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Abstract
Despite the considerable progress in disease gene discovery, we are far from uncovering the underlying cellular
mechanisms of diseases since complex traits, even many Mendelian diseases, cannot be explained by simple geno-
type^phenotype relationships. More recently, an increasingly accepted view is that human diseases result from per-
turbations of cellular systems, especially molecular networks. Genes associated with the same or similar diseases
commonly reside in the same neighborhood of molecular networks. Such observations have built the basis for a
large collection of computational approaches to find previously unknown genes associated with certain diseases.
The majority of the methods are based on protein interactome networks, with integration of other large-scale gen-
omic data or disease phenotype information, to infer how likely it is that a gene is associated with a disease. Here,
we review recent, state of the art, network-based methods used for prioritizing disease genes as well as unraveling
the molecular basis of human diseases.
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INTRODUCTION
Many ground-breaking discoveries of genes asso-

ciated with human diseases and their molecular

bases have dramatically increased our understanding

of the development of diseases over the last decades

[1]. Uncovering the underlying molecular basis of

diseases has become incredibly valuable in the pre-

vention, diagnosis and treatment of diseases. Despite

the steady increase in discovering disease-associated

genes, there is still a large fraction of diseases without

a known molecular basis. Currently, there are over

1700 diseases with no known molecular basis curated

in the OMIM (Online Mendelian Inheritance in

Man) database as this review is being written. Even

for those diseases for which there is a partial

knowledge of a molecular basis, a large proportion

of their associated genes are still not known. It has

been reported that the genes established to be asso-

ciated with diseases such as cancer and type 2 dia-

betes only represent a very small proportion of the

incidences [2, 3]. Hence, the majority of disease

genes still remain underneath the tip of the iceberg.

Many approaches have been dedicated to the

discovery of candidate genes [4]. Traditional genetic

mapping methods include linkage analysis and

genome-wide association studies (GWAS) of

Mendelian diseases and complex traits. While

GWAS are powerful and fruitful, they face chal-

lenges in narrowing down the long lists of candidate

genes [5]. Furthermore, human diseases generally
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do not follow the simple genotype–phenotype rela-

tionship hypothesis, but are rather the consequences

of perturbations in the molecular networks induced

by various factors such as genetic mutations, epigen-

etic changes and pathogens [6]. The efforts in

unraveling the properties of disease genes in molecu-

lar networks have shown that genes associated with

the same or similar diseases, tend to reside in the

same neighborhood in these networks and form

physical and/or functional modules [7–9]. These

findings became the basis for the development of

computational approaches for predicting and priori-

tizing candidate disease genes. In this review, we

focus on state of the art approaches in this rapidly

growing field that are built on interactome and pro-

tein–protein interaction (PPI) networks in particular.

MOLECULARNETWORKS
Molecular networks, including PPI, metabolic,

regulatory, genetic and co-expression networks,

have been steadily constructed experimentally to

characterize the physical and/or functional inter-

actions between biomolecules (see [10, 11] for com-

prehensive reviews of these networks). Perturbations

in these wiring diagrams may trigger particular

phenotypes in both monogenic and polygenic dis-

eases, including tumors (Figure 1). Deciphering the

properties of these networks will offer a much deeper

understanding into complex genotype–phenotype

relationships. Molecular networks can be subdivided

into two categories: interactome networks (metabol-

ic, PPI and gene regulatory networks) that represent

physical or biochemical interactions between macro-

molecules, and functional networks (transcription

profiling, phenotypic profiling and genetic inter-

action networks) that display functional relationships

or similarities between genes and gene products [11].

These networks are commonly displayed as a graph

with nodes as molecules and directed or undirected

edges as links between them [12] (Box 1 for basic

graphic concepts of networks). PPI networks usually

have undirected edges, representing the physical

interactions between the proteins (i.e. nodes). On

Figure 1: Perturbations in molecular networks disrupt biological pathways and result in human diseases. Mutations
in a node (highlighted in yellow) cause different types of perturbations in molecular networks with directly affected
neighbors shown in orange. Disease A is triggered as the result of an edge removal, and disease B is developed
due to the node removal. The two diseases are not necessarily the same, but may share similarity in phenotypes.
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the contrary, gene regulatory networks are con-

structed with the nodes connected by directed

edges representing physical binding of one node

(transcription factor) to the other nodes (DNA regu-

latory elements). In metabolic networks, the nodes

are biochemical metabolites and the edges, either

directed or undirected, represent reactions or en-

zymes catalyzing the reactions to convert one node

into another. Functional networks of transcription

profiling, phenotypic profiling and genetic inter-

action, all have nodes representing genes, but edges

representing highly correlated co-expression, highly

correlated phenotypic profiles and known genetic

interactions, respectively. The current status as well

as approaches for constructing these networks can be

found in two recent comprehensive reviews [10, 11].

Many proteins carry out their functions through

interacting with other proteins. Two main high-

throughput technologies have been advanced and

are successful in producing a large number of PPIs

in humans: (i) a high-throughput yeast two-hybrid

(Y2H) system has been developed to systematically

screen for direct binary interactions between protein

pairs [13–15] and (ii) high-throughput affinity puri-

fication (AP) followed by mass spectrometry (MS)

approaches have been employed to identify protein

complexes in humans [16, 17]. Significant efforts

have also been made to search through the literature

and curate the interactions that have been reported

by small-scale experiments, as was done in a large

number of databases such as Human Protein

Reference Database (HPRD), Molecular Interaction

database (MINT), Biological General Repository for

Interaction data sets (BioGRID), Biomolecular

Interaction Network Database (BIND) and IntAct

[18–22]. Despite the fact that errors and biases are

still present in this incomplete human PPI network

[23], the nonstop exertion in constructing

high-coverage and high-quality PPI networks has

made the computational prediction of disease genes

possible. It should be noted that, although in this

review, we focus specifically on decoding PPI net-

works for discovery of disease genes, analogous prin-

ciples can be applied to the other types of networks

mentioned above.

THE PROPERTIES OF DISEASE
GENES IN PPI NETWORKS
Most molecular networks are scale-free such that

the distribution of node connectivity (number of

neighbors) follows a power law rather than a

Poisson distribution. In such scale-free networks,

the majority of nodes have few links while other

nodes, so called hubs, have a much higher degree

of linkages. In model organisms, hub proteins have

been reported as essential and more abundant, and

they generally display a greater diversity of pheno-

types in knockouts when compared to nonhub

proteins [24–28]. These findings lead to the question

of whether or not disease-associated genes in humans

tend to encode hubs in cellular networks. The ana-

lysis of differentially expressed genes in cancer sug-

gested that up-regulated genes in lung squamous

cancer tissues have significantly higher connectivity

in the PPI network [29]. A similar conclusion was

drawn by Jonsson and Bates [30] that cancer-related

proteins have about twice the interaction partners

when compared with proteins unrelated to cancer.

However, these observations may be the result of a

bias, in that cancer proteins are often much better

studied. Goh etal. [8] showed that disease gene prod-

ucts displayed more of a tendency to encode hubs in

the PPI network than nondisease gene products.

However, further investigation demonstrated that

only essential disease genes were associated with
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hubs and were widely expressed, while nonessential

disease genes did not demonstrate these characteris-

tics [8, 9]. Another observation is that network

neighbors of disease genes tend to be involved in

the same or similar diseases. Genes causing similar

disease phenotypes are often functionally related

and form a biological module such as a protein com-

plex or pathway [7]. Goh et al. [8] showed that genes

associated with the same disorder have significantly

higher gene ontology (GO) homogeneity than

random expectation as well as an increased tendency

to be co-expressed. It has been shown that genes

causing the same phenotype tend to form topological

clusters [9]. These distinct features of disease genes as

revealed by interactome and functional networks can

be adopted to identify functionally similar genes in

addition to uncharacterized disease genes.

DISEASEGENE PREDICTION
Proximityof proteins in the PPI network
Current approaches for disease gene prioritization

mostly rely on the proximity of candidate genes to

known disease genes within interactome networks

using different scoring strategies. The underlying

assumption is ‘guilt-by-association’, in that, genes

that are physically or functionally close to each

other tend to be involved in the same biological

pathways and have similar effects on phenotypes

[31, 32]. Hence, a key step is to measure the distance

between candidate genes and known disease genes in

the PPI network, for which an increasing number of

approaches have been developed [33, 34]. Here, we

focus on three main categories: local distance meas-

urements, global distance measurements and other

graphic clustering methods to measure pair-wise pro-

tein closeness in a network for prioritizing candidate

genes (Table 1).

The most straightforward approach is to assess

whether two proteins are connected directly in a

network, so called direct neighbor counting. The

count for any protein pair is 1 if the two proteins

are directly connected by an edge, with count of 0

otherwise (see Table 1). The more disease genes that

a candidate gene is directly connected to, the more

probable it is that the candidate is associated with the

same disease. Oti et al. [35] predicted disease-causing

genes in known disease loci by counting the number

of known causative genes in their direct network

neighbors (Table 2). They achieved an

Table 1: Approaches for measuring proximity of elements in PPI networks

Method Function Description References

Direct neighborhood Nuv ¼
1, if 9 Euv

0, otherwise

�
The countNuv for protein pair u and v is 1 if they

are directly connected by an edge Euv, and is 0
otherwise.

[35, 38, 39, 43, 45, 50, 51, 55]

Shortest path length Duv ¼ Luv, where Luv � L
0

uv The distance Duv between protein u and v is the
shortest path length Luv. L0uv is the length of any
possible path connecting protein u and v.

[37, 44, 55, 77]

Diffusion kernel K ¼ e��L The diffusion kernel K of the graph is the function
of Laplacian L, the difference of the degree
matrix and the adjacency matrix, with
parameter � as the control of diffusion
magnitude.

[38]

Random walk
with restart

Pt ¼ ð1� rÞWPt�1 þ rP0 The random walk with restart is an iterative
walker’s transition from the current node to a
random neighbor with probability r to restart
the walk at the source node.W is the adjacency
matrix of the graph and Pt is the probability
vector being at the nodes at iteration t.

[38, 39, 57]

Propagation flow Ft ¼ �W0Ft�1 þ ð1� �ÞY Ft is the prioritization function representing the
relevance of proteins in the network to the
seed nodes at iteration t. Each node propagates
information received from the previous iteration
to its neighbors.Y is the prior information, �
is the parameter controling the importance of
the prior information and W0 is the normalized
weight matrix.

[58]
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approximately 10-fold enrichment by comparing

their candidates to a random selection of candidate

genes at the same locus.

Since two proteins can be involved in the same

biological pathway without a physical interaction,

a number of researchers quantified the closeness

of proteins in PPI networks using the shortest path

length between them [36, 37]. Krauthammer et al.
[36] assigned known disease genes as seed nodes

and computed the shortest path length between

these and other nodes in the network. A node that

has close proximity to multiple seed nodes receives a

higher score as a candidate disease gene. The authors

evaluated the method in predicting genes associated

with Alzheimer’s disease and showed that the

genes predicted by their approach agreed with the

manually curated candidates.

Neither of the above two local distance measure-

ments captures the overall interaction network

structure. As demonstrated by Kohler et al. [38], the

closeness of two proteins cannot be fully represented

by their shortest path length. Different network

structures surrounding two proteins (eg. two proteins

are connected by a hub, or by a protein with a low

degree, or through more than one shortest path)

imply different degrees of closeness between them.

Global distance measurements can catch that differ-

ence by allowing equal probability of one protein to

diffuse along the links of the PPI network. They

tested 110 disease families containing 783 genes in

prioritizing disease genes using local distance meas-

ures (direct neighborhood and shortest path length)

and global similarity measures (diffusion kernel and

random walk with restart). The random walk with

restart method achieved an area under Receiver

Operating Characteristic curve of up to 98% on

simulated linkage intervals containing 100 genes,

the best performance among all of the tested meth-

ods. The other global similarity-based diffusion

kernel approach is also superior to the local distance

measurement methods, although its performance is

slightly poorer than random walk with restart.

Navlakha and Kingsford [39] compared the per-

formance of disease gene prediction using different

distance measurement methods including network

neighbors, random walk with restart, propagation

flow, unsupervised graph partitioning, Markov clus-

tering and semi-supervised graph partitioning. They

obtained unweighted PPI networks from HPRD

and the Online Predicted Human Interaction

Database (OPHID), grouped diseases from the

OMIM morbid-map file based on their names and

extracted loci for the associated genes from UniProt

[40, 41]. They reported that random walk with re-

start gave the best performance in terms of precision

and recall, while both random walk and propagation

flow are superior to clustering and neighborhood

methods. They showed that each of these methods

made novel predictions that were not uncovered by

another, and that only a few incorrect predictions

were made using the combined methods. Hence a

consensus method combining all 13 closeness meas-

urements was proposed and selected in tandem for

the ensemble of decision trees using a random forest

classifier. It was demonstrated that the consensus

method gave the best performance due to its ability

to capture different topological properties of the PPI

network.

Integration of large-scale genomic data
Many integrative approaches have been proposed for

uncovering disease genes based on the assumptions

that the disease genes would also share common fea-

tures in gene ontology annotations, gene expression,

protein sequences and domains and are likely

involved in similar biological pathways and function-

al pathways [8]. While better prediction performance

can often be achieved by integrating multiple data

sources [42], the question lies in how to incorporate

these heterogeneous data together for learning.

Endeavour, a prioritization algorithm through

genomic data fusion, integrated more than 10 fea-

tures and ranked the candidate genes based on their

similarity to known disease genes for each of these

features [43]. The authors first collected information

for known disease genes by considering functional

annotations, microarray expression, EST expression,

literature, protein domains, PPIs, pathway member-

ship, cis-regulatory modules, transcriptional motifs,

sequence similarity and other potential data sources

to be added by users. Then, candidate genes of inter-

est were ranked based on their similarity to known

disease genes in each of these features. A global rank-

ing to prioritize candidate genes was generated by

combining the ranks of individual features using

order statistics. Not surprisingly, the performance

based on all the data sources was shown to be

much better than using partial data sources. The cor-

rect gene, in the validation of 703 disease and path-

way genes, was ranked 10th among 100 candidate

genes on average.
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Functionally linked networks were proposed for

prioritizing candidate genes by consolidating infor-

mation from various data sources using a Bayesian

classifier [44, 45]. Prioritizer first constructed four

types of functional networks by combining different

types of data sources such as gene ontology, gene

expression and PPI [44]. Artificial susceptibility loci

containing 50–150 genes, in steps of 50, surrounding

the known disease genes were generated. The close-

ness in the functional network of a candidate gene in

one susceptible locus to genes residing in another

locus was assessed and assigned a higher score for a

shorter distance. A permutation test was performed

to generate P-values for prioritizing candidate genes.

Prioritizer reached 2.8-fold enrichment compared to

random selection.

While at least two susceptible loci are desired in

Prioritizer, Linghu et al. [45] performed genome-

wide prioritization by constructing an evidence-

weighted functional linkage network of 21 657

genes based on 16 data sources. Pair-wise functional

associations among genes in each feature were inte-

grated into a single functional linkage network,

weighted by overall functional associations, using a

naı̈ve Bayes classifier. For any given disease, scores of

candidate genes for prioritization were assigned based

on the sum of the weights of the network links

to known disease genes. The algorithm was tested

on prioritizing disease genes for 110 diseases using

gene-centric and disease-centric assessments and

showed outstanding performance. By testing the

monogenic, polygenic and cancer disease families

grouped by Kohler etal. [38] based on similar pheno-

types, the authors observed the best performance

for monogenic disease families. The fact that the

performance using the integrated functional network

(62% success rate) is better than using the PPI net-

work alone (40% success rate) confirms the import-

ance of data integration for prioritizing candidate

disease genes.

Integration of phenotypic information
It has been shown that diseases with similar pheno-

types often share either a common set of underlying

genes or functionally related genes [46]. This obser-

vation was used to construct disease networks in

which two diseases are connected, if they share at

least one common gene [8]. A number of different

approaches have been developed to score similarities

between diseases. Rzhetsky et al. performed a study

on 1.5 million patient records and 161 disorders

using a statistical model and found that disease

phenotypes form a highly connected network with

strong pair-wise correlations [47]. A similar disease

phenotype network was constructed by connecting

diseases based on their co-occurrences in a large

number of patients [48]. A couple of text mining

techniques were used to map OMIM diseases to

different standard vocabularies, Medical Subject

Headings (MeSH) or the Unified Medical

Language System (UMLS), to score pair-wise simila-

rities among the disease records [49, 50]. Other

phenotype similarity measures were also reported

based on reciprocal references or the constructed

human phenotype ontology [51, 52]. The scores

from the disease phenotype network have been indi-

cated to be positively correlated with several meas-

ures of gene functions [49]. A particular example

where interactome and phenotype networks can re-

inforce each other was shown for spinocerebellar

ataxia. Lim et al. [53] and Kahle et al. [54] used

Medicare patient records to determine if any disease

associated with proteins in the ataxia interactome also

co-occurs with hereditary ataxia. One of the diseases

that comorbid with ataxia was macular degeneration

(MD). The ataxia interactome is significantly

(P¼ 7.37e-5) enriched with proteins that interact

with known MD-causing proteins, forming a MD

subnetwork.

Based on the assumption that phenotypically

overlapping diseases share functionally similar

underlying genes, it is desirable to incorporate such

phenotypic similarity profiles to candidate gene pri-

oritization. Several studies reported that the integra-

tion of disease phenotype networks and PPI

networks outperform other approaches in the priori-

tization task [50, 51, 55–58]. Wu et al. [55] used a

simple linear regression method called CIPHER

(Correlating protein Interaction network and

PHEnotype network to pRedict disease genes) to

model the correlation between phenotype similarity

profile and gene closeness profile in the PPI net-

work. The underlying assumption of the algorithm

is that the phenotype similarity between two diseases

can be explained by the proximity of the disease

genes in the PPI network. The authors obtained

the phenotype similarity data from van Driel et al.’s
[49] text mining results and generated the network

of 72 431 unique pair-wise binary interactions be-

tween 14 433 human genes by combining manually

curated PPIs from HPRD, BIND, MINT and pre-

dicted PPIs from OPHID. The Pearson correlation
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coefficient of the disease similarity profile for disease

p and the gene closeness profile for gene g is calcu-

lated using the proposed linear regression model and

recorded as a concordance score to represent the as-

sociation of gene g and disease p. They showed that

their predictions are reliable in prioritizing candidate

genes in both linkage intervals and the entire

genome, and more importantly, can potentially be

applied to gene discovery for diseases without any

known associated genes. Further, they demonstrated

that the performance of CIPHER is comparable to

that of Endeavor, an integrative approach that em-

ployed more than 10 large-scale genomic data as

discussed above [43]. Interestingly, the authors

showed that the direct neighbor approach for mea-

suring the proximity of genes in the PPI network

outperforms the shortest path length approach.

However, as the authors addressed, the direct neigh-

bor approach failed to assign ranks to many novel

susceptibility genes in a breast cancer case study.

A similar approach was developed by Vanunu

etal. [58] who adopted the same phenotype similarity

metric computed by van Driel et al. [49]. They cal-

culated the association between a query disease d and

a protein p with a known disease gene for another

disease d0 using a logistic function dependent on the

phenotype similarity between d and d0. This disease

protein association was then used as prior knowledge

in the constructed prioritization function, represent-

ing the relevance of protein p with disease d, to

iteratively smooth itself over the network using

the network propagation formula (Table 1). This

algorithm, named PRINCE (PRIoritizatioN and

Complex Elucidation), was demonstrated to success-

fully predict not only genes, but also protein com-

plexes associated with a disease. In addition to the

utilization of weighted (PRINCE) and unweighted

(CIPHER) PPI networks, the major difference

for PRINCE and CIPHER is that PRINCE

utilized a global network propagation approach,

while CIPHER only used local distance measure

approaches [55]. Not surprisingly, PRINCE

showed superior performance over CIPHER in

prioritizing genes for 1369 diseases with a known

causal gene by �10% in ranking the real disease

gene as the top-scoring one. The authors also

showed that their approach outperforms the

random walk with restart method [38]. Interestingly,

the opposite conclusion was drawn by Navlakha and

Kingsford [39] as discussed earlier. This discrepancy

indicates the performance difference between

random walk with restart and propagation flow

might be marginal and fluctuate with different data

sources and network setup.

Li and Patra constructed a heterogeneous net-

work by integrating the PPI network and phenotype

network based on disease–gene relationships in the

OMIM [57]. The authors developed a new algo-

rithm by extending the random walk with restart

algorithm from only the PPI network to the entire

heterogeneous network. The random walker is no

longer restricted in the gene network but is also

allowed to jump to the phenotype network. This

Random Walk with Restart on Heterogeneous net-

work (RWRH) algorithm prioritizes the genes and

phenotypes simultaneously. In comparison with

CIPHER, it showed that RWRH was superior in

prioritizing disease genes under three different cir-

cumstances: known disease genes and genetic loci,

known disease genes but no known genetic loci

and no known disease genes or loci [55]. Further,

RWRH was demonstrated to outperform random

walk with restart with Area Under Curve (AUC)

values of 0.96 and 0.92 respectively in prioritizing

disease genes [38]. The inclusion of a phenotype

network and the improved algorithm in smoothing

both molecular and phenotype networks greatly

enhanced the disease gene prioritization perform-

ance.

Other biological information has also been com-

bined into the gene-phenotype heterogeneous net-

work to aid in finding disease genes. Based on the

hypothesis that disease genes and their interaction

partners should have more deleterious single nucleo-

tide polymorphisms (SNPs) than other genes, Care

et al. [51] predicted deleterious SNPs using the

random forest classifier and incorporated this infor-

mation along with the PPI and phenotype networks

for predicting disease genes using the same classifier.

The predicted deleterious SNPs were higher in dis-

ease genes, and the inclusion of such information

increased the average recall by 4% based on all PPI

data and 1% based on PPI from high-throughput

experiments.

Construction of disease modules
In addition to the global candidate gene prioritiza-

tion algorithms, significant efforts have been made

towards the discovery of disease genes for individual

diseases by constructing disease modules [10].

Network components in such topological modules

are believed to be functionally related and the
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breakdown of one module will result in a particular

disease. The information for known disease genes are

collected and used to construct disease modules or

subnetworks, in which members would share similar

functions, expression patterns or metabolic pathways.

The concept has been employed in the study of

various diseases including, but not limited to, differ-

ent types of cancers, type 2 diabetes, obesity, asthma,

neurological diseases and so on [59–63]. This disease

module approach, especially for not well-studied dis-

eases, often requires major experimental efforts to

identify interactions for constructing the module of

interest.

Liu et al. [62] used a network-based approach and

identified an insulin signaling module as well as a

network of nuclear receptors that play significant

roles in type 2 diabetes. Together with a subnetwork

of PPIs, the authors suggested the underlying bio-

logical processes for this disorder. In a study of obes-

ity, tissue–tissue co-expression networks between

genes in the hypothalamus, liver or adipose tissue

were constructed and enabled the identification of

disease-specific genes [61]. The study showed that

many genes included in the subnetworks were

involved in obesity-related biological functions

such as circadian rhythm, energy balance, stress re-

sponse or immune response.

A slightly different approach was developed to

prioritize disease-specific genes by constructing dis-

ease- and condition-specific subnetworks [64].

Disease-specific genes, such as differentially expressed

genes identified under disease conditions, were

mapped to global PPI network. The shortest path

subnetwork was then built by including only the

nodes in the shortest path connecting the

disease-specific genes. Each node in this subnetwork

was evaluated and assigned a topological score by

comparing the number of shortest paths of node

pairs traversing it in this subnetwork to the number

of shortest paths through it in the global network.

This topological scoring algorithm was verified using

gene expression data from psoriasis patients and was

able to identify novel targets of psoriasis.

FUTURE PERSPECTIVES
In summary, enormous progress has been made

towards decoding the molecular networks and pre-

dicting novel genes associated with diseases based on

these networks (Figure 2). Various distance measure-

ments of two gene products in a network were

explored and the global distance methods were

demonstrated to be superior to local distance meas-

urements. In the postgenomic era, with the deluge of

large-scale genomic data, integrative approaches have

also been developed to combine these types of data

for prioritizing candidate genes for human diseases.

However, these integrative methods tend to use

overly simple network distance measurements. As

shown by several groups, the inclusion of phenotype

similarity networks significantly increases the per-

formance in prioritizing disease genes. In certain

cases, approaches combining phenotype networks

alone even outperform those combining other mul-

tiple types of data. The utilization of phenotype simi-

larities can potentially be used for ab initio predictions

where no known genes are identified for certain dis-

eases. Nevertheless, caution needs to be taken for

obtaining such similarity scores between diseases

based on text mining as biases and circularity can

be induced [65], which will lead to an overesti-

mation of the performance.

Since a direct comparison of different methods

is often difficult due to the unavailability of some

algorithms and the usage of different data sources,

self-reported performance such as fold enrichment

was sometimes used for comparison. One major

caveat of such comparisons is that the differences in

performance might be due to differences in the input

data sets rather than the algorithms themselves.

As shown earlier, different input interaction data

sets can lead to very different performances [38].

In most prioritization methods, all known disease

genes were considered equally. It might be useful

to develop new algorithms to assign different weights

to known disease genes in finding novel ones.

Furthermore, distinct effects of node removal (com-

plete loss of gene products) and edgetic perturbations

(edge-specific interruptions) to the molecular net-

works should be recognized to confer different func-

tional consequences [66]. The incorporation of such

distinct perturbations should significantly improve

the specificity in prioritizing candidate genes.

Although not discussed in this review, other non-

network-based methods for prioritizing disease

genes should also be appreciated [67–69].

Although huge efforts have been made toward

finding PPIs in human, we still have an incomplete

map of the network due to the high complexity of

networks. Common problems for predicting disease

genes based on networks are the existence of noise

(false positives) in curated PPI databases and gene
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expression profiling experiments in addition to the

bias towards well-studied disease genes [23, 70].

High quality molecular networks are desired to in-

crease the prediction power and are realizable with

advances in high-throughput methods [26]. While

efforts have been made mostly on human molecular

networks, it is worth noticing that an increasing

number of protein interaction networks are under

construction for microbial pathogens [71–76].

Combining viral protein networks and human pro-

tein networks, so called ‘virhostome’, might unravel

key mechanisms of pathogen infection since virus–

host interactions are mostly physical interactions [11].

To conclude, the integration of steadily growing cel-

lular interactomes including PPI networks, regula-

tory networks, metabolic networks and virus–host

networks are crucial for understanding the mechan-

isms of human diseases and predicting novel candi-

date genes associated with diseases.

Key Points

� Humandiseases are the consequences of disruption inmolecular
networks.

� Genes associated with the same or similar diseases tend to
reside in the same neighborhood ofmolecular networks.

Figure 2: Prioritizing schemes for finding disease-associated genes. Candidate genes (within linkage intervals or
genome wide) and known disease genes are mapped to interactome networks. The distance between candidate
genes and known disease genes in interactome networks, functional networks or gene-phenotype networks
are measured using different methods to score and rank candidate genes.
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� Network-based computational approaches have been developed
to find novel disease genes and prioritize candidate genes.

� Global distance measurements between candidate genes and
known disease genes in networks outperform local distance
measurement approaches in prioritizing candidate genes.

� The integration of large-scale genomic data or phenotypic
information with networks greatly increases the prediction
performance.
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