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Dissecting Disease Inheritance Modes
in a Three-Dimensional Protein Network
Challenges the ‘‘Guilt-by-Association’’ Principle

Yu Guo,1,2 Xiaomu Wei,2,4 Jishnu Das,2,3 Andrew Grimson,1 Steven M. Lipkin,4 Andrew G. Clark,1,3

and Haiyuan Yu2,3,*

To better understand different molecular mechanisms by which mutations lead to various human diseases, we classified 82,833 disease-

associated mutations according to their inheritance modes (recessive versus dominant) and molecular types (in-frame [missense point

mutations and in-frame indels] versus truncating [nonsense mutations and frameshift indels]) and systematically examined the effects

of different classes of disease mutations in a three-dimensional protein interactome network with the atomic-resolution interface

resolved for each interaction. We found that although recessive mutations affecting the interaction interface of two interacting proteins

tend to cause the same disease, this widely accepted ‘‘guilt-by-association’’ principle does not apply to dominant mutations. Further-

more, recessive truncating mutations in regions encoding the same interface are much more likely to cause the same disease, even

for interfaces close to the N terminus of the protein. Conversely, dominant truncating mutations tend to be enriched in regions encod-

ing areas between interfaces. These results suggest that a significant fraction of truncating mutations can generate functional protein

products. For example, TRIM27, a known cancer-associated protein, interacts with three proteins (MID2, TRIM42, and SIRPA) through

two different interfaces. A dominant truncating mutation (c.1024delT [p.Tyr342Thrfs*30]) associated with ovarian carcinoma is located

between the regions encoding the two interfaces; the altered protein retains its interaction with MID2 and TRIM42 through the first

interface but loses its interaction with SIRPA through the second interface. Our findings will help clarify the molecular mechanisms

of thousands of disease-associated genes and their tens of thousands of mutations, especially for those carrying truncating mutations,

often erroneously considered ‘‘knockout’’ alleles.
Introduction

Understanding genotype-to-phenotype relationships has

been a central theme of human genetics.1 In the past few

decades, great progress has been made in identifying and

characterizing disease-associated genes underlying many

Mendelian disorders.2,3 Advances in next-generation-

sequencing technologies and genome-wide association

studies have further facilitated the identification of allelic

variants associated with complex genetic diseases.4,5 How-

ever, it is often unclear how these mutations translate into

complex disease phenotypes. Furthermore, disease-associ-

ated mutations can be classified into different categories

on the basis of their inheritancemodes (dominant or reces-

sive) and molecular types (missense or nonsense). Muta-

tions in different categories might cause disease through

completely different mechanisms at the molecular level

(e.g., loss of function or gain of function).3,6

Given that the cell functions as an intricate molecular

network, disease mutations not only cause aberrations of

single genes but could also perturb the broader network

and lead to the observed phenotype.7–10 Various

network-based approaches have been employed for

exploring genotype-to-phenotype relationships.7–11 Goh

et al. and Feldman et al. found that protein products of

genes associated with similar diseases are more likely to
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physically interact and form disease-specific functional

modules.8,9 On the basis of this commonly accepted

‘‘guilt-by-association’’ principle,12 many methods have

been developed for the prediction of novel disease-associ-

ated genes with the use of the protein interactome

network.13–15 However, none of these methods have

considered the potential differences in the molecular

mechanisms leading to the corresponding disorders for

mutations of different inheritance modes and molecular

types. Zhong et al. found that disease mutations could

lead to two types of perturbations at the network level:

node removal (loss of all known interactions of a protein)

or edgetic perturbation (loss of specific interactions of a

protein).11 They also found that a higher fraction of muta-

tions associated with autosomal-dominant diseases are in-

frame, tend to affect structural proteins, and are likely to

affect exposed residues.11

The functional consequences of different classes of dis-

ease mutations can be better characterized by the consider-

ation of the three-dimensional (3D) structures of proteins.

Recent studies have shown that incorporating structural

information with the protein-protein interaction network

provides mechanistic understanding of disease-associated

genes and mutations at the molecular level.6,16 In a previ-

ous study, we established a high-quality 3D protein inter-

actome network with structurally resolved interfaces for
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each interaction.16 We analyzed in-frame disease muta-

tions affecting this 3D interactome network and found

that disease specificity of in-frame mutations can be ex-

plained by the locations they affect within the correspond-

ing interaction interfaces.16

However, to date, no systematic analysis has been done

to examine the widely-used guilt-by-association principle

on disease mutations with different inheritance modes

and molecular types, which is the focus of this study.

We compiled a comprehensive set of disease-associated

mutations from the Human Gene Mutation Database

(HGMD)17,18 and the Catalogue of Somatic Mutations in

Cancer (COSMIC).19,20 We then annotated the inheritance

modes of disease mutations on the basis of manually

curated inheritance information. We further expanded

the 3D protein interactome network with 668 additional

high-quality binary interactions.16 Structural details of

protein interactions provide a tool for examining the

effects of different types of disease mutations at atomic res-

olution. Here, we applied this approach to systematically

analyze disease mutations of different inheritance modes

and molecular types, which can be divided into four cate-

gories (i.e., dominant in-frame, dominant truncating,

recessive in-frame, and recessive truncating). First, we

examined how the effects of disease mutations in different

categories were distributed in proteins with respect to

interaction interfaces. We then investigated to what extent

the guilt-by-association principle can be applied to pairs of

mutations that are in different categories and that affect

different locations in the corresponding proteins. We

found that the guilt-by-association principle does not

apply to dominant disease mutations (both in-frame and

truncating). Furthermore, we found that 61% of recessive

truncating mutation pairs in regions encoding the same

interaction interface cause the same disease; this percent-

age is significantly higher than that for mutations in re-

gions encoding different interfaces (12%). This analysis

was not performed in our previous study,16 and our results

indicate that a significant fraction of truncating mutations

can generate protein products that retain at least some of

the wild-type functions, contrary to the common belief

that truncating mutations are often complete loss-of-func-

tion mutations.21–24
Material and Methods

Compiling a High-Quality List of Disease-Associated

Genes and Mutations
Somatic mutations and their associated cancers were obtained

fromCOSMIC19,20 (version 56). To remove putative passenger mu-

tations, we only included mutations in genes in the Cancer Gene

Census.25–28 Germline mutations and their associated diseases

were obtained from HGMD17,18 (professional version 2010.12).

Only ‘‘disease-causing mutations’’ and ‘‘disease-associated poly-

morphisms of functional significance’’ were selected for further

analyses. Each mutation and its flanking sequence was translated

into an amino acid sequence andmapped onto the corresponding
The
protein sequence. Protein sequences used were obtained from

SwissProt29 (release 57.6).

The nomenclatures of diseases are not standardized between the

two databases. We compiled a comprehensive disease-gene associ-

ation map based on the Online Mendelian Inheritance in Man

(OMIM)2 and HGMD databases and gave unique disease IDs to

each phenotypically distinct disorder. To standardize the nomen-

clature, we mapped all disease names to our disease IDs through

bioinformatic processing and manual curation.

Constructing the 3D Protein Interactome Network
The human 3D protein interactome network was constructed as

previously described in Wang et al.16 Since the publication, the

3D protein interactome network has been continuously up-

dated.30 New binary protein interactions have been incorpo-

rated.31 Furthermore, in Wang et al.,16 binary protein interactions

that are supported by only one cocrystal structure and have no

other supporting evidence in the literature were excluded from

the 3D protein interactome network for quality assurance. Here,

we modified our filtering criteria to include all binary protein in-

teractions supported by cocrystal structures in 3did32 or iPfam,33

given that cocrystal structures are usually considered gold-

standard evidence that these interactions exist. Our homology-

modeling approach assigns each interface domain with specific

interactions of that protein, and one interaction could have mul-

tiple interface domains. If two proteins interact through multiple

domains, all domains involved in the interaction are considered to

be the interaction interface. If each of the two interacting proteins

has other domains that interact with other proteins, these

different domains are classified as different interfaces for different

interactions. To evaluate the performance of our homology-

modeling approach, we carried out 3-fold cross-validation by

using the 1,456 human interaction pairs with known cocrystal

structures. We found that over 94% of these interactions were

correctly predicted with corresponding interaction interfaces,

indicating the high accuracy of our approach.16 Currently, our

homology-modeling approach cannot account for protein-pep-

tide interactions, given that it is extremely difficult to predict pro-

tein-peptide interactions with high accuracy.34

Annotating the Inheritance Modes
Inheritance information of disease-associated genes was obtained

from two sources: Zhong et al.11 and the Cancer Gene Census.35

Each unique gene-disease pair was assigned either autosomal-

dominant or autosomal-recessive inheritance. Gene-disease pairs

with other inheritance patterns, e.g., sex-linked inheritance,

were discarded. Gene-disease pairs with conflicting annotations

in the two data sets were removed. In total, we collected inheri-

tance patterns for 1,794 unique gene-disease pairs. Next, we

separated mutations into either autosomal-dominant or auto-

somal-recessive inheritance on the basis of the genes in which

they reside and the disease with which they are associated. A total

of 38,497 disease-associated mutations with either autosomal-

dominant or autosomal-recessive inheritance were obtained.

Statistical Analysis: Distribution of Mutations with

Respect to Regions Encoding Interaction Interfaces
Proteins affected by at least one mutation and with at least one

interaction domain were chosen for the mutation enrichment

calculation. Each protein sequence was divided into three regions:

‘‘in interaction interface,’’ ‘‘in other domain,’’ and ‘‘outside
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domains.’’ The total number of amino acids and the total

number of mutations affecting each region were counted. If

mutations are randomly distributed, the fraction of mutations

affecting each region should be proportional to the relative

length of each region. We calculated the expected fraction of

mutations affecting each region (p2) by dividing the sum of

the sequence length of each region in all proteins by the sum

of the total sequence length of all proteins. We calculated the

observed fraction of mutations affecting each region (p1) by add-

ing mutations affecting each region of all proteins and dividing

the sum by the total number of mutations. The odds ratios

(ORs) were calculated on the basis of these expected and observed

fractions:

OR ¼ p1=ð1� p1Þ
p2=ð1� p2Þ:

Z scores and the 95% confidence intervals for the ORs36 were

calculated as follows:
SElog odds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nmut;region

þ 1

nmut;total � nmut;region

þ 1

nres;region

þ 1

nres;total � nres;region

s

95% CIlog odds ¼ ln OR5
�
N0:975 3 SElog odds

�

Z ¼ lnðORÞ
SElog odds

;

where N0.975 is the 97.5th percentile value of the standard normal

distribution, nmut is the number of mutations, and nres is the total

number of residues.
Statistical Analysis: Locus Heterogeneity Calculations
Mutation Pairs Affecting Interaction Partners

Genes with at least onemutation affecting an interaction interface

and encoding proteins with at least one interaction interface were

selected for this calculation. Of all mutations in these genes, only

mutations affecting interaction interfaces were used and muta-

tions not affecting interaction interfaces were discarded. From

this list of genes, all possible pairs of genes in which at least one

of the two genes encodes a protein withmore than one interaction

interface were selected.

For each gene pair, all possible mutations pairs with one

mutation affecting an interaction interface encoded by gene A

and another mutation affecting an interaction interface encoded

by gene B were considered. We divided all mutation pairs into

three categories: (1) if genes A and B encode interacting proteins

in the 3D protein network and both mutations affect the

interaction interface responsible for the interaction between the

proteins encoded by genes A and B, we considered the mutation

pair to ‘‘affect the same interface;’’ (2) if at least one of the two

mutations does not affect the interaction interface between

the proteins encoded by genes A and B, we considered the

mutation pair to ‘‘affect other interaction interfaces;’’ and (3) if

genes A and B do not encode interacting proteins, we considered

the mutation pair to be ‘‘noninteracting.’’ We then calculated the

percentage of mutation pairs causing the same disease for

each category. The statistical significance of the comparisons
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between categories was evaluated by the cumulative binomial

distribution

pðcRcoÞ ¼
XN
c¼co

�
N!

N!ðN � cÞ!
�
pcð1� pÞN�c

;

where N is the total number of mutation pairs, co is the number of

observed pairs causing the same disease, and p is the fraction of

pairs causing the same disease in the control sample. In all calcu-

lations, the binomial test was performed twice, and the test and

control groups were swapped in the second test. The least signifi-

cant p value was used.

Effect of Mutation Location on Locus Heterogeneity

All genes with at least one mutation were selected. All possible

pairs of genes encoding proteins that interact in the 3D protein

network were used. For each gene pair, gene A was divided into

three equal parts and mutations on each third were paired with

all gene Bmutations affecting the corresponding interaction inter-
face. All mutation pairs were classified into two categories: (1) if

the mutation in gene A also affects the corresponding interaction

interface with the protein encoded by gene B, the mutation pair

was considered to ‘‘affect the interaction interface,’’ or (2) the

mutation pair was classified as ‘‘other.’’ For each gene pair, both

genes were used once as gene A and once as gene B. The statistical

significance of the difference between the two categories for each

third was evaluated by the cumulative binomial distribution as

described above.
Statistical Analysis: Enrichment of Truncating

Mutations in Sequences Encoding the Interdomain

Regions
In this study, an interdomain region was defined as a region

between two different interaction interfaces on a protein. Two

interaction interfaces on a protein were considered different if at

least one protein interacts with one interface, but not the other,

in the 3D protein interaction network. Genes with at least one

truncatingmutation and encoding proteins with at least one inter-

domain region were selected for further analyses. The enrichment

of dominant and recessive truncating mutations in sequences

encoding the interdomain regions was measured by an OR as

detailed above. Sample sizes in all the calculations are listed in

Table S1, available online.
Identification of Loss-of-Function Dominant

Mutations
Huang et al.37 have made a genome-wide prediction of the pro-

bability of genes to exhibit haploinsufficiency. On the basis of their

predicted probability scores of being haploinsufficient (HI), p(HI),

we considered the top 10% of genes with the highest p(HI) as HI

genes. To validate the predicted HI gene set, we checked whether

the predicted HI genes tend to be dominantly inherited. Among

583 dominantly inherited genes, 161 were predicted to be HI

genes, whereas only 32 out of 515 recessively inherited genes were



predicted to be HI. The enrichment of dominantly inherited genes

in the HI gene set verified the prediction accuracy. We classified

all dominant mutations on HI genes as ‘‘HI mutations’’ and all

dominant mutations not on HI genes as ‘‘non-HI mutations.’’

Selection of Proof-of-Principle Example for

Experimental Validation
To experimentally validate our hypothesis that protein products of

alleles with truncating mutations in sequences encoding the

interdomain regions can retain some of their original functions

or interactions, we searched for dominant truncating mutations

satisfying the following criteria: (1) Themutation has to be located

between regions encoding two different interaction interfaces. (2)

Dominant truncating mutations have to be enriched in the

sequence encoding the interdomain region. (3) To test the conser-

vation and loss of specific interactions of the truncated protein

with yeast two-hybrid (Y2H) assays, the interactions between the

wild-type protein and its interactors at different interaction inter-

faces must be detectable by our Y2H pipeline. TRIM27 (MIM

602165) c.1024delT (p.Tyr342Thrfs*30) was chosen for experi-

mental validation because it satisfies all the above requirements

and we have existing clones of TRIM27, SIRPA (MIM 602461),

MID2 (MIM 300204), and TRIM42.

Determination of Interaction Interfaces with the Use

of the 3D Protein Interaction Network and Structural

Interface Matching
Using a combination of the 3D protein interaction network and

structural interface matching, we determined domains mediating

interactions between TRIM27 and SIRPA, TRIM27 and MID2, and

TRIM27 and TRIM42. Structural interface matching comprised

two steps—rigid body docking and flexible docking.38 For putative

interacting domains, crystal structures were obtained from the

Protein Data Bank (PDB) (see Web Resources).39 Only high-resolu-

tion (<2.5Å) X-ray-diffraction structures were used. Rigid body

docking was performed with Patchdock40,41 with default parame-

ters. This was followed by backbone refinement of the two pro-

teins with the use of normal-mode analysis.42 Finally, both the

side chain and the backbone conformations were refined with

the computationally efficient FiberDock algorithm with default

parameters.43,44 We found that a SPRY domain on TRIM27 and a

C1-set domain on SIRPA mediate the interaction between

TRIM27 and SIRPA. We found an energetically feasible solution

by docking the SPRY domain (PDB ID 2YYO, crystallized by

the RIKEN Structural Genomics/Proteomics Initiative) and the

C1-set domain (PDB ID 2WNG).45 Both the TRIM27-MID2 and

TRIM27-TRIM42 interactions are mediated by zf-B box domains

on the corresponding proteins. The energetic feasibility of dimer-

ization of the zf-B box domain is demonstrated by a cocrystal

structure (PDB ID 2YVR, crystallized by the RIKEN Structural

Genomics/Proteomics Initiative).

Construction of Plasmids and Disease Mutant Clones
Wild-type TRIM27, MID2, TRIM42, and SIRPA entry clones

are from the hORFeome 3.1 collection.46 To generate disease

mutant clones, we performed PCR mutagenesis as previously

described.11,16,47 In brief, wild-type TRIM27 in an activation

domain (AD) vector was used as the template in PCR reactions

for the generation of N- and C-terminal fragments, each con-

taining the region affected by the desired mutation in their

overlapping region. BP recombination reactions were performed
The
according to the manufacturer’s manual (Gateway BP Clonase II

Enzyme Mix, catalog number 11789-020) for moving mutant

clones into the entry vector.
Y2H
Y2H was performed as previously described.48 In brief, wild-type

and mutant TRIM27 were transferred into AD vectors. Wild-type

MID2, TRIM42, and SIRPA were transferred into DNA-binding

(DB) vectors. AD and DB constructs were transformed into Y2H

strains MATa Y8800 and MATa Y8930, respectively. Transformed

yeast were spotted onto YPD plates and incubated at 30�C for

~20 hr before replica plating onto synthetic complete (SC) plates

lacking Leu and Trp. Yeast cells were allowed to grow at 30�C for

24 hr before replica plating onto each of the four selection plates

(SC-Leu-Trp-His, SC-Leu-HisþCYH, SC-Leu-Trp-Ade, and SC-Leu-

AdeþCYH). At 72 hr after replicating, plates were evaluated for

protein interactions.
Results

Mapping the Effects of Disease Mutations onto the 3D

Protein Interactome Network

Here, we have compiled a comprehensive list of human

disease mutations, including 68,789 germline mutations

in 2,781 genes associated with 2,244 phenotypically

distinct Mendelian diseases from HGMD17,18 and 14,044

somatic cancer mutations in 366 genes associated with

112 cancers from COSMIC.19,20 Because COSMIC includes

results from whole-genome-sequencing experiments, it is

likely that some mutations identified are passenger muta-

tions that do not cause the cancer phenotype. To remove

putative passenger mutations from the COSMIC data set,

we included only mutations in genes in the Cancer Gene

Census,35 a literature-curated list of known cancer-associ-

ated genes.

Disease mutations can be dominant or recessive at the

cellular level. For dominant mutations, a single mutated

allele can lead to pathogenesis, whereas for recessive muta-

tions, both alleles need to be mutated for disease to occur.

To examine the potential differences between dominant

and recessive mutations, we compiled a list of genes with

manually curated inheritance and disease information

from published data sets.11,35 Disease mutations were

then classified as autosomal dominant or autosomal reces-

sive according to the inheritance mode of the respective

gene and the disease they are associated with. In total,

we annotated the inheritance modes of 38,497 disease-

associated mutations.

Using our recently developed homology-modeling

approach16 and incorporating newly published binary

protein-protein interactions, we generated a high-quality

3D atomic-resolution protein interactome network com-

prising 4,890 structurally resolved interactions involving

3,174 proteins (Figure 1A). A total of 11,290 dominant

mutations and 8,702 recessive mutations were mapped

onto their corresponding proteins in the 3D protein inter-

actome network.
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Figure 1. Disease-Associated Genes and
Mutations Affecting the 3D Protein Inter-
actome Network
(A) Network representation of the structur-
ally resolved protein interactome.
(B) Proportions of in-frame and truncating
mutations among all dominantmutations.
(C) Proportions of in-frame and truncating
mutations among all recessive mutations.
(D) Proportions of dominant and recessive
mutations among all in-frame mutations.
(E) Proportions of dominant and recessive
mutations among all truncating muta-
tions.
Different Molecular Mechanisms between Dominant

and Recessive Mutations

All disease mutations can be further divided into two

broad classes according to their molecular types and

effects on the translated protein products: missense point

mutations and in-frame insertions or deletions are classi-

fied as in-frame mutations; nonsense mutations and

frameshift insertions or deletions are classified as trun-

cating mutations.11,16 In-frame alleles are likely to produce

full-length protein products with local defects, whereas

truncating alleles, which are also called ‘‘complete loss-

of-function (LoF)’’ alleles,21 are often assumed not to pro-

duce any functional protein products, especially in many

current whole-exome- and whole-genome-sequencing

studies.22–24,49

Among the dominant mutations, 67% are in-frame,

whereas 60% of the recessive mutations are in-frame (Fig-

ures 1B and 1C). Conversely, 52% of in-frame mutations

are dominant, whereas only 44% of truncating mutations

are dominant (Figures 1D and 1E). The results agree with

our current knowledge of the mechanisms of the action

of dominant mutations. Other than the case of haploinsuf-

ficiency, dominance is most often a result of gain-of-func-

tion mutations or dominant-negative mutations, where

the altered protein product is activated for a specific func-

tion or interferes with the normal function(s) of the wild-

type protein.11,50 Therefore, most dominant mutations

should translate into specific localized changes in the pro-

tein, which can be more easily achieved with in-frame

mutations than with truncating mutations.

Most proteins carry out their functions through interac-

tions with other proteins. Our recent study has demon-

strated that the disruption of specific interactions of a

protein is an important mechanism for pathogenesis

of many human disease-associated genes and their
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mutations.16 To further investigate

the differences between dominant

and recessive disease mutations, we

mapped the mutations onto their cor-

responding proteins in the 3D protein

interactome and examined the loca-

tions they affect with respect to inter-

action interfaces and other functional
protein domains. We found that for recessive mutations,

both in-frame and truncating mutations are significantly

enriched in regions encoding interaction interfaces

(OR ¼ 3.3, p < 10�20 by Z-test and OR ¼ 1.9, p < 10�20

by Z-test; respectively, Figure 2B). Because recessive muta-

tions are more likely to be loss-of-function mutations,6,51

our results demonstrate that the disruption of protein

interaction interfaces is a common mechanism leading to

the loss of specific functions. Dominant in-frame muta-

tions are also enriched in regions encoding interaction in-

terfaces (OR ¼ 1.5, p < 10�20 by Z-test, Figure 2A). Because

a significant fraction of dominant mutations are gain-of-

function mutations,6,51 the results suggest that changes

in protein interaction interfaces not only lead to the loss

of specific interactions but also have the potential to

generate new ones. Remarkably, the dominant truncating

mutations are enriched in regions encoding sequences

outside of functional domains (OR ¼ 3.6, p < 10�20 by

Z-test, Figure 2A) and are depleted in regions encoding pro-

tein interaction interfaces. This shows that the molecular

mechanisms of dominant truncating mutations tend to

be distinct from their recessive counterparts. To further

assess the differences between dominant and recessive

mutations, we next investigated the disease specificity of

mutations in different categories.

The Guilt-by-Association Principle Does Not Apply to

Dominant Mutations

Many genetic diseases show locus heterogeneity, whereby

a disease is associated with mutations on more than one

gene. Understanding how different genes converge func-

tionally to associate with the same disorder has important

implications in the search for novel disease-associated

genes and drug targets. Previous studies have shown that

interacting protein pairs are more functionally similar
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Figure 2. Distribution of Recessive and
Dominant DiseaseMutations with Respect
to Regions Encoding Interaction Inter-
faces
(A) ORs of the distributions of dominant
in-frame (left) and truncating (right) muta-
tions in sequences encoding different pro-
tein regions.
(B) ORs of the distribution of recessive in-
frame (left) and truncating (right) muta-
tions in sequences encoding different pro-
tein regions. **p < 10�20, *p < 10�10. The
p values were calculated with Z-tests for
the log OR. Error bars represent 95% confi-
dence intervals of ORs.
and tend to be associated with the same diseases.12,52 More

specifically, it has recently been shown that two in-frame

mutations affecting the corresponding interaction inter-

faces of two interacting proteins tend to cause the same

disease.16 This provides a higher-resolution explanation

for the guilt-by-association principle: mutations affecting

the interaction interface of two interacting proteins

disrupt the same interaction in the cellular network and

therefore abolish the same function and cause the same

disorder.

To investigate whether the guilt-by-association principle

holds for both dominant and recessive mutations, we

examined the likelihood that in-frame mutation pairs

affecting two different proteins cause the same disease.

Among recessive in-frame mutations, 88% of mutation

pairs affecting the corresponding interfaces of two interact-

ing proteins cause the same disease; this percentage is

significantly higher than that of mutation pairs affecting

interaction interfaces that are not responsible for the inter-

action between the two proteins (21%, p< 10�20 by cumu-

lative binomial test; Figure 3A, left). In contrast, among

dominant in-frame mutations, only 10.1% of mutation

pairs affecting the corresponding interfaces of interacting

proteins cause the same disorder. Furthermore, the proba-

bility that two dominant in-frame mutations affecting in-

teracting proteins cause the same disease does not depend

on whether the two mutations affect the corresponding

interaction interface responsible for the interaction

between the two proteins or on other interaction interfaces

(10.1% or 10.6%, respectively; Figure 3B, right). To further

investigate the possible mechanisms of truncating muta-

tions, we repeated the above calculation with truncating

mutations. Interestingly, the observed difference between

dominant and recessive in-frame mutations can also be
The American Journal of Hu
seen among truncating mutations

(Figure 3B). The likelihood that

recessive truncating mutation pairs

affecting interacting proteins cause

the same disease depends on their

location relative to the region encod-

ing the interaction interface (Fig-

ure 3B, left). In contrast, dominant
truncating mutation pairs affecting interacting proteins

are less likely to cause the same disease, regardless of their

location (Figure 3B, right). Just like to in-frame mutations,

the guilt-by-association principle applies well to recessive

truncating mutations, but not to dominant ones.

An interesting example of the guilt-by-association prin-

ciple can be observed in Glanzmann thrombasthenia

(MIM 273800), which is associated with recessive muta-

tions affecting the corresponding interaction interfaces

of both ITGA2B and ITGB3. On the other hand, dominant

mutations affecting the interaction interface of two pro-

teins are often associated with different diseases. For

example, dominant mutations affecting the calcium-

binding epidermal growth factor domains of FBN1 are

associated with Marfan syndrome (MIM 154700), whereas

dominant mutations affecting the corresponding interac-

tion interface of FBN2 are associated with contractural

arachnodactyly (MIM 121050). Although Marfan syn-

drome and contractural arachnodactyly are related dis-

eases, they have distinct clinical phenotypes.53

Our guilt-by-association analysis demonstrates that

although recessive mutations that affect two different pro-

teins and disrupt the same interaction tend to cause the

same disorder, the same principle cannot be extended to

dominant mutations. A likely explanation for these results

is that loss-of-function mutations affecting two interacting

proteins often cause the same disease by disrupting the

same edge in the interaction network, but gain-of-function

mutations affecting interacting proteins are less likely to

cause the same disease because mutations in two different

genes rarely gain the same function. Whereas recessive

mutations aremore likely to be loss-of-functionmutations,

dominant mutations can be gain-of-function, dominant-

negative, or loss-of-function mutations (in the case of
man Genetics 93, 78–89, July 11, 2013 83



A

B

p p

pp

In-frame mutations 

Truncating mutations 

Recessive 

Recessive Dominant

Dominant

P
er

ce
n

t 
ca

u
si

n
g

th
e 

sa
m

e 
d

is
ea

se

P
er

ce
n

t 
ca

u
si

n
g

th
e 

sa
m

e 
d

is
ea

se

P
er

ce
n

t 
ca

u
si

n
g

th
e 

sa
m

e 
d

is
ea

se

P
er

ce
n

t 
ca

u
si

n
g

th
e 

sa
m

e 
d

is
ea

se

Figure 3. Analysis of Locus Heterogeneity among Dominant and Recessive Disease Mutations
(A) Percentage of recessive (left) or dominant (right) in-frame mutation pairs that affect two different proteins and cause the same
disease.
(B) Percentage of recessive (left) or dominant (right) truncating mutation pairs that affect two different proteins and cause the same
disease. Error bars represent 5 SE. The p values were calculated with cumulative binomial tests.
haploinsufficiency). To differentiate the molecular mecha-

nisms of different classes of dominant mutations, we

divided all dominant mutations into two categories—

those likely to cause disease through haploinsufficiency

(haploinsufficient [HI] mutations) and those not likely to

cause disease through haploinsufficiency (non-HI muta-

tions)—on the basis of a genome-wide prediction of HI

genes.37 We found that compared to two non-HI in-frame

mutations affecting the corresponding interfaces of inter-

acting proteins, two HI in-frame mutations affecting the

corresponding interaction interfaces between interacting

proteins are significantly more likely to cause the same dis-

ease (p < 10�20 by cumulative binomial test; Figure 4A).

Our results support the idea that because a large fraction

of dominant mutations are gain-of-function variants, the

guilt-by-association principle does not apply to these

mutations. A similar calculation could not be performed

on truncating mutations because of the small sample

size. However, we found a clear distinction in the distribu-

tion patterns of HI and non-HI truncating mutations on
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their corresponding proteins. Similar to recessive trun-

cating mutations, HI truncating mutations are enriched

in regions encoding protein interaction interfaces. In

contrast, non-HI truncating mutations are highly enriched

in regions encoding sequences outside of functional

domains (Figure 4B). This suggests that truncating muta-

tions can also cause loss or gain of specific functions

through distinct molecular mechanisms. Furthermore,

themode of action of truncating mutations can be inferred

from their locations with respect to the regions encoding

the interaction interfaces.

Truncating Alleles Can Give Rise to Functional

Products

Currently, truncating mutations are most often regarded

as ‘‘knockout’’ mutations leading to absent or nonfunc-

tional protein fragments.11,16 This is because mRNAs

harboring premature stop codons are known to be

selectively degraded by nonsense-mediated mRNA decay

(NMD),54,55 and furthermore, even if the mRNA is
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translated, the resultant protein fragment is unlikely to

fold into a stable product. If most of the truncating

mutations lead to the loss of protein product, truncating

mutations should be randomly distributed across protein-

coding regions. However, in Figure 2 we observe that reces-

sive truncating mutations are specifically enriched and

dominant truncating mutations are specifically depleted

in regions encoding protein interaction interfaces. Figure 3

further shows that truncating mutations with different

inheritance modes have different patterns of disease asso-

ciation and that pairs of recessive truncating mutations

in regions encoding the same interaction interface are

much more likely to cause the same disease than those in

regions encoding different interfaces. These results suggest

that, contrary to common belief, a significant portion of

truncating mutations are translated into functional pro-

tein products.

Truncating mutations in regions encoding sequences

near the N terminus delete larger fractions of the wild-

type protein. Therefore, it is generally believed that alleles

carrying truncating mutations in regions encoding se-

quences near the N terminus are even less likely to produce

functional products. In this study, we investigated how

location with respect to the N terminus affects the func-

tional consequences of truncating mutations. We first clas-

sified all truncating mutations into three categories: (1)

mutations that are in regions encoding sequences near

the N terminus and that truncate more than two-thirds

of the wild-type protein, (2) mutations that are in regions

encoding sequences near the C terminus and that truncate

less than one-third of the wild-type protein, and (3) muta-

tions that are in regions encoding the middle of the pro-

tein and that truncate between one-third and two-thirds

of the wild-type protein. Then, for each pair of interacting

proteins, we calculated in each category the percentage of

truncating mutations that cause the same disease as muta-
The
tions in regions encoding the corresponding interaction

interfaces of the interaction partner (Figure 5 and Fig-

ure S5). If most truncating mutations in regions encoding

sequences near the N terminus cause complete loss of func-

tion, all pairs of these mutations should have the same

likelihood of causing the same disease, irrespective of

whether they are in regions encoding the same interacting

interface or not. However, we found that regardless of their

location relative to the region encoding the N terminus,

recessive truncating mutations in regions encoding the

corresponding interaction interfaces of two proteins are

always more likely to cause the same disease than are those

that are not in regions encoding the corresponding inter-

action interfaces (Figure 5). Furthermore, we also found

that irrespective of their location relative to the region

encoding the N terminus, dominant truncating mutations

are always enriched in regions encoding sequences outside

of interaction interfaces and that recessive truncating

mutations are always enriched in regions encoding interac-

tion interfaces (Figure S6). These results show that trun-

cating mutations’ location relative to the region encoding

the N terminus does not significantly alter the proportion

of truncated proteins that retain specific functions. These

results, together with our observations in Figures 2–4,

confirm that a significant fraction of alleles carrying

truncating mutations, even those in regions encoding

sequences near the N terminus, can be translated into pro-

teins with specific functions.

To further characterize the molecular mechanisms un-

derlying dominant and recessive truncating mutations,

we calculated the enrichment of disease-associated trun-

cating mutations that occur in regions encoding

sequences between two different interaction interfaces.

We found that dominant truncating mutations are en-

riched in regions encoding sequences located between

interaction interfaces (OR ¼ 1.7, p < 10�20 by Z-test) and
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that recessive truncating mutations are depleted in regions

encoding sequences located between interaction interfaces

(OR ¼ 0.74, p < 10�5 by Z-test; Figure 6A and Figure S7).

This result confirms that dominant truncating mutations

tend to preserve specific interactions while losing others.

To experimentally validate our conclusions, we tested

the interactions of the protein product of tripartite-motif-

containing 27 (TRIM27), a known cancer-associated gene

that acts dominantly in oncogenesis.35,56 A frameshift

deletion (p.Tyr342Thrfs*30 [c.1024delT]) occurring just

before the SPRY domain of TRIM27 was found to be asso-

ciated with ovarian carcinoma (MIM 167000).20,57 Using

a combination of the 3D protein interaction network and

structural interface matching, we found that TRIM27

interacts with three other proteins, MID2, TRIM42, and

SIRPA, of which only SIRPA interacts exclusively with the

SPRY domain in TRIM27 (Figure 6B). None of the three

interaction partners of TRIM27 were previously known to

be involved in ovarian cancer. Here, we tested the

interactions of wild-type TRIM27 and truncated TRIM27

by using Y2H. Because the truncating mutation occurs

after the interaction interfaces with MID2 and TRIM42

but before the interaction interface with SIRPA, we

hypothesized that the truncated TRIM27 would lose its

interaction with SIRPA while retaining the other two

interactions. The Y2H results confirm that the truncating

mutation only disrupts the TRIM27-SIRPA interaction

and leaves the other two interactions unaffected (Fig-

ure 6C). This supports our hypothesis that truncating

mutations can retain specific interactions or functions.

This result also suggests that abolition of the interaction

between TRIM27 and SIRPAmight contribute to the cancer

phenotype and that SIRPA might be associated with

ovarian carcinoma.
Discussion

One challenge in deciphering the molecular basis of

genetic diseases is that disease phenotypes are often associ-

ated with multiple mutations that are in different genes
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and that have variable associated risks. Studies have found

that genes associated with the same disease tend to cluster

in functional modules within biological networks.8,9 This

guilt-by-association principle has been widely applied for

the identification of novel disease-associated genes.58

However, the accuracy of these predictions is still relatively

low.59 Here, we systematically dissected the guilt-by-associ-

ation principle on the basis of the molecular types and

inheritance modes of over 20,000 mutations. Although

recessive disease mutations affecting the corresponding

interaction interfaces of interacting proteins tend to cause

the same disease, the same does not apply to dominant dis-

ease mutations. Although current tools that predict dis-

ease-associated genes have integrated the protein-protein

interactome network with disease phenotypic information

to improve the accuracies of predictions,13–15 none of the

current prediction models incorporate the difference in in-

heritance modes of disease-associated genes. By pointing

out that the guilt-by-association principle only applies

to recessive mutations, our findings could significantly

improve the accuracy of current prediction methods for

disease-associated genes.

Furthermore, truncating mutations, also called LoF

mutations, are often regarded as knockout mutations in

large-scale mutational screens and genome-sequencing

projects.21–24,49 However, there are instances reported

where mRNAs harboring truncating mutations escape

NMD and are translated into proteins with dominant-

negative activities.60,61 One particularly interesting case

study involving SOX10 (MIM 602229) demonstrated that

truncating mutations in different regions of SOX10 confer

distinct neurological phenotypes. Among all SOX10 alleles

harboring nonsense or frameshift mutations, transcripts

with mutations in exons 3 and 4 are targeted by NMD,

causing a neurological phenotype called Waardenburg-

Shah syndrome (MIM 277580). On the other hand, tran-

scripts with mutations in exon 5 escape NMD and lead

to a more severe phenotype as a result of the dominant-

negative effects of the translated protein.61 Furthermore,

a recent publication revealed that, contrary to common

belief, only a small percentage (16.3%) of LoF alleles
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show significant evidence of NMD.21 Our results further

suggest that it is overly simplistic to consider all truncating

mutations as null mutations, given that a significant frac-

tion of them do generate functional protein products.

Interestingly, our results show that truncating mutations

that lead to functional products are not limited to the

extreme C-terminal region of proteins; many proteins

can lose more than two-thirds of their length and still

retain specific functions.

All results that we discussed above are robust to the

removal of protein hubs and domain hubs (Figures S1–

S4), confirming that these results are not biased by overrep-

resented proteins or domain families. Moreover, although

filtering COSMIC mutations within Cancer Gene Census

genes enriches for cancer-causing mutations (Figure S10)
The
and this filtering scheme is often used for selecting a

high-confidence set of cancer mutations,25–28 some of

the filtered mutations might still be passenger mutations.

Therefore, we repeated our calculations by using only the

HGMD mutations, and all results remained the same (Fig-

ures S8 and S9). These results indicate that although cancer

is a complex disease, cancer-causingmutations are likely to

disrupt normal protein functions through similar biophys-

ical and/or biochemical mechanisms at the molecular level

as are Mendelian mutations.

In recent years, large numbers of mutations have

been discovered from whole-genome- and whole-exome-

sequencing studies. Popular tools such as PolyPhen-2,62

SIFT,63 andMutationTaster64 estimate the impact of amino

acid substitutions on the respective protein and are

frequently used for prioritizing variants discovered from

exome-sequencing projects. Our method could potentially

be used in conjunction with these tools for the generation

of hypotheses regarding the molecular mechanisms of the

deleterious variants discovered. Moreover, it might be

interesting to consider the penetrance and expressivity of

the disease mutations in future analyses,65,66 when suffi-

cient information is available.

In conclusion, by integrating inheritance information

with atomic-resolution structural details of protein interac-

tions, our analysis provides an approach to predicting

functional consequences at the molecular level for both

in-frame and truncating mutations, especially those

discovered by various ongoing genome-sequencing efforts.
Supplemental Data

Supplemental Data include ten figures and two tables and can be

found with this article online at http://www.cell.com/AJHG.
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