecule probe defined above
[Hubbard and Thornton, 1993]. If more than 15% of the total sur-
face area for a particular residue was accessible to the water molecule

probe, we defined that particular amino acid to be on the surface,
otherwise it was considered to be buried. Using these two criteria, for
each interaction we obtained a set of 141,686 residues that represent
the interface for 3,398 interactions from 7,340 atomic-resolution
cocrystal structures. The fraction of homomeric interactions to het-
eromeric interactions is �2:1 as the PDB is enriched for homodimers
as compared with heterodimers.

Identifying Interacting Domains for Each Interaction

We generated a list of putative interacting domains utilizing the
“homology modeling approach” as described earlier [Meyer et al.,
2013] using both 3did [Stein et al., 2011] and iPfam [Finn et al.,
2005]. However, some of the domain pairs identified as interact-
ing by 3did and iPfam for a particular protein pair may not have
been supported by the corresponding cocrystal structure as they
may have been inferred from other cocrystal structures. Therefore,
to avoid potential false positives, we additionally required that these
domains should contain at least one interface residue for them to
be considered as interacting domains. Moreover, the set of interact-
ing domains inferred by 3did and iPfam were not always complete.
For our analysis, we took advantage of our own atomic-resolution
interface calculations to identify a comprehensive set of interact-
ing domains for each cocrystal structure, and included interacting
domains not identified by 3did or iPfam if they had five or more
interface residues.

Compiling a Comprehensive List of Pathogenic Variations
and SNPs

We compiled a comprehensive list of 94,476 pathogenic vari-
ations from HGMD [Wang et al., 2012; Stenson et al., 2014] as
described earlier [Wang et al., 2012]. We updated our earlier lists
with a newer version of the HGMD dataset (HGMD Professional
v.2012.4). Specifically, we used in-frame variations (both missense
variations and in-frame microinsertions and microdeletions) clas-
sified as “DM” in HGMD. For further analysis, we employed a total
of 17,306 variations in 673 genes for which we were able to define
at least one atomic-resolution interaction interface. We also com-
piled a set of nonsynonymous SNPs from the Exome Sequencing
Project [Fu et al., 2013] from which we derived a dataset of 94,084
SNPs in 2,829 genes for which we were able to define at least one
atomic-resolution interaction interface.

Using our publicly available supplementary website, http://
www.yulab.org/Supp/AtomInt, researchers can query interface
residues for their favorite interaction.

Criteria Used to Choose PTS–PTS Homodimeric Interaction
for Experimental Validation

The following criteria were used to choose the PTS–PTS ho-
modimeric interaction for experimental validation of the effects of
pathogenic variants within and outside the interacting domain:

(a) the interaction is supported by a cocrystal structure.
(b) the wild-type PTS clone is available in our library.
(c) the wild-type interaction (PTS–PTS) is amenable to testing in

our yeast two-hybrid (Y2H) system.
(d) there is a pathogenic variation in the interacting domain but

outside interface residues.
(e) there is a different pathogenic variation outside both the inter-

face residues and the interacting domain.
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Generation of PTS Variants

Wild-type PTS is obtained from the human ORFeome v8.1 collec-
tion [Yang et al., 2011]. To generate the alleles R25Q and R9C corre-
sponding to two different pathogenic variations, sequence-verified
single-colony wild-type PTS and corresponding mutagenic primers
(designed according to the protocol accompanying the Stratagene
QuikChange Site-Directed Mutagenesis Kit #200518) were aliquoted
together. Mutagenesis PCR was then performed as specified by the
New England Biolabs (NEB) PCR protocol for Phusion polymerase
(M0530L), noting that PCR was limited to 18 cycles. Samples were
then digested by DpnI (NEB R0176L) according to the manufac-
turer’s manual. After digestion, samples were transformed into com-
petent Escherichia coli and then individually streaked onto LB plates
containing spectinomycin to obtain single colonies. The generated
clones were verified by Sanger sequencing.

Y2H

Y2H was done as previously described [Wang et al., 2012]. Wild-
type PTS and both pathogenic variant alleles were transferred by
Gateway LR reactions into our Y2H pDEST-AD and pDEST-DB
vectors. DB-X and AD-Y plasmids were transformed individu-
ally into the Y2H strains MATα Y8930 and MATa Y8800, respec-
tively. Each of the DB-X MATα transformants (wild type and vari-
ants) were then mated against corresponding AD-Y MATa trans-
formants (wild type and variants), including inoculation of AD-
Y and DB-X yeast cultures, mating on YEPD media (incubated
overnight at 30°C), and replica plating onto selective Synthetic
Complete media lacking leucine, tryptophan, and histidine, and
supplemented with 1 mM of 3-amino-1,2,4-triazole (SC-Leu-Trp-
His+3AT), SC-Leu-His+3AT plates containing 1 mg/l cycloheximide
(SC-Leu-His+3AT+CHX), SC-Leu-Trp-Adenine (Ade) plates, and
SC-Leu-Ade+CHX plates to test for CHX-sensitive expression of
the LYS2::GAL1-HIS3 and GAL2-ADE2 reporter genes. The plates
were incubated overnight at 30°C and replica-cleaned the following
day. Plates were then incubated for another 3 days, after which posi-
tive colonies were scored as those that grow on SC-Leu-Trp-His+3AT
and/or on SC-Leu-Trp-Ade, but not on SC-Leu-His+3AT+CHX or
on SC-Leu-Ade+CHX. Disruption of an interaction by a variation
was defined as significant reduction of growth when compared with
the Y2H phenotype of the wild-type PTS–PTS interaction.

Western Blotting

Wild-type and both PTS variants were cloned into MSCV-N-
FLAG-HA-IRES-Puro vector [Behrends et al., 2010] and trans-
fected into HEK293T cells to express HA-tagged wild-type and mu-
tated proteins. HEK293T cells were maintained in complete DMEM
medium supplemented with 10% fetal bovine serum. Cells were
transfected with Lipofectamine 2000 (Invitrogen, Carlsbad, CA) at
a 5:1 (μl/μg) ratio with DNA and harvested 24 hr after transfection.
Cells were gently washed three times in PBS and then resuspended
using 200 μl 1% NP-40 lysis buffer (1% Nonidet P-40, 50 mM
Tris–HCl pH 7.5, 150 mM NaCl, 1× EDTA-free Complete Pro-
tease Inhibitor tablet [Roche, Indianapolis, IN 05056489001]) and
kept on ice for 30 min. Extracts were cleared by centrifugation
for 10 min at 15,870 g at 4°C. Extracts (25 μl) were mixed with
6× loading buffer and subjected to SDS-PAGE. Proteins were then
transferred from the gel onto PVDF membranes (GE Healthcare,
Piscataway, NJ RPN303F). Anti-HA (Sigma, St. Louis, MO H9658)
and anti-γ -tubulin (Sigma T5192) were used at 1:3,000 dilutions

for immunoblotting analysis. Blotting signal was developed with
Novex ECL HRP chemiluminescent substrate reagent kit (Invitro-
gen WP20005) and captured with Amersham Hyperfilm MP (GE
Healthcare 28906843).

Results and Discussion

Atomic-Resolution Structural Analysis of Pathogenic
Variations and Their Molecular Mechanisms

Pathogenic variations belong to two broad categories—in-frame
variations (both missense variations and in-frame microinsertions
and microdeletions) and truncating variations (both nonsense point
variations and frameshift insertions or deletions) [Zhong et al.,
2009]. We previously found that in-frame pathogenic variations
are nonrandomly distributed in proteins—indeed, they tend to be
enriched within interacting domains. On the other hand, truncating
variations do not show any particular trend with regard to their
distribution in different parts of the protein [Wang et al., 2012].

It has been commonly accepted that interface residues medi-
ate interactions between proteins [Jones and Thornton, 1996; Hu
et al., 2000]. Moreover, it is generally believed that “only a small
portion of interface residues, the so-called hot-spot residues, con-
tribute the most to the binding energy of the protein complex” [Assi
et al., 2010]. These hot-spots are often the targets of drug molecules
[Wells and McClendon, 2007]. Owing to the limits of the resolution
of our previous study [Wang et al., 2012], we were able to perform
the investigation only at the domain level, not at the level of in-
dividual residues. Employing the newly derived atomic-resolution
interactome network, we set out to systematically examine whether
pathogenic variations tend to specifically alter interface residues, as
our previous results suggested that it might be the case. This net-
work is higher resolution that other structurally resolved networks
[Wang et al., 2012; Khurana et al., 2013] as it reports not just inter-
acting domains for 3,398 interactions, but individual amino acids
residues mediating each interaction. We calculated the enrichment
of in-frame variations at the interaction interface, the remainder of
the interacting domain, and the rest of the protein. We found that
in-frame variations are enriched significantly both at the interface
and in the remainder of the interacting domain (odds ratio = 1.67,
P < 10–3 for interface residues; odds ratio = 1.75, P < 10–3 for the
remainder of the interacting domain; Fig. 1A, Supp. Note S1). To
confirm that the observed trends are robust, we performed the
same calculations with only the fraction of the protein in the ac-
tual cocrystal, because in many cases the crystallized structure does
not contain full-length proteins. 62.6% of all the pathogenic vari-
ations used for our calculations in Figure 2A are present within
cocrystal structures. Using only these variations, our results remain
unchanged—in-frame variations are enriched at both the interface
and in the remainder of the interacting domain even if we con-
sider only residues depicted within the cocrystal structures (Supp.
Fig. S2A). To assess the significance of a decrease in solvent acces-
sibility, we used randomly chosen cutoffs—decreases of 0.5, 2, and
5 Å2 in solvent-accessible surface area to define three alternate sets
of interface residues. Using these three sets of residues, we repeated
our calculations in Figure 1A. We find that our results remain un-
changed with all three alternate sets of residues (Supp. Fig. S3). This
shows that our results are robust to the choice of cutoff for decrease in
solvent-accessible area to define interface residues. In fact, the sets of
interface residues are very similar for any cutoff between 0.5 to 5 Å2.

Our result shows that it is not simply the interface residues, but
rather the interacting domain in its entirety that plays an important
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Figure 1. Atomic-resolution structural analysis of pathogenic variations. A: Odds ratio for the distribution of in-frame variations in different
locations on proteins in our atomic-resolution interactome network. ∗∗P < 10−3. P values calculated using Z-tests for the log odds ratio. B: Odds
ratio for the distribution of nonsynonymous SNPs in different locations on proteins in our atomic-resolution interactome network. (C) Enrichment of
in-frame variations in buried residues. ∗∗P < 10−3. Error bars indicate ±SE. D: Different mechanistic modes of disruption for variations in different
structural environments—variations at the surface are likely to cause interaction-specific disruptions, whereas those buried in the core of the
protein are likely to destabilize the entire protein.

role in pathology for many disease genes. As a negative control,
we calculated the distribution of 94,084 missense nonsynonymous
SNPs from ESP6500 in 2,829 genes and found that these were dis-
tributed randomly across the protein (Fig. 1B). Most genes contain
relatively few pathogenic variations and SNPs (Supp. Figs. S4A and
S4B). Moreover, there is no significant difference (P = 0.33) in the
distribution of pathogenic variations and SNPs across various genes
(Supp. Figs. S4A and S4B), confirming that the differences observed
in the distribution of disease-associated variants and SNPs are not
due to gene-specific distribution biases. To further confirm that
SNPs are indeed randomly distributed across proteins, we repeated
our calculations with only those genes that contain at least one
disease-associated variant (i.e., those genes used for the calculations
in Fig. 1A) and found that SNPs in these genes are also randomly dis-
tributed across the length of the protein (Supp. Fig. S4C). Moreover,
even if we consider SNPs present only within cocrystal structures, we
find that they are still randomly distributed across proteins (Supp.
Fig. S2B).

We also note that in-frame variations outside the interface were
enriched in buried residues (Fig. 1C). The importance of buried
residues in maintaining the overall stability of the protein is well
established [Gromiha et al., 1999]. It has been suggested that in-
frame and truncating variations have distinct disruption modes—
the former is likely to disrupt specific interactions, whereas the
latter usually leads to degradation of the entire protein leading to a
loss of all interactors [Zhong et al., 2009]. Our results suggest that
even for in-frame variations, the possible molecular mechanisms by
which variations at or near the interface (and distant from it) affect
protein–protein interactions are likely to be distinct: those at the
interface are more likely to alter specific interactions, thereby causing
the mutated protein either to lose or acquire specific functions; by
contrast, in-frame variations in other noninteracting regions are
more likely to disrupt the core of the protein and lead to incorrect
folding and/or degradation of the protein, resulting in the loss of all
interactions for the mutated protein (Fig. 1D).
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Figure 2. A: Crystal structure (PDB id: 3I2B) depicting a R25Q variation in the PTS–PTS interacting domain but not at an interface residue and
a R9C variation outside the interaction interface. B: Y2H assay illustrating that the R25Q variation disrupts the PTS–PTS interaction, whereas the
R9C variation does not affect the interaction.

To further understand the effects of variations in the interacting
domain outside the interface, we examined the effects of two disease-
associated variants on the PTS–PTS interaction (Fig. 2A). Using
site-directed mutagenesis PCR, we introduced the two variants—
R25Q and R9C on PTS. Although the R25Q variant is located on the
PTPS domain that mediates the PTS–PTS interaction, it is not at an
interface residue. Using Y2H, we confirmed that wild-type PTS in-
teracts with itself (Fig. 2B). However, the R25Q variant disrupts this
interaction (Fig. 2B). On the other hand, the R9C variant lies out-
side the interface mediating the PTS–PTS interaction. UsingY2H,
we confirmed that this variant (R9C) does not affect the interac-
tion (Fig. 2B). This shows that variations in the interacting domain
outside the interface can disrupt protein interactions, whereas the
same interactions can remain unaffected by variants outside the
corresponding interacting domains.

Moreover, using Western blotting, we confirm that all three vari-
ants are stable (Fig. 2B). Together, these results show that the R25Q
variant causes an interaction-specific disruption—the PTS–PTS ho-
modimeric interaction is lost due to a local structural alteration in
the corresponding interacting domain. It has been previously shown
that the enzymatic activity of the R25Q variant of PTS is reduced,
but not completely abolished compared with the activity of wild-
type PTS [Thony et al., 1994; Oppliger et al., 1995]. Our results
suggest a molecular mechanistic basis for this reduction—since the
dimerization of PTS is important for its enzymatic activity [Thony
et al., 1994; Oppliger et al., 1995], the pathogenic R25Q that disrupts
the PTS homodimer reduces this activity. However, since the variant
is stable, PTS still maintains part of its activity.

Pathogenic Variation Loci Associated with Interaction
Strength

To understand the biophysical mechanisms by which in-frame
pathogenic variations alter specific interactions, we examined the
relationship between the spatial distribution of the variations and
the strength of the interactions they perturb. Here, we explored the

biophysical strength of an interaction—the stronger the interac-
tion, the higher the free energy difference between the bound and
unbound states of the proteins [Noskov and Lim, 2001; Shi et al.,
2006]—by calculating the buried surface area of all the interac-
tions in the atomic-resolution human interactome network (Supp.
Table S1). The most direct measure of interaction strength is the
equilibrium association constant (Ka, inverse of the equilibrium
dissociation constant Kd). However, it is difficult to measure Ka in a
high-throughput fashion and the amount of experimental Ka data
is limited to a handful of human protein–protein interactions.

It has been suggested that the strength of an interaction can be
measured by its buried surface area in the cocrystal structure [Jones
and Thornton, 1996]. To validate this postulate, we classified all in-
teractions in the network into three distinct categories on the basis
of their buried surface area—low, medium, and high (Supp. Note
S2). Using a genome-wide microarray analysis that measures the
expression levels of human genes at different time points in the cell
cycle [Whitfield et al., 2002], we calculated the enrichment in coex-
pression of proteins involved in these interactions. We found that
interactions with high buried surface area are significantly more
likely to be coexpressed than interactions with low buried surface
area (P = 0.015, Fig. 3A, and Supp. Note S3). It is well known that
strong, stable interactions are more likely to be coexpressed than
weak, transient interactions [von Mering et al., 2002; Yu et al., 2008].
Our result confirms that protein–protein interactions mediated by
high buried surface area are indeed stronger. Moreover, we calcu-
lated the fraction of these binary interactions independently for the
three categories detected in stable protein complexes (Supp. Note
S3). We found that interactions with high buried surface area are
significantly enriched in stable complexes, further supporting the
conclusion that these are stronger interactions (Fig. 3B). Finally, we
calculated the correlation between Ka and buried surface area using
SKEMPI, a database of binding free energy changes for interactions
with supporting cocrystal structures [Moal and Fernandez-Recio,
2012]. For all interactions in SKEMPI involving wild-type human
proteins, we calculated the correlation between Ka values and the
buried surface area. We find that there is a significant correlation
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Figure 3. Loci of disease variations associated with interaction strength. A: Coexpression profiles for interactions with low, medium, and high
buried surface areas. B: Enrichment of interactions with low, medium, and high buried surface areas in stable complexes. C: Odds ratio for the
distribution of in-frame variations at the interface in interactions with low, medium, and high buried surface areas. ∗P < 10−3. D: Odds ratio of
in-frame variations in the remainder of the interacting domain in interactions with low, medium, and high buried surface areas. (E) Odds ratio of
in-frame variations in the rest of the protein in interactions with low, medium, and high buried surface areas. ∗P < 10−3. Error bars indicate ±SE.

(ρ = 0.63, P < 10–3 using a permutation test) between Ka and buried
surface area, confirming that the latter is an appropriate surrogate
for interaction strength.

Next, we determined the distribution of in-frame variations in dif-
ferent parts of the protein as a function of the strength of the interac-
tion. We found that variations at the interface tend to disrupt strong
interactions (odds ratio = 1.10, P = 0.005), whereas those in the rest
of the protein outside the interacting domains tend to be enriched
in weak interactions (odds ratio = 1.24, P < 10–3; Figs. 3C–E). As a
control, we also computed the distribution of SNPs in different parts
of the protein as a function of interaction strength. We found that
SNPs at the interface and away from the interface are both randomly

distributed with respect to interaction strength (Supp. Fig. S5). Our
results therefore suggest that there is a relationship between the lo-
cation of the disease variation and the biophysical strength of the
interactions it disrupts. Because pathogenic variations are enriched
at the interaction interface and interface variations selectively affect
biophysically strong interactions, we surmise that many strong in-
teractions within stable protein complexes involved in key cellular
functions are likely to be preferentially disrupted in human disease.
This provides a molecular-level biophysical explanation for the re-
sults of previous studies that have suggested that protein complexes
are useful predictors for discovering unknown disease genes [Fraser
and Plotkin, 2007].
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Figure 4. Alterations of biochemical properties of individual amino acids in disease. A: Enrichment of disease variations that alter the structural
(accessibility) and biochemical (polarity) properties of amino acids as compared with SNPs. ∗P < 10−3. Error bars indicate ±SE. B: Relative
enrichment of all pairs of amino acid changes in human pathological variations as compared with changes that occurred, and that were fixed,
during the course of evolution (gray indicates that these pathogenic variations are not observed). C: Pairs of amino acid changes enriched
in pathogenic missense variations and changes that occurred during evolution (highlighted pairs undergo significant change in biochemical
properties). D: Pairs of amino acid changes enriched at the atomic-resolution interaction interface (highlighted pairs undergo significant change
in biochemical properties). E: An example of the alteration of the interaction interface between RNASEH2B and RNASEH2C by a variation (K143I)
in RNASEH2C that significantly alters biochemical properties (in the circular panel, the blue residue is the wild-type K and the red residue is the
pathogenic variant I).
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Significant Alterations in Structural and Biochemical
Properties of Amino Acids Involved in Human-Inherited
Disease

To systematically explore the structural properties of human
pathogenic variations, we analyzed relationships between the prop-
erties of these variations and their accessibility in the protein. Amino
acids may be classified as either accessible or inaccessible (Supp. Note
S4 and Supp. Fig. S6). Using the Janin accessibility scale [Janin,
1979], we then calculated the proportion of accessibility altering in-
frame missense disease-associated variations (i.e., point variations
that cause an accessible wild-type amino acid to be changed to an
inaccessible amino acid or vice versa) in different parts of the pro-
tein. These variations are most likely to cause dramatic changes to
the configuration of the interface because the local structural con-
figuration is drastically altered. Since disease-associated variations
in different parts of the protein may exert their effects via different
pathophysiological mechanisms, we normalized our results by cal-
culating the ratio of accessibility altering in-frame variations against
a background distribution of putatively neutral SNPs that are char-
acterized by a similar change in their accessibility. Since these SNPs
are uniformly distributed throughout the protein (Fig. 1B), this
gives us an idea of the relative propensity of disease-associated vari-
ations to be significantly accessibility altering. We found that at both
surface and buried residues, and indeed in all parts of the protein,
accessibility altering variations are significantly more likely to occur
in pathogenic variations as opposed to putatively neutral variants
in the general population (P < 10–3; Fig. 4A).

We also examined amino acid substitutions in terms of their
change in polarity (Supp. Note S5 and Supp. Fig. S6). We calcu-
lated the proportion of polarity altering in-frame missense disease-
associated variations (i.e., those that cause a polar wild-type amino
acid to change to a nonpolar amino acid or vice versa). We note
that these alterations also follow a similar trend—at both surface
and buried residues, and in all regions of the protein, polarity al-
tering variations are significantly more likely to occur in disease as
opposed to putatively neutral variants in the population (P < 10–3;
Fig. 4A). This suggests that disease-associated variations are bio-
chemically more destabilizing to the protein than benign variants in
the population.

To further understand how disease-associated variations differ
in terms of their biochemical properties from changes that have
been fixed over the course of evolutionary time, we calculated the
relative enrichment of all possible pairs of amino acid changes for
disease-associated in-frame missense variations over those that have
occurred during evolution. We obtained the probabilities of amino
acid changes occurring during evolution from a recently updated
version of the Dayhoff matrices [Kosiol and Goldman, 2005]. We
compared these amino acid changes to in-frame disease variations
occurring throughput the protein (Fig. 4B). We found that disease-
associated variations generally tend to alter accessibility of the wild-
type amino acid, whereas evolutionary changes tend to preserve it
(P = 0.010; Fig. 4C, Supp. Note S6 and Supp. Fig. S7). Our findings
contrast with previous reports of significant correlations between
amino acid variations in genetic disease and evolution [Wu et al.,
2007]. To further understand the specific differences in the distri-
bution of variations in different parts of the protein, we determined
which variations were enriched at least twofold at the interaction
interface compared with other regions of the protein (Fig. 4D). We
found that these interface variations are significantly more likely to
change the accessibility of the amino acid involved (P = 0.034), with
the most dramatic changes occurring with those variations with the
highest enrichment (Supp. Note S7 and Supp. Fig. S8).

By way of an example, a K143I variation at the interaction inter-
face of RNASEH2B and RNASEH2C has been shown to be associated
with a human autoinflammatory disorder, Aicardi–Goutières syn-
drome [Reijns et al., 2011]. This variation causes a major change
in structural and biochemical properties, leading to a significant
structural modification at the interface that specifically alters the
wild-type interaction (Fig. 4E). These results further validate our
finding that pathogenic variations tend to be more disruptive than
random evolutionary changes, with those occurring at the protein
interface causing the most drastic changes, enough to perturb even
strong interactions.

In this study, we build and use an atomic-resolution human
protein interactome network to improve our understanding of the
structural principles and molecular mechanisms of pathogenic vari-
ations that perturb protein–protein interactions leading to disease.
We find that in-frame variations are significantly enriched both at
the interaction interface as well as in the remainder of the corre-
sponding interacting domain. Thus, it is not just the residues at
the interface that serve as the key mediators of interactions [Jones
and Thornton, 1996; Hu et al., 2000], variations outside the in-
terface but within the interacting domain are capable of altering
protein–protein interactions. Our findings suggest that it is the al-
teration of specific interactions by in-frame variations within the
entire interacting domain that is a major molecular determinant
of human-inherited disease. Moreover, we show that there are im-
portant biochemical and biophysical differences between variations
at the interface and those located in the remainder of the pro-
tein molecule. Specifically, we find that the locations of pathogenic
variations are associated with the strength of interactions—those
at the interface tend to selectively disrupt stronger interactions.
One mechanistic explanation for such a phenomenon is the ten-
dency for variations enriched at the interface (as compared with
other parts of the protein) to cause the most dramatic changes
in their structural and biochemical properties. Analyses at the
level of individual amino acids are only possible with atomic-
resolution interactome networks. Our findings suggest that the
structurally guided prioritization of pathogenic variations identi-
fied in large-scale sequencing studies using an atomic-resolution
network might be useful in the context of informing follow-up
experiments.

The coverage of the atomic-resolution human protein interac-
tome network is limited by the number of cocrystal structures
currently available in PDB. As more cocrystal structures become
available [Chandonia and Brenner, 2006], the same principles
developed here can be readily applied to reveal additional spe-
cific structural mechanisms underlying pathogenic variations. Our
work further underscores the importance of the exploration of
all possible domain architectures by structural genomics consor-
tia [Editorial, 2007]. Using our methodology on a more com-
plete set of structural folds is likely to generate reliable direct
atomic-resolution target sites for structurally aided rational drug
design, and has the potential to overcome the difficulties rou-
tinely encountered due to the paucity of well-elucidated struc-
tural targets [Tanrikulu and Schneider, 2008; Xie and Bourne,
2011].
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