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The study of the molecular basis of human disease has gained increasing attention over the past decade.

With significant improvements in sequencing efficiency and throughput, a wealth of genotypic data has

become available. However the translation of this information into concrete advances in diagnostic and

clinical setups has proved far more challenging. Two major reasons for this are the lack of functional

annotation for genomic variants and the complex nature of genotype-to-phenotype relationships. One

fundamental approach to bypass these issues is to examine the effects of genetic variation at the level of

proteins as they are directly involved in carrying out biological functions. Within the cell, proteins function

by interacting with other proteins as a part of an underlying interactome network. This network can be

determined using interactome mapping – a combination of high-throughput experimental toolkits and

curation from small-scale studies. Integrating structural information from co-crystals with the network

allows generation of a structurally resolved network. Within the context of this network, the structural

principles of disease mutations can be examined and used to generate reliable mechanistic hypotheses

regarding disease pathogenesis.

Introduction

Over the last decade and a half, there has been a dramatic
increase in the efficiency and a substantial decrease in the cost
of sequencing. With the sequencing of the human genome, there
was the promise of significant advances in translational
medicine.1,2 However, while there has been a rapid accumulation
of genomic data, the corresponding expansion in our understanding
of pathogenic processes has been much slower. There are two
major reasons for this. First, while there has been an explosion
in the accumulation of genomic variants and disease-associated
mutations, most of them have not been functionally annotated
(Fig. 1A). This is reflected in the fact that while the number of
single-nucleotide polymorphisms (SNPs) available from dbSNP3

and disease-associated mutations from HGMD4 have grown
3500% and 260%, respectively, over the last twelve years, the

number of FDA-approved drugs has grown only 20% (Fig. 1A).
Second, the difficulty in obtaining functional annotation is
primarily attributable to the complex relationships between
genotype and phenotype. A single gene can affect multiple traits
(gene pleiotropy) and the same trait can be linked to numerous
causal genes (locus heterogeneity). Furthermore, epistasis also
brings additional complexity to genotype-to-phenotype relation-
ships.5 To sidestep these complexities, numerous large-scale
efforts have been undertaken to correlate sequence variants with
an observable phenotype, but it has been difficult to extend the
observed correlation into causation. This has often been the
main critique of GWA-like studies6 and has resulted in a large
fraction of phenotypes with unknown molecular mechanisms
(Fig. 1B).

One fundamental way to bypass the complexity of genotype-
to-phenotype relationships is to directly examine the functional
consequences of mutations and variants within coding regions
at the protein level. Although a large number of variants are in
non-coding regions, it has been shown that disease mutations
and trait-associated SNPs are enriched in coding regions.7

Moreover, within the cellular environment, proteins rarely act
in isolation. Interactions between proteins within the cell define
major functional pathways crucial to physiological processes.
The set of all interactions within the cell or the protein inter-
actome can be represented as a network in which proteins are
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nodes and interactions between them are undirected edges.
Thus maintenance of this network is critical to cellular function,
and disease phenotypes can be viewed as perturbations to this
network.8–10 Thus, the protein network can be used to gain
insights into complex dependencies in pathogenic processes.8,9

It has also been shown to be useful in understanding disease
sub-types and predicting disease prognosis.11,12 However, one
limitation of this approach is that while such a representation
is inherently two-dimensional, proteins are complex macro-
molecules with intricate three-dimensional structures. In this
review, we outline experimental techniques used to identify
protein–protein interactions and discuss recent methods developed
to overlay structural information onto these interactions
to construct structurally resolved protein networks. We then
elucidate the importance of these networks in understanding
molecular mechanisms of human disease.

High-throughput experimental toolkit
for interactome mapping

There are two ways in which protein interactome networks are
determined – literature-curation of small-scale studies and
high-throughput (HT) experiments. In literature curation, inter-
action data are collected from thousands of small-scale studies

each of which focuses on one or a few proteins and their
interactions. On the other hand, HT experiments are much
larger in scale and are typically set up as an unbiased screen of
a large space. The repertoire of techniques used to determine
these networks using such experiments is referred to as inter-
actome mapping.13

Interactome mapping can generate binary interactions
and co-complex associations.14,15 The former represents direct
biophysical interactions between two proteins while the latter
merely denotes membership of a complex and can often
include indirect associations. There are several widely-used
databases – BioGrid,16 IntAct,17 HPRD,18 iRefWeb,19 DIP,20

MINT,21 MIPS22 and VisAnt23 – that curate both categories of
interactions for humans and other model organisms. However,
it has been shown that the same degree of confidence cannot
be associated with all interactions and those that have been
validated by only one assay typically tend to be of lower quality
than those that are validated by two or more assays.14,24,25

Numerous hypothesis-driven studies rely on specific interactions
to design downstream experiments. Using low-quality or erroneous
interactions could lead to incorrect hypotheses and futile
downstream experiments. To address this, we built a repository
of high-quality protein interactome networks – HINT.15 HINT
also distinguishes between interactions curated from small-scale
studies and those obtained from high-throughput experiments.

Fig. 1 Growth of genomic data and our understanding of pathogenesis (A) accumulation of dbSNP data, HGMD mutations, disease genes and drug
targets over the past 12 years (number of dbSNP variations: ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606/chr_rpts/; number of HGMD
mutations: http://www.hgmd.cf.ac.uk/ac/hahaha.php; number of disease genes: ftp://ftp.eimb.ru/omim/; number of FDA-approved drugs: http://
www.fda.gov/AboutFDA/WhatWeDo/History/ProductRegulation/SummaryofNDAApprovalsReceipts1938tothepresent). (B) Distribution of OMIM pheno-
type entries by knowledge of molecular basis (http://www.omim.org/statistics/entry).
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This is essential because it has been shown that small-scale studies
often contain sampling biases that make networks generated
using them unsuitable for global topological analyses.14,15 In this
review, we discuss five major high-throughput assays that can be
used to generate binary interactome networks. To construct
structurally resolved networks, it is essential for the interactions
to be binary because the concept of interaction interface does
not apply to indirect associations.

Yeast two-hybrid (Y2H) (Fig. 2A) was developed by Stanley
Fields and Ok-Kyu Song as a genetic system to identify protein–
protein interactions.26 The assay relies on the split functionality
of particular eukaryotic transcription factors, for example
Gal4, in which the transcription factor is split into two
parts: a sequence-specific DNA-binding domain (DB) and a
transcriptional-activation domain (AD). Protein–protein inter-
actions are tested by fusing a ‘‘bait’’ protein X to the DB and
fusing a ‘‘prey’’ protein Y to the AD. Each fusion protein is then
expressed in haploid strains of yeast of opposite mating type.
Upon mating, if protein X and Y interact, transcription factor
activity will be reconstituted, allowing for downstream reporter
gene expression and diploid yeast growth on selective media.
The original system has undergone numerous technical modifica-
tions to make it amenable to high throughput with improved assay
precision and sensitivity.27,28

Protein complementation assay (PCA) (Fig. 2B) is another
popular approach for testing protein–protein interactions using
mammalian cells. Similar to Y2H, in PCA, a fluorescent protein
such as yellow fluorescent protein (YFP) (or an enzyme such as
TEM-1 b-lactamase) is split into N- and C-terminal domains
then fused to a bait protein X and a prey protein Y. If X and Y
interact, YFP activity is reconstituted which can be observed by

fluorescent microscopy or in high-throughput by using a plate
reader.29 Unlike Y2H though, detectable protein–protein inter-
actions are not limited to the nucleus. Thus, PCA can serve as a
suitable assay for probing protein interactions at their native
localizations in intact, living cells.

In luminescence-based mammalian interactome (LUMIER)
(Fig. 2C) a bait protein X is fused to renilla or firefly luciferase
enzyme and then co-expressed with a FLAG-tagged prey protein Y in
mammalian HEK293T cells. Interaction between proteins X and Y
can then be assayed by anti-FLAG immunoprecipitation of protein Y.
Luciferase bioluminescence is then measured to detect whether
protein Y was pulled down with X.30 Recent modifications allow
LUMIER to be carried out in a high-throughput fashion using 96-well
plates while also offering an improved quantitative readout.31

Well-based nucleic acid programmable protein array (wNAPPA)
(Fig. 2D) is an in vitro assay, which begins with two expression
vectors that encode for an anti-glutathione-S-transferase (GST)
tagged protein X and a hemagglutinin (HA) tagged protein Y,
respectively, which are anchored in a GST antibody-coated plate
well. In vitro transcription and translation of chimeric proteins X
and Y is then triggered by introducing rabbit reticulocyte lysate
to the wells. Translated GST-tagged protein X will then bind to
the GST antibodies coated in the well. A washing step then
follows in which protein Y will remain in the well post-wash only
if it interacts with protein X. The presence of protein Y – and
therefore an interaction between proteins X and Y – is then
detected by attaching horseradish peroxidase (HRP)-conjugated
secondary antibodies specific to HA tagged protein Y and then
measuring HRP-induced chemiluminescence.32

Mammalian protein–protein interaction trap (MAPPIT) (Fig. 2E)
is based upon JAK-STAT signaling pathways. In JAK-STAT signaling,

Fig. 2 Schematic representations of high-throughput assays used to generate binary interactome networks. (A) Yeast two-hybrid (Y2H). (B) Protein
fragment complementation assays (PCA). (C) Luminescence-based mammalian interactome mapping (LUMIER). (D) Well-based nucleic acid program-
mable protein array (wNAPPA). (E) Mammalian protein–protein interaction trap (MAPPIT). (F) A high-quality reference human binary interactome
comprising B40 000 interactions generated from several large-scale interactome mapping efforts and thousands of small-scale studies.
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ligand-bound cytokine receptor complexes will reorganize
themselves, in turn activating tethered Janus kinases (JAKs).
Activated JAKs then phosphorylate tyrosine residues along the
tails of the receptor complex which then serve as docking sites
for signal transducer and activator of transcription (STAT)
proteins. Receptor tail-docked STATs are next phosphorylated
and activated by JAKs which then migrate to the nucleus to
trigger STAT-dependent reporter gene activity. MAPPIT instead
though uses a modified receptor complex in which the complex
is split into two fragments: (1) a membrane-bound receptor that
still permits JAK2 activation with mutated tyrosine residues to
prevent STAT3 docking and (2) a receptor tail fragment containing
STAT3 binding sites. Fragments 1 and 2 are then fused to bait
protein X and prey protein Y. If proteins X and Y interact, JAK2
will activate STAT3 in trans, leading to STAT3-dependent reporter
gene activity.33

Numerous studies have also tried to predict protein interactions
based on machine-learning approaches34 or known co-crystal
structures.35–37 However, only those predictions that have been
experimentally validated can be considered high quality. Thus,
by combining data from several large-scale interactome mapping
efforts24,28,38,39 (that use the above techniques) with thousands
of small-scale studies, a high-quality reference human binary
interactome comprising B40 000 interactions (Fig. 2F) can be
generated and denotes the first step towards producing a
structurally resolved network.

Structurally resolved interactome
networks

The reference interactome network has been widely used to try and
understand the molecular basis of human disease.8 Numerous
methods have been used to predict disease-associated genes,40

most of which rely heavily on a global ‘‘guilt-by-association’’
principle.41 Thus, if a particular gene is associated with a disease,
the assumption is that all the interacting partners of the protein
encoded by that gene are also associated with that disease. Such an
understanding can be quite simplistic as the reference interactome
is merely a two-dimensional representation and does not take into
account the 3D structures of interacting proteins. Consequently,
the percentage of successful predictions using such approaches is
quite low.42 Since most interacting proteins share only a few of
their associated disorders, it is essential to incorporate structural
information regarding the location of disease mutations to make
the predictions more accurate. This necessitates the construction
of a structurally resolved interactome network.

Over the last two decades, there have been systematic efforts
to structurally classify proteins into families43,44 based on
domain architecture.45 This has been used to identify
domain–domain interactions of known three-dimensional
complexes of interacting proteins.46,47 However, the biggest
challenge in constructing a structurally resolved network from
these domain–domain interactions is posed by the relatively low
number of available co-crystal structures compared to the amount
of available proteomic network data. Co-crystal structures are not

available for >90% of available binary protein–protein inter-
actions. Moreover, complete individual structures are available
for only about 10% of interacting proteins. Mosca et al. present a
comprehensive analysis that highlights the paucity of experi-
mentally determined crystal structures compared to the number
of known binary interactions.48 Thus, it is essential to build
structural models both to model individual proteins49 and infer
interaction interfaces.

Dr Gerstein and his colleagues took the first step in this
direction and used sequence similarity to compare interacting
proteins with known co-crystal complexes. The authors constructed
a structurally resolved yeast protein interactome to gain insight
into evolutionary rates of network hubs with distinct types of
interaction interfaces.50 Schuster-Bockler and Bateman focused
on using a sequence-based homology approach to analyze the
sites of disease-associated mutations with respect to protein
interaction interfaces. Their work indicated that only about 4%
of these mutations could interfere with protein–protein inter-
actions.51 Prieto et al. built a repository of unified structural
domain–domain interactions by systematically comparing six
main structural domain–domain interaction sources that are based
on Protein Data Bank (PDB) structures.52 The first structurally
resolved human-virus protein–protein interaction network con-
structed by Franzosa and Xia showed that it is common for viruses
to mimic host binding interfaces even without structural similarity
to the human counterparts.53

Recently, we constructed a high-quality structurally resolved
human binary protein interactome network using either co-crystal
structures in the PDB or a homology-based interaction interface
domain inference method.54 A comprehensive list of 62 663
Mendelian mutations in 3949 protein-coding genes associated
with 3453 clinically distinct disorders was curated from Online
Mendelian Inheritance in Man (OMIM) and Human Gene Muta-
tion Database (HGMD), and then mapped to the structurally
resolved interactome (Fig. 3A). We found that in-frame muta-
tions are significantly enriched within interacting domains of
disease-associated proteins. Furthermore, we observed that the
likelihood of two in-frame mutations on the corresponding
interacting domains of interacting proteins to cause the same
disorder is significantly higher than that of corresponding pairs
on non-interacting domains (Fig. 3B). In addition, we saw that
in-frame mutation pairs on different interaction interfaces tend
to cause different disorders than those on the same interface
(Fig. 3C).54 These results help explain locus heterogeneity and
gene pleiotropy, respectively – the alteration of specific inter-
actions by mutations at the corresponding interface plays an
important role in the pathogenesis of many disease genes.
This also helps us refine the traditional guilt-by-association
principle – mutations at different structural loci on the same
protein can cause different diseases through disruption of
separate interactions (Fig. 3D). We also used our interface
inference approach to generate structurally resolved interactome
networks for several other model organisms and established a
database of high-quality structurally resolved protein–protein
interactions, INstruct.55 Mosca et al. also used a similarly
motivated structural alignment approach to infer interaction
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interfaces for networks in humans and eight other model
organisms. Their results also suggested that structural annotation
of pathways could help rationalize the mechanism of action of
disease mutations.48 Thus, using structurally resolved interactome
networks, it is now possible to gain insights at the molecular level
into protein function and its alteration.

Towards a mechanistic understanding
of human disease

Human disease can be viewed as a rewiring of the reference
interactome through loss or gain of interactions.8 Zhong et al.
experimentally showed that disease mutations could alter the
underlying interactome by edge-specific changes i.e., altering
specific interactions or node-specific changes i.e., leading to
complete loss of protein products.10 One example they demon-
strated was the disruption of the homodimeric CBS interaction
(i.e., interaction of CBS with itself) by a homocystinuria associated
P145L mutation (Fig. 4A). On the other hand, a homocystinuria
associated P49L mutation did not disrupt the interaction – the
interaction was ‘‘pseudo wild-type’’ (Fig. 4A). Upon examining
the interface of this protein–protein interaction (which can be
obtained from the co-crystal with PDB id: 1JBQ56) using our

structurally resolved network approach, we found that the
P145L mutation is within the interface whereas the P49L
mutation is outside the interface. We also showed that each
of the three distinct colorectal cancer associated mutations on
the interaction interface of MLH1 (I68N, I107R and Y293D) with
PMS2 disrupted the interaction while any of the three other
colorectal-cancer associated mutations (N338S, Y561H and
R725C) outside the interface did not disrupt the interaction54

(Fig. 4B). In this case, the interface was inferred using our
homology-based interaction interface inference method.54

These studies further establish the view that mutations at the
interface can disrupt specific interactions leading to human
disease.

In general, there are three kinds of possible changes to the
interactome network – loss of a protein (and all its interac-
tions), loss of a specific interaction, and gain of a specific
interaction (Fig. 4C).10 To be able to truly understand human
disease, it is necessary to experimentally analyze relationships
between the structural loci of mutations and each of these
alteration types at a proteomic scale. Since the vast majority of
interactions do not have corresponding co-crystal structures, it is
also necessary to develop better computational models that help us
accurately determine the structural locations of mutations.
Combining co-crystal structures with these computational models

Fig. 3 Structurally resolved interactome networks and human disease. (A) Construction of a structurally resolved interactome network onto which
disease mutations are mapped. (B) Percentage of mutation pairs on two proteins that cause the same disease. (C) Percentage of mutation pairs on the
same protein that cause different diseases. (D) A higher resolution of the guilt-by-association principle – mutations at different structural loci on the same
protein that cause different diseases [(B) and (C) are adapted from ref. 54].
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will help generate a comprehensive atlas of protein–protein
interactions that is of ubiquitous importance in understanding
pathogenic processes.57,58 Such an atlas can be generated by
integrative methods that incorporate both experimental and
computational approaches and is likely to be highly successful
in elucidating the mechanistic basis of human disease caused
by rewiring of the underlying protein interactome network.

Conclusion

A key bottleneck in translational medicine has been the sharp
imbalance between the number of available genomic variants
and the number of well-understood disease mechanisms. The
complex nature of genotype-to-phenotype relationships has
made functional annotation of variants an extremely challenging
problem. Analyzing alterations at the proteomic level promises
to offer possible solutions to these problems as human disease
can be viewed as altered protein function. Since proteins
mediate cellular functions by interacting with other proteins,

it is necessary to examine these changes in the context of the
underlying network of protein–protein interactions. A combi-
nation of high-throughput experiments and literature curation
is being used to generate the reference human protein inter-
actome network. By incorporating structural details of proteins
involved in these interactions, it is possible to generate a
structurally resolved network. Within the context of this net-
work, it is possible to examine structural details of disease-
causing mutations and generate mechanistic hypotheses
regarding pathogenesis (Fig. 4D). Follow-up of these hypotheses
is likely to uncover key functional principles underlying human
disease and identify more reliable drug targets.
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