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Intuitively, a subgraph representing a protein complex should 
satisfy two simple structural properties: it should contain many 
reliable interactions between its subunits, and it should be well-
separated from the rest of the network. We formalized these two 
properties in a quality measure that we called cohesiveness and 
developed an algorithm that detects possibly overlapping protein 
complexes from weighted networks, using cohesiveness to guide 
the search.

Our algorithm consists of three major steps (Online Methods). 
First, starting from a single seed vertex, a greedy procedure adds 
or removes vertices to find groups with high cohesiveness. The 
growth process is repeated from different seeds to form multi-
ple, possibly overlapping groups. Although some overlaps are 
likely to have biological importance, groups overlapping to a 
very high extent in comparison to their sizes should likely be 
merged. In the second step, we quantify the extent of overlap 
between each pair of groups and merge those for which the 
overlap score4 is above a specified threshold. In the third step, 
we discard complex candidates that contain less than three pro-
teins or whose density is below a given threshold. Note that our 
method potentially can be used to recognize not only partial 
overlaps but also cases in which a complex is completely con-
tained in another complex.

We tested ClusterONE on five large scale yeast PPI data sets 
(Supplementary Data 1), four weighted6–8 and one unweighted9, 
and compared ClusterONE to a representative set of other 
approaches: Markov cluster (MCL)1, molecular complex detec-
tion (MCODE)4, affinity propagation10, restricted neighborhood 
search clustering algorithm (RNSC)2, CFinder11, clustering based 
on maximal cliques (CMC)5 and repeated random walks (RRW)12 
(Supplementary Discussion). We compared predicted complexes 
to two reference complex sets: the first derived from the MIPS cat-
alog of protein complexes13 and the second from Gene Ontology–
based complex annotations in the SGD (Supplementary Data 2).  
We assessed the quality of the predicted complexes by three 
scores: the fraction of protein complexes matched by at least one 
predicted complex; the geometric accuracy measure14; and the 
maximum matching ratio, a score that we propose here based on 
a maximal one-to-one mapping between predicted and reference 
complexes (Online Methods).

We present the three quality scores obtained using the MIPS 
reference set (Fig. 1a); larger scores are better, and the sum of the 
three scores is a composite score. Our benchmarks showed that 
ClusterONE outperformed the other approaches both on weighted 
and unweighted PPI networks, matching more complexes with a 
higher accuracy and providing a better one-to-one mapping with 
reference complexes in almost all the data sets. MCL yielded the 
closest score to ClusterONE. But MCL cannot handle overlaps. 
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We introduce clustering with overlapping neighborhood 
expansion (clusterone), a method for detecting potentially 
overlapping protein complexes from protein-protein interaction 
data. clusterone-derived complexes for several yeast data sets 
showed better correspondence with reference complexes in 
the munich information center for Protein sequence (miPs) 
catalog and complexes derived from the Saccharomyces Genome 
database (sGd) than the results of seven popular methods. the 
results also showed a high extent of functional homogeneity.

Recent developments in experimental procedures have resulted in 
the publication of many high-quality, large-scale protein-protein 
interaction (PPI) data sets for different organisms. These data can 
be represented as undirected graphs, in which nodes represent pro-
teins and edges represent interactions between pairs of proteins. 
Often an estimation of the reliability of such interactions is avail-
able and is included as edge labels (weights). One can formulate 
the problem of identifying protein complexes from PPI data as that 
of detecting dense regions containing many connections in PPI 
networks (or regions with large weights in weighted networks).

Densely connected regions in graphs are most frequently identi-
fied by some unsupervised clustering method1,2. However, stand-
ard clustering is not ideal for PPI networks: proteins may have 
multiple functions, and therefore the corresponding nodes may 
belong to more than one cluster; for example, 207 of 1,628 proteins  
in the CYC2008 hand-curated yeast complex data set3 participate 
in more than one complex. Such nodes present a challenge to clas-
sical graph clustering algorithms that assign each node of the graph 
to just one of the clusters. Recently, algorithms have been proposed 
that detect overlapping clusters, but in many cases they are limited 
to unweighted PPI data4,5 and can be applied to weighted networks 
only after ‘binarizing’ them by removing edges with weights below 
a given threshold. Although it is difficult to assess the reliability of 
a single edge weight, we found that taking into account network 
weights can greatly improve the detection of protein complexes 
(Supplementary Discussion and Supplementary Figs. 1 and 2); 
therefore, when available, weights should be used.
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We also provide results using the reference 
set derived from the Gene Ontology anno-
tations in the SGD and the expected val-
ues of each score for randomized predicted 
complex sets (Supplementary Discussion 
and Supplementary Fig. 3).

To examine the biological relevance of 
predicted complexes we calculated the 
‘co-localization’ score of the entire pre-
dicted complex set and conducted over-
representation analysis of Gene Ontology 
annotations for each predicted com-
plex. As MCL yielded the closest score to 
ClusterONE in the MIPS benchmarks, we 
present these scores for ClusterONE and 
MCL (Supplementary Tables 1 and 2).  
Results for ClusterONE indicated that 
predicted complexes tended to consist 
of proteins in the same cellular com-
ponent and these proteins are likely to have similar functions 
and/or participate in the same biological process. Comparison of  
co-localization and overrepresentation scores of ClusterONE and 
MCL revealed that ClusterONE complexes had higher scores on 
almost all data sets. We present an example of how a pair of com-
plexes with a known overlap was detected by ClusterONE and 
MCL (Fig. 1b); we also present results obtained using the other 
algorithms and another example (Supplementary Discussion and  
Supplementary Figs. 4–6).

ClusterONE could find applications in other areas such as the 
study of social networks. A fast, free implementation of ClusterONE 
is available at http://www.paccanarolab.org/cluster-one/.

methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemethods/.

Note: Supplementary information is available on the Nature Methods website.
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figure 1 | Benchmark results. (a) Results using 
MIPS data sets. Shades of the same color denote 
individual quality scores; the total height of 
each bar is the value of the composite score. 
Numbers are the values for each score. The 
first four data sets are weighted, BioGRID is 
unweighted. Asterisks mark algorithms that 
could handle overlaps. AP, affinity propagation.  
(b) Subunits of RSC and SWI/SNF chromatin-
remodeling complexes in the reference 8 data 
set, as detected by ClusterONE and MCL. Shaded 
areas denote detected complexes.
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online methods
The ClusterONE algorithm. The algorithm we outlined builds 
on the concept of the cohesiveness score and uses a greedy growth 
process to find groups in a protein-protein interaction network 
that are likely to correspond to protein complexes. Cohesiveness 
measures how likely it is for a group of proteins to form a protein 
complex, and it was defined as follows. Let win(V) denote the 
total weight of edges contained entirely by a group of proteins V, 
and let wbound(V) denote the total weight of edges that connect 
the group with the rest of the network. The cohesiveness of V is 
then given by 

f V w V
w V w V p V

in

in bound( ) =
+ +

( )
( ) ( )

where p|V| is a penalty term whose purpose is to model the uncer-
tainty in the data by assuming the existence of yet undiscovered 
interactions in the protein interaction network. Letting p > 0 off-
sets the boundary weight wbound(V) by p|V|, practically assuming 
that every protein in V has p additional boundary connections 
that we could not identify owing to limitations in the experimen-
tal procedure. This definition could be extended to use different 
values of p for different proteins based on biological assumptions; 
thus a well-studied protein may have a lower p value because it is 
less likely to have undiscovered interactions.

Cohesiveness provides an easy and efficient way to assess how 
well a given subgraph fits the two above-mentioned structural 
properties: a subgraph with many reliable edges has a high win, 
and a well-separated subgraph has a low wbound, both having the 
effect of increasing f(V). f(V) > 1/3 also implies that vertices of 
the subgraph have more internal weight than external weight on 
average, satisfying the conditions of being a community in the 
weak sense15.

Our algorithm consists of three steps. In the first step, the algo-
rithm grows groups with high cohesiveness from selected seed 
proteins. Initially, it selects the protein with the largest number 
of connections (highest degree) as the first seed, and grows a 
cohesive group from it using a greedy procedure. Whenever the 
growth process finishes, the algorithm selects the next seed by 
considering all the proteins that have not been included in any of 
the protein complexes found so far and taking the one with the 
highest degree again. The entire procedure terminates when there 
are no proteins remaining to consider.

A step-by-step description of the greedy growth process start-
ing from v0 is as follows. Step 1: let V0 = {v0}. Set the step number 
t = 0. Step 2: calculate the cohesiveness of Vt and let Vt + 1 = Vt. 
Step 3: for every external vertex v incident on at least one bound-
ary edge, calculate the cohesiveness of V′ = Vt < {v}. If f(V′) > 
f(Vt + 1), let Vt + 1 = V′. Step 4: for every internal vertex v inci-
dent on at least one boundary edge, calculate the cohesiveness of  
V″ = Vt \ {v}. If f(V″) > f(Vt + 1), let Vt + 1 = V″. Step 5: if Vt ≠ Vt + 1,  
increase t and return to step 2. Otherwise, declare Vt a locally 
optimal cohesive group.

The growth process allows the removal of any vertex from the 
cohesive group being grown, including the original seed vertex. If 
the original seed vertex is not included in the final cohesive group, 
the seed vertex is considered an outlier and it will not be included 
in any of the clusters, except in the case when another cohesive 
group grown from a different seed vertex absorbs it.

(1)(1)

To illustrate the above procedure, let us consider an example 
graph with 11 nodes, seven of which are marked by letters A to G  
(Supplementary Fig. 7). Assuming p = 0, the cohesiveness of the 
marked set is 10/15. In steps 3 and 4, the algorithm can either 
extend the current set by adding C, F or G, or contract the set 
by removing A, B, D or E. The best choice is to add C to the set, 
because it converts three boundary edges to internal ones and 
does not bring in any new boundary edges. After adding C, the 
cohesiveness increases to 13/15 and the group becomes locally 
optimal, as adding F would result in a cohesiveness of 14/17 and 
adding G would yield 14/18.

In the second step of the algorithm, highly overlapping pairs of 
locally optimal cohesive groups are merged. In our benchmarks, 
we have merged pairs of groups with an overlap score ω larger 
than 0.8, where the overlap score of two protein sets A and B is 
defined as follows4: 

w A B
A B
A B

,
| |
| || |

( ) =
∩ 2

Such merges may be performed one after another (in which 
case the overlap scores have to be recalculated after each merge) 
or concurrently; the reference implementation of ClusterONE 
uses the latter approach. More precisely, given a set of cohesive 
groups, ClusterONE first calculates the overlap scores for each 
pair of groups and constructs an overlap graph in which each 
vertex represents a cohesive group, and two groups are connected 
by an edge if they overlap substantially. Groups that are con-
nected to each other (either directly by an edge or indirectly by a 
path of edges) are then merged into protein complex candidates.  
If a group has no connection to other groups, it is promoted to 
a protein complex candidate without any additional merging. In 
the third and final step of the algorithm, we discard complex can-
didates that contain less than three proteins or whose density is 
below a given threshold δ (where the density of a complex with n 
proteins is defined as the total weight of its internal edges, divided 
by n(n − 1)/2).

Comparing predicted complexes with a gold standard: the maxi-
mum matching ratio. To assess the performance of ClusterONE, 
we needed to compare an arbitrary set of predicted complexes with 
a predefined gold standard complex set (Supplementary Data 2). 
The comparison was made difficult by the fact that a match between 
a predicted complex and a gold standard one was often only partial. 
Moreover, a gold standard complex can have a (partial) match with 
more than one predicted complex and vice versa.

Here we propose a measure called the maximum matching ratio 
(MMR) to evaluate a complex detection algorithm. The MMR 
builds on maximal matching in a bipartite graph, in which the two 
sets of nodes represent the reference and predicted complexes, 
respectively, and an edge connecting a reference complex with a  
predicted one is weighted by the overlap score between the two 
(equation (2) and Supplementary Fig. 8). We selected the maxi-
mum weighted bipartite matching on this graph; that is, we chose 
a subset of edges such that each predicted and reference complex 
was incident on at most one selected edge and the sum of the 
weights of such edges was maximal. The chosen edges then rep-
resent an optimal assignment between reference and predicted 
complexes such that no reference complex is assigned to more 

(2)(2)
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than one predicted complex and vice versa. The MMR between 
the predicted and the reference complex set is then given by the  
total weight of the selected edges, divided by the number of  
reference complexes. This ratio is a measure of how accurately  
the predicted complexes represent the reference complexes.  
MMR offers a natural, intuitive way to compare predicted  
complexes with a gold standard and it explicitly penalizes cases 
when a reference complex is split into two or more parts in the 
predicted set, as only one of its parts is allowed to match the  
correct reference complex.

Besides the MMR, several other measures were also considered 
to compare predicted complexes to a gold standard. We used the 
number of matched complexes with an overlap score ω (equation (2))  
larger than 0.25, the clustering-wise sensitivity14 (Sn), the posi-
tive predictive value14 (PPV) and the geometric accuracy14 
(Supplementary Discussion).

Co-localization and overrepresentation score of a predicted 
complex set. Owing to the fact that the gold standard sets are 
incomplete16, a predicted complex that does not match any of 
the reference complexes may belong to a valid but still unchar-
acterized complex. A possible way to quantify the quality of such 
unmatched complexes is by recognizing that a protein complex 
can be formed only when its constituents are to be found in 
the same cellular compartment17, and that it is more likely for 
proteins of similar function to form a protein complex. We used 
the ‘co-localization score’18 using localization annotations of 
yeast proteins19 and a standard overrepresentation analysis of 
biological process, molecular function and cellular component 
terms from the Gene Ontology to assess the biological relevance 
of predicted complexes. The significance levels of the overrep-
resentation analysis were adjusted according to the Benjamini-
Hochberg method20 to keep the overall significance level of the 
test at 0.05.

Data sources of interacting protein pairs. We used two 
experimental yeast PPI data sets6,7, a combined computational 
interaction map8 and the entire set of physical protein-protein 
interactions in yeast from BioGRID9 (Supplementary Table 3).  
Here we refer to these as the Gavin6, Krogan7, Collins8 and 
BioGRID9 data sets. The Gavin data set was obtained by con-
sidering all PPIs with a socio-affinity index larger than five6. 
The Krogan data set7 was used in two variants: the core data set 
(referred to as Krogan core) contained only highly reliable inter-
actions (probability > 0.273), and the extended data set (referred 
to as Krogan extended) contained more interactions with less 
overall reliability (probability > 0.101). The socio-affinity and 
probability cutoffs we used have been proposed by the original 
authors. In the Collins data set, we used the top 9,074 interactions 
according to their purification enrichment score8, as suggested 
in the original paper. When applying algorithms that cannot  
handle weights (MCODE, CMC, RNSC and CFinder) to the 
above networks, weights were ignored. The BioGRID data set 
was downloaded from version 3.1.77 and contained all physical 
interactions that involve yeast proteins only. Self-interactions and 
isolated proteins were filtered from all the data sets. As BioGRID 
provides weights for only 18.05% of the interactions, we treated 
the entire BioGRID network as unweighted, keeping the weighted 
interactions but disregarding their weights.

Gold standard protein complexes. The most recent version of the 
MIPS catalog of protein complexes13 (18 May 2006) and the Gene 
Ontology (GO)-based protein complex annotations from SGD21  
(11 Aug 2010) were used as gold standards (Supplementary Table 4).

The MIPS catalog is organized hierarchically: complexes may 
consist of subcomplexes extending to at most five hierarchy  
levels deep. An example of such a deeply embedded complex 
is the SAGA complex (MIPS identifier 510.190.10.20.10), a 
multifunctional coactivator that regulates transcription by 
RNA polymerase II. However, some MIPS categories do not 
correspond to complexes but rather to a set of related com-
plexes; for instance, the category 510.180 corresponds to all 
‘DNA-repair complexes’. To avoid selection bias, we decided to 
consider all MIPS categories containing at least three and at 
most 100 proteins as protein complexes. We also excluded MIPS 
category 550 and all its descendants, as these categories corre-
spond to unconfirmed protein complexes that were predicted by  
computational methods.

The SGD maintains GO annotations for all yeast proteins. 
These annotations formed the basis of the SGD complex set that 
we used as a gold standard; a similar approach has been used 
before12. To create this data set, we first downloaded the mapping 
of yeast genes and proteins to GO terms21, and the most recent 
version of the GO structure22. We then ran an inference engine 
on the cellular component aspect of GO using the standard GO 
inference rules to find all terms that are descendants of the GO 
term GO:0043234 (protein complex) using “is_a” relations only. 
(Code of the inference engine is available as a forked version of 
Biopython at http://github.com/ntamas/biopython.) These GO 
terms were then treated as protein complex annotations. Finally, 
we retrieved all the yeast proteins that are assigned to the GO 
terms selected in the previous step and are supported by at least 
one non–inferred from electronic annotation (IEA) evidence 
code, and grouped them into protein complexes based on their 
GO annotations. Annotations with modifiers such as ‘not’ or 
‘colocalizes_with’ were ignored.

Data sources of functional classifications and annotations. 
Subcellular localizations were obtained from a previously pub-
lished dataset19, which assigns 4,155 yeast proteins to one or 
more of 21 cellular components. The functional classification 
of yeast proteins was obtained from the Gene Ontology annota-
tions in the SGD21–23 on 11 August 2010. The GO classification 
is hierarchical, that is, proteins annotated by a given term are 
also annotated by all the ancestors of that term in the ontology. 
For the GO, annotations with ‘inferred from electronic anno-
tation’, ‘no biological data available’ and ‘nontraceable author 
statement’ evidence codes (IEA, ND and NAS, respectively) 
were ignored. We also evaluated the case when the ‘inferred 
from protein interactions’ (IPI) evidence code was ignored  
(Supplementary Discussion).

An efficient and user-friendly implementation of ClusterONE. 
To make our method easily accessible for the scientific commu-
nity, we developed a reference implementation of ClusterONE, 
which can be downloaded for free from http://www.paccanarolab.
org/cluster-one/. The implementation consists of a single Java 
archive file that can be operated in standalone mode from the 
command line or as a plugin from the popular Cytoscape24 and 
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ProCope25 platforms. The command line version is suitable for 
integrating ClusterONE into high-throughput data processing 
pipelines. The website includes a comprehensive manual for both 
the command line and the plugin interface, and a 1-min guide 
that explains the basic use-cases of ClusterONE. The source code 
of the application is also made available under the conditions of 
the GNU General Public License.

Besides clustering an entire network, both the Cytoscape plugin 
and the command line interface allow the user to initiate the  
protein complex detection process from a preselected set 
of seed proteins. This can be used to detect protein com-
plexes that involve a particular protein or set of proteins. The 
Cytoscape plugin can also be operated in an exploratory analy-
sis mode, where the user can select proteins manually from the 
network and calculate the total weight of the internal edges 
of the selection, the total weight of the edges connecting the 
selection to the rest of the network, the density and the cohe-
siveness score. This mode can also be used to fine-tune the 

obtained complexes as the application readily gives feedback 
about the quality of the complex when the user tries to extend 
it by adding new proteins or contract it by removing proteins 
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