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Recent developments in mass-spectrometry-based shot-
gun proteomics, especially methods using spectral count-
ing, have enabled large-scale identification and differen-
tial profiling of complex proteomes. Most such proteomic
studies are interested in identifying proteins, the abun-
dance of which is different under various conditions. Sev-
eral quantitative methods have recently been proposed
and implemented for this purpose. Building on some tech-
niques that are now widely accepted in the microarray
literature, we developed and implemented a new method
using a Bayesian model to calculate posterior probabili-
ties of differential abundance for thousands of proteins in
a given experiment simultaneously. Our Bayesian model is
shown to deliver uniformly superior performance when
compared with several existing methods. Molecular &
Cellular Proteomics 10: 10.1074/mcp.M110.007203, 1–6,
2011.

Mass-spectrometry-based shotgun proteomics has en-
abled large-scale identification and differential profiling of
complex proteomes yielding significant insights into relevant
biological systems (1). This approach typically involves liquid
chromatography tandem mass spectrometry (LC-MS/MS)1

analysis and employs hybrid mass spectrometers with high
data acquisition efficiency for intensity-based sampling of
peptide ions (1, 2). The current quantification strategies for
differential proteome analyses include the use of stable iso-
tope-labeled reagents for chemical derivitization or metabolic
labeling of protein samples (3). More recently, label-free tech-
niques, such as peak intensity measurements and spectral
counting, have emerged (3).

Spectral counting involves measuring the abundance of a
given protein based on the number of tandem mass spectral
observations for all its constituent peptides. Spectral counts

(SPCs) have been shown to correlate well with the abundance
of the corresponding protein extending over a linear dynamic
range of at least two orders of magnitude for complex protein
mixtures (4–7). SPCs can be readily extracted from the result
files of all database search engines that are used for protein
identification in shotgun proteomics analyses. As such, spec-
tral counting is a flexible and straightforward technique. It thus
offers a practical alternative to label-based quantification
methods, which can be limited by high cost of reagents or
incompatibilities with label incorporation. It is also a good
substitute option for other label-free qualification methods
such as peak intensity measurements, which relies heavily on
computational efforts for chromatogram alignment and peak
processing (3).

Maximizing the potential of spectral counting as a quanti-
tative method has involved optimizations throughout the typ-
ical shotgun analysis workflow including sample preparation
and fractionation, instrument setup, data processing, and sta-
tistical analysis. Intensity-based peptide sampling in shotgun
LC-MS/MS is semi-random and depends largely on sample
complexity, chromatographic separation, and MS instrument
parameters (4). Considerations on the impact of several of
these factors to increase sampling depth have been studied
(6, 8). Various schemes for counting matched spectra from
database search results (7, 9, 10) as well as incorporation of
additional information from including fragment ion MS/MS
intensity and peptide count (11) and LC-MS peak area (12)
have been explored. To more reliably reflect proteome abun-
dances, appropriate transformations of raw SPCs have ac-
counted for peptide length and total SPC within the sample
(13) or probability of peptide detection (14). Statistical pro-
grams for significance analysis of spectral counting studies
have also emerged and are based mainly on modeling the
behavior of SPC data sets (8, 15–19).

More importantly, most proteomics studies are interested in
finding proteins, the abundance of which changes in different
cellular states, under different conditions, or with respect to
different treatments. To this end, simple statistical methods
have been employed to perform one protein at a time anal-
ysis using, for example, Wald or likelihood-ratio statistics.
More recently, Choi et al. (15) implemented a Bayesian
model (with an associated software, QSpec) in which all
proteins are analyzed simultaneously with differential abun-
dance for individual proteins identified using pseudo Bayes
factors.
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In this article we propose an alternative Bayesian model for
comparing spectral counts under two treatments or condi-
tions. The model allows for simultaneous testing of several
thousand proteins through the calculation of posterior prob-
abilities of their null and non-null status, with proteins in the
non-null group being those affected by the treatment. This
two-group classification approach is analogous to widely ac-
cepted statistical methods for analyzing microarray data (20,
21). The necessary computations are easily implemented via
Markov chain Monte Carlo methods using the OpenBUGS
software package (22). Furthermore, we show (see Results)
that classification based on the Bayesian approach of Choi et
al. (15) is similar to the one-protein-at-a-time likelihood ratio
test and substantially inferior in performance to posterior clas-
sification using our Bayesian model.

EXPERIMENTAL PROCEDURES

Synthetic Yeast Proteome Data Set—We used the F2 synthetic
data set generated by Choi and colleagues (15) from a yeast shotgun
proteomics analysis (8). The yeast data set consisted of proteins
extracted from Saccharomyces cerevisiae strain BY4741 grown at
middle log phase in media enriched in 14N- or 15N-labeled amino
acids. Four independent cultures were grown in each medium type.
Five hundred micrograms total protein from each growth condition
were mixed in a 1:1 ratio resulting in four biological replicates. The
resulting mixtures of 14N- and 15N-labeled proteins were then TCA-
precipitated, urea-denatured, reduced, alkylated, and digested with
Lys-C and then with trypsin. The extracted peptides were fractionated
using a 12-step multidimensional protein identification technology
(MUDPIT) setup and analyzed in an linear trap quadrupole (LTQ) linear
ion trap mass spectrometer (ThermoFinnigan) equipped with a nano-
LC electrospray ionization source. Data-dependent acquisition set-
tings include a full MS scan followed by collision-induced ionization
(CID) fragmentation and MS/MS analysis of the five most abundant
peptide ions with the following dynamic exclusion parameters: repeat
count, 1; repeat duration, 30 s; exclusion duration, 300 s. Peak lists
were obtained from RAW files using the extract_ms.exe program and
were then searched using SEQUEST (23) with the appropriate mass
modifications for 15N-labeled peptides against a yeast protein se-
quence database appended with decoy sequences. DTASelect (24)
was used to generate protein inventories with SEQUEST score filter-
ing that yielded a false protein identification error rate of less than 1%
(calculated based on decoy hits). Thirteen hundred and seven pro-
teins were identified at least once in the four biological replicates and
the SPCs for these proteins were obtained from the DTASelect-
filtered SEQUEST search results. To generate the F2 synthetic data
set (15), the protein list in the original yeast data set was randomized
and the abundance of the first 200 proteins was modified to reflect
twofold changes between 14N- and 15N-labeled proteins. The twofold
change was multiplied to the four replicates of 14N-labeled proteins if
the corresponding mean SPC was greater than the mean SPC for the
four replicates of 15N-labeled proteins and vice versa. For proteins
having zero SPC in replicates belonging to the group with the smaller
mean SPC, a randomly generated Poisson count was used with the
resulting mean SPC being equal to the twofold change.

Human Proteins Spiked in Yeast Proteome Background—The hu-
man-yeast proteome data set was obtained from the analysis by Li
and colleagues (19) of the data set obtained from the Clinical Pro-
teomic Technology Assessment for Cancer (CPTAC) Study 6 (25). In
this CPTAC study, a lyophilized yeast lysate (60 ng/uL) was reconsti-
tuted with or without the addition of 48 human proteins (Sigma

Universal Protein Standard 1) that were spiked in varying amounts
(0.25, 0.74, 2.2, 6.7, and 20 fmol/�l). We only used the data sets
comparing the yeast reference proteome spiked with 6.7 and 2.2
fmol/�l Universal Protein Standard 1, which yielded a threefold dif-
ference in abundance. The resulting mixtures were reduced, alky-
lated, and digested with trypsin. Preparation and processing of these
samples was performed centrally at the National Institute for Stan-
dards and Technology (NIST) and were distributed in various groups
for MS analyses using various instruments as described in (25). The
data set used here was derived from samples fractionated by reverse
phase LC-MS/MS and analyzed in triplicate in one LTQ instrument
(ThermoFinnigan) and on two LTQ-Orbitrap instruments (Thermo-
Finnigan) at Vanderbilt University. Data-dependent acquisition set-
tings include a full MS scan in the LTQ for the standalone LTQ study
or in the Orbitrap for the LTQ-Orbitrap instruments followed by CID
fragmentation and MS/MS analysis of the eight most abundant pep-
tide ions in LTQ in both instrument types. The following dynamic
exclusion parameters were used: repeat count, 1 and exclusion du-
ration, 60 s. For data processing and filtering (19), the resulting
Thermo RAW files were converted to the mzML format by the Prot-
eoWizard MSConvert tool (26) and searched using the Myrimatch (27)
search algorithm against a yeast protein database with the 48 human
protein and contaminant sequences as well as the corresponding
reverse sequences. IDPicker (28) was employed to filter peptide
matches to a 2% false discovery rate (FDR). All data from the three
instruments were assembled into a single protein list requiring a
minimum of two distinct peptides per protein. Only 46 out of the 48
human proteins were identified in the assembled data set. Further-
more, the integration of the protein lists resulted in an increase in
decoy hits (22% protein FDR) and an additional filter of five total SPC
per protein was thereby imposed yielding a 6.8% protein FDR. The
final data set consisted of 46 human and 1342 yeast proteins (total of
1488 proteins).

Statistical Methods—Consider a data set consisting of spectral
counts for p proteins in n replicates. Suppose that the replicates are
either controls (e.g. wild type) or from a treatment group. Let Yij denote
the spectral counts for protein i in replicate j, and let Tj be a binary
indicator for treatment. The objective of our analysis is to classify
each protein as null or non-null with respect to the treatment.

A naive approach is to simply conduct one-at-a-time statistical
tests on each protein. Because the responses are counts, a natural
starting point for analysis is the log-linear model,

log �ij � �0i � �1iTj � log Li � log Nj, (Eq. 1)

where �ij denotes the expected count for protein i in replicate j, and
the offsets Li and Nj respectively account for the length of the protein
and the replicate effect. The hypothesis, H0:�1i � 0, represents the no
treatment effect for protein i. Under the assumption that the counts
are independent Poisson variables, this hypothesis can be as-
sessed one protein at a time using Wald or likelihood ratio (LR) test
statistics,

Wi � � �̂1i

�̂��̂1i�
�2

and �i � �2ln
f�yi;�̂i

�0��

f�yi;�̂i
�1��

, (Eq. 2)

where f�yi;�i� is the Poisson likelihood for the counts for protein i with
fitted means �̂i

�k�, for k � 0,1, in the null and non-null cases respec-
tively. Both Wald and likelihood ratio require calculation of the max-
imum likelihood estimates for the non-null model which can be ob-
tained very quickly and efficiently, for example, using the glm function
in R (29), but involve an iterative fitting algorithm. In contrast, the
score statistic (30) only involves the maximum likelihood estimate
under the null model which is available in closed form. In fact, it can
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be shown (see Supplemental Materials) that the score statistic for
testing H0:�1i � 0 is given by

Si �

n��
j�1

n �yij �
Nj

N
y� i�Tj�2

y� i��
j�1

n Nj

N
Tj���

j�1

n Nj

N
�1 � Tj��. (Eq. 3)

These statistics, Wi,�i and Si, are typically compared with a chi-
squared distribution with 1 degree of freedom to determine signifi-
cance, although with small sample sizes the chi-squared reference
distribution might not be appropriate. Alternatively, to account for
possible overdispersion with respect to Possion variation, one could
conduct these tests under the assumption the counts are indepen-
dent negative binomial variables with means given by the model given
in equation (1) or use a quasilikelihood-based test (19).

A Bayesian Model—The fact that there is only a small amount of
data per protein suggests that power can be gained by borrowing
strength across (the large number of) proteins. A general modeling
strategy for can be achieved by formulating the problem in a
Bayesian framework. Choi et al. (15) proposed an approach involv-
ing two Bayesian model fits, both requiring Markov Chain Monte
Carlo (MCMC) simulation, and implemented in a package they
called QSpec. The first (full) model assumes the counts are condi-
tionally independent Poisson variables with means given by the
loglinear model:

log �ij � a0 � b0i � b1iTj � log Li � log Nj,

with prior specification, a0 � N�0, �a
2�, b0i � N�0, �0

2� and b1i � N�0, �1
2�

independently, and hyperpriors �0
�2 � gamma�0.1,0.1� and

�1
�2 � gamma�0.1,0.1�. The second (restricted) model has the same

form but omits the treatment effect term, b1iTj. Thus, the full model
allows for a treatment effect for all proteins simultaneously, whereas
the restricted model does not permit a treatment effect for any pro-
tein. Proteins are then classified as null or non-null on the basis of a
pseudo-Bayes factor of the form

BFi �
f�yi;�̃i

�1��

f�yi;�̃i
�0��

, (Eq. 4)

where �̃i
�k� is the vector of means for protein i evaluated at the

estimated posterior means of the regression parameters obtained
from the full (k � 1) and restricted (k � 0) model fits. That is the
BF-statistic is a function of both model fits and we note its similarity
to the likelihood-ratio statistic in equation (2). We will refer to this as
the pseudo-Bayes method in what follows.

A Bayesian Mixture Model—We now propose an alternative ap-
proach in which we formulate the problem as a Bayesian classifica-
tion method. Specifically, we define Ii to be an indicator for non-null
status of the ith protein and suppose that the indicators are independ-
ent Bernoulli(�1) variables. We then propose to classify proteins as
null or non-null according to the posterior odds

Oi �
P�Ii � 1	data�

P�Ii � 0	data�
(Eq. 5)

for i � 1, . . . p, with protein i classified as non-null if Oi 	 c for a
suitably large positive c. This “two-groups” mixture model approach
is widely used and accepted in the microarray literature (20, 21, 31,
32), with the key difference being that the responses in the microarray
context are continuous and often modeled as (log) normal random
variables. More generally, the inclusion of latent group indicators in
the statistical model is a core component of Bayesian classification
methods (33).

The choice of the threshold c may be somewhat arbitrary. The
modern statistical approach is to attempt to control the false discov-
ery rate (FDR) (34); i.e. the proportion of proteins classified as non-null
for which there is in fact no treatment effect. In a recent paper (21) it
is argued that FDR control can be achieved approximately using a
posterior probability threshold and a value of 0.8 (or equivalently a
posterior odds threshold of 4) is suggested for general use. However,
in practice the choice of the threshold may be influenced by time and
financial constraints on the number of follow-up experiments that are
feasible.

To compute the posterior odds we consider the following modified
version of model 1

log �ij � �0 � �1Tj � b0i � b1iIiTj � log Li � log Nj. (Eq. 6)

The linear predictor in equation (6) consists of �0 and �1, an overall
mean for the control replicates and an overall treatment effect; b0i and
b1i, the corresponding protein specific effects; and offsets Li and Nj.

Suppose that conditional on the means, �ij, the counts, Yij, are
independent Poisson variables. Then the Bayesian model specifica-
tion is completed by placing prior distributions the model parameters.
Because �1, �0, and �1 are global parameters we expect their poste-
rior distributions to be relatively insensitive to the choice of prior.
Hence, we use a uniform (Laplace) prior for the Bernoulli probability,
�1, and diffuse independent normal priors, �0 � N�0,102� and
�1 � N�0,102�, for the global regression coefficients. We consider
three choices of prior distributions for the protein specific coefficients:

1 �b0i, b1i� � N2�0, �� independently for i � 1, . . . ,p, with
��1�Wishart�I,
�, where I is the identity matrix and 
 � 10;

2 b0i � N�0, �0
2� and b1i � N�0, �1

2� independently for i � 1, . . . ,p,
with �0

�2 � gamma�0.1,0.1� and �1
�2 � gamma�0.1,0.1� independently;

and
3 b0i � N�0,�0

2� and b1i � N��,�1
2� independently for i � 1, . . . ,p,

with �0
�2 � gamma�0.1,0.1� and �1

�2 � gamma�0.1,0.1� independently,
and � � N�0,102�.

Model 1 allows for potential correlation between the protein
specific coefficients, whereas models 2 and 3 assume they are
independent. Model 3 allows the posterior mean of the protein
specific treatment effects to be different in the null and non-null
groups. This final modification is important (see “Results”) if the
non-null proteins are predominantly more abundant in one of the
treatment groups.

The most straightforward method of computing posterior prob-
abilities of null and non-null status, and hence the posterior odds
given in equation (5), is to simulate a Markov chain with a limiting
distribution equal to the posterior distribution of the parameters and
latent factors given the data. Specifically, after a suitable “burn-in”
period, each successive iteration of the Markov chain can be re-
garded as a draw from the posterior distribution, and therefore
posterior means (or probabilities, as in equation (5)) can be com-
puted as Monte Carlo averages. See (35) for a more detailed
description of the theory behind MCMC methods. OpenBUGS (22)
is an open source statistical package that implements MCMC
methods for a large class of hierarchical Bayesian models that can
be represented as directed acyclic graphs. The Bayesian models
discussed in this paper are all of this type and therefore all the
necessary computations can be carried out without the develop-
ment of new, model-specific software.

RESULTS

Fig. 1 contrasts the performances of one-protein-at-a-time
tests and the Bayesian methods discussed in the previous
section based on their receiver operating characteristic
curves for the two publicly available data sets described
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earlier. Fig. 1A shows receiver operating characteristic curves
for the synthetic data set generated by Choi et al. (15) based
on the yeast shotgun proteomics analyses performed by
Pavelka et al. (8).

One key finding is that the pseudo-Bayes method (15),
which identifies proteins that are differentially abundant in the
two treatments using the BF-statistics given in equation (4),
has similar performance to the one-protein-at-a-time score
and likelihood-ratio tests. The poor performance of the Wald
test with the synthetic twofold spiked data set is not surpris-
ing because many of the proteins had very low SPC values
and the standard error for the estimated coefficient �̂1i is
extremely unstable such cases. Our Bayesian model 3 uni-
formly dominates the one-at-a-time methods (and pseudo-
Bayes) in both data sets. However, models 1 and 2, whereas
essentially identical to model 3 in classifying the spiked pro-
teins in the synthetic data from (15), perform similarly to the
one-at-a-time methods (and pseudo-Bayes) in the CPTAC

human-yeast data set. An explanation for the different per-
formance of models 1 and 2 in the two data sets is that the
2-fold spiking of the SPCs in the synthetic data was done in
approximately the same number of mutant samples as wild
type (see Fig. 2). For this reason, the posterior mean of the
treatment effect is close to zero for both null and non-null
proteins. In contrast the human proteins in the CPTAC data
set are all spiked higher in the D-samples. Thus, the posterior
mean in the non-null group is positive, a possibility not al-
lowed for in models 1 and 2.

DISCUSSION

Strictly speaking Bayes factors are ratios comparing the
marginal probability of the data under one model specifica-
tion to another (35). In the context of shotgun proteomic
studies with two conditions (e.g. wild type and mutant) there
are 2p possible models, where p is the number of proteins,
because each protein can have either equal or differential

FIG. 1. receiver operating characteristic plots for one protein at a time Wald, score and likelihood ratio tests, posterior odds derived
from Bayesian models 1–3, and pBayes (15) for (A) the twofold spiked synthetic data set from Choi et al. (15) and (B) the CPTAC
Human-Yeast data set from Paulovich (24).

FIG. 2. Abundance rates in the two treatment groups for the synthetic twofold spiked data (15) and the CPTAC human-yeast data
(19). The abundance rate is calculated as Y�
�LN� �, where Y� is the sample mean SPC, L is the protein length, and N� is the mean SPC overall all
samples in the treatment group.
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abundance under the two conditions. The approach of Choi
et al. (15) only considers two of these models, one in which
differential abundance (non-null status) is allowed for every
protein, and one in which there is no difference between the
conditions for any protein. Thus, their protein-specific pseu-
do-Bayes factors cannot be interpreted in terms of margin-
alizing over all other proteins. In contrast, our Bayesian
model essentially considers all 2p possibilities simultane-
ously through the inclusion of latent indicators of null and
non-null status for each protein. For this reason, we believe
that our Bayesian mixture model, which leads to a simple
classification scheme based on posterior probabilities or
odds, is much more statistically coherent and defensible
than an approach based on Bayes factors. As we noted in
the introduction, similar models are now widely accepted for
the analysis of microarray data (20, 21). Finally, our ap-
proach is straightforward to implement using a widely-used
(open source) software package, OpenBUGS (22).

One minor drawback of the fully Bayesian mixture model
analysis described in this paper is that it requires MCMC
simulation for implementation and is therefore slower than the
simple one-at-a-time methods (such as the score test which is
virtually instantaneous). Even so, for a data set of the size
described in the Results section �n � 6 or 8, p � 1000),
running three Markov chains of length 10,000 on a computer
with an Intel Core 2 T9500 processor running at 2.60 MHz with
3.5 GB of RAM takes less than 20 min. This does not seem too
big a price to pay given the far superior performance we have
demonstrated.

** To whom correspondence should be addressed: 1178 Comstock
Hall, Ithaca, NY 14853. Tel.: 607-254-6505; Fax: 607–255-4698;
E-mail: jim.booth@cornell.edu.
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