
High-quality datasets are needed to understand 
how global and local properties of protein-protein 
interaction, or ‘interactome’, networks relate to 
biological mechanisms, and to guide research on 
individual proteins. In an evaluation of existing 
curation of protein interaction experiments 
reported in the literature, we found that curation 
can be error-prone and possibly of lower quality 
than commonly assumed.

An essential component of systems biology is discovery 
of the network of all possible physical protein-protein 
interactions (PPIs), the ‘interactome’ network1–3. There 
are two complementary ways to obtain comprehensive 
PPI information. One is to systematically test all pair-
wise combinations of proteins for physical interactions 
at proteome scale with a high-throughput assay3. The 
alternative is to curate all publications in the literature, 
each describing one (or a few) PPI(s) assayed at low 
throughput4, and then make the curation accessible 
in interaction databases. As neither strategy can come 
close to allowing us to discover the full interactomes 
yet5–7, the matter arises as to which strategy can best fill 
in the missing pieces.

High-throughput protein interaction assays
Two approaches are in frequent use for high- 
throughput mapping of protein interactions at proteome 

scale. Yeast two-hybrid assays attempt to identify binary 
interactions8,9, whereas co-affinity purification followed 
by mass spectrometry identifies presence in a protein 
complex10 but may not accurately determine the binary 
interactions between proteins within a complex7. Other 
technologies exist for mapping both binary interactions 
and presence in the same complex11, but none can yet be 
routinely scaled up for high-throughput assays, although 
recently, a protein complementation assay allowed a large-
scale mapping of the yeast interactome12.

Curating protein interactions
Manual curation of protein interactions from lit-
erature began with pioneering curation for the 
yeast Saccharomyces cerevisiae by the Yeast Proteome 
Database (YPD)13. Those early efforts demonstrated 
that effective curation was possible and also broadly 
aimed to capture all types of functional and genom-
ic information, not only PPIs. Genomic databases 
dedicated to a single model organism arose in par-
allel with genome sequencing projects, for example, 
the Saccharomyces Genome Database (SGD)14 and 
The Arabidopsis Information Resource (TAIR)15. 
Although initially devoted to sequence information, 
many of these databases eventually added many types 
of literature-curated information, including PPI data. 
In time, the publications reporting PPIs exceeded the 
capacity of specialized genome databases and led to 
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for interactome mapping now allows experimental estimation of 
reliability parameters5. Previously, reliability of high-throughput 
datasets was routinely estimated by measuring the overlap with 
a reference set of gold-standard positives (GSP). Several caveats 
must be considered when constructing GSPs. The assays used 
to generate a GSP have to match as closely as possible the assays 
used to generate the experimental dataset, especially indirect 
co-complex versus binary representation7. A GSP should be as 
unbiased as possible, sampling all, or at least most, parts and pro-
cesses of the cell26, and a GSP must be of the highest reliability 
and reproducibility27.

Literature-curated datasets are used for appraisal of the reliabil-
ity of experimental PPI datasets, for predicting PPIs, for predicting 
other features such as protein function and for benchmarking data-
mining methodologies28–30. In these efforts, the superior reliability 
of literature-curated PPI datasets, versus high-throughput datasets, 
is generally presumed. High-quality reference datasets of PPIs are 
integral for empirical estimation of the reliability and size of inter-
actome maps5,7,25,27. Confidence in literature curation is accord-
ingly a prerequisite for generating useful reference datasets. Whether 
literature-curated PPI datasets really have exceptional reliability has 
not been thoroughly investigated.

the creation of databases dedicated to PPIs, for example, the 
Munich Information Center for Protein Sequence (MIPS) protein 
interaction database16, the Biomolecular Interaction Network 
Database (BIND)17, the Database of Interacting Proteins (DIP)18, 
the Molecular Interaction database (MINT)19 and the protein 
Interaction database (IntAct)20. More recent PPI curation efforts, 
the Biological General Repository for Interaction Datasets 
(BioGRID)21 and the Human Protein Reference Database 
(HPRD)22, have attempted larger-scale curation of data from 
more manuscripts and more interactions.

High-throughput efforts versus literature curation
High-throughput approaches contrast in several attributes with  
literature-curation strategies (Table 1). Literature-curated collections 
represent the accumulation of thousands of small-scale, ‘hypothesis-
driven’ investigations, whereas high-throughput experiments are 
‘discovery-based’, designed to discover new biology without a priori 
expectations of what could be learned. Because literature-curated 
datasets are hypothesis-driven, biological functions of interacting pro-
teins often, though not always, can be inferred from the actual study 
design. Discovery-based high-throughput datasets do not present this 
advantage, though function can sometimes be inferred through addi-
tional analyses23. Hypothesis-driven studies set up an inevitable study 
bias7, in that what has been successfully investigated before tends to 
be investigated again, whereas high-throughput screens avoid study 
bias24. The completeness, or the portion of the proteome that has 
been tested for interactions5, can be precisely estimated in a carefully 
designed high-throughput study5,7,25, but this is not so even for the 
largest literature-curated datasets because negative results, the pairs 
tested but not found to interact, are almost never reported.

Estimating reliabilitythe portion of reported interactions 
that are valid (and hence reproducible)is daunting. For high-
throughput datasets, the introduction of an empirical framework 

Interologs are in silico predictions of protein interactions in one 
species between a pair of proteins whose orthologs are known to 
interact in another species62–64. The assumption that interologs 
are more likely true than not is widely held65,66. Recent 
evaluations have now revisited this assumption in several 
ways24,67.

The most important question is where to draw the line for 
interspecies transfer. For instance, is mouse-human transfer 
close enough but more evolutionarily distant mammals not 
close enough? Actually, it is not the species relatedness but the 
sequence relatedness that really matters. Interolog transfers are 
only accurate for especially high sequence similarity24,64. Hence, 
interolog predictions with low sequence conservation should not 
be accepted, even between closely related species24.

Investigations of intrinsic disorder in proteins have also 
unsettled the certainty that protein interactions are highly 
conserved. There are two types of interacting surfaces in 
proteins. Domain-domain interactions are more prevalent 
in stable protein complexes, whereas domain-disorder 
interactions are more transient2,68,69. Domain-disorder 
interactions evolve much faster than domain-domain 
interactions70. The proportion of protein interactions that 
are of the domain-disorder type versus the domain-domain 

type is not known, even approximately, for any species. 
Still, the likely considerable proportion of poorly conserved 
domain-disorder interactions means that the proportion of 
nonconserved interactions is substantial24.

In the one experimental test of interologs so far, only one-
third of the sample set of yeast interactions found by yeast 
two-hybrid were reproduced by yeast two-hybrid between the 
C. elegans orthologs63. Perhaps the large evolutionary distance 
between yeast and worm precluded a higher success rate, and 
mouse-human interologs might have a better success rate, but 
that supposition has not been experimentally tested.

In light of all these reappraisals, curation policies are 
changing. For instance, one interaction database has stopped 
transferring nonhuman interactions to human19, a change 
from earlier practice48. Other interaction databases may follow 
suit. Alternatively, those interactions predicted by interolog 
extrapolation could be explicitly delineated in databases from 
those experimentally demonstrated, so the user could chose the 
appropriate data to examine. Either policy becomes complicated 
because species of the interactors are not often provided in 
publications30,33. Overall, it would seem best practice to only 
curate the species for which there is direct experimental 
evidence; in reality, doing so is difficult.

BOX 1 INTEr0LOgS

table 1 | Comparison of strategies toward completing an 
interactome map
attribute High-throughput Literature-curated

Investigation Discovery-based Hypothesis-driven

Functional inference Determinable from 
network?

Determinable from study 
design?

Study bias Unbiased Biased

Completeness Estimable Inestimable

Reliability Determinable Indeterminable
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a participating member of the International Molecular Exchange 
(IMEx) consortium33,34, so we could not use this database for this 
analysis. The three IMEx members that do substantial curation of 
yeast PPIs (MINT, IntAct and DIP) had surprisingly low overlap 
of curated PPIs (Fig. 3a). That the overlap is so small after years 
of intense curation of protein interactions is reason for concern. 
The small overlap is not due to differential curation of high-
throughput data, as removal of the six largest PPI reports35–40 
still left small overlaps, especially of IntAct with the other two 
databases (Fig. 3a).

Are the small overlaps due to curating different manuscripts or 
to differential curation of data from overlapping sets of manu-
scripts? The answer seems to be that vastly different sets of man-
uscripts are curated because the curation of PubMed reports also 
shows small overlap (Fig. 3b). For multiply supported interac-
tions (those reported in two or more published studies), the low 
overlap remains (Fig. 3c), though the number of interactions 
drops greatly. Hence even the most heavily investigated interac-
tions, those most likely to be multiply curated, do not seem to be 
comprehensively covered. In sum, surrogate estimates of com-
pleteness of literature-curated datasets, at least for yeast, suggest 
that coverage of curated literature is far from comprehensive.

These investigations suggest, but in no way demonstrate, that  
literature-curated PPIs may not have the high reliability often attrib-
uted to them. There has not yet been any intensive investigation of the 
actual reliability of literature-curated PPI datasets. To do so, we recu-
rated representative samples of existing literature-curated PPI datasets 
for three model organismsyeast (Saccharomyces cerevisiae), human 
and plant (Arabidopsis thaliana)and found that the literature cura-
tion of PPI publications can be less than impeccable.

estimating curation reliability by recuration
For yeast, we recurated in detail 100 randomly selected pairs from 
the yeast dataset of singly supported interactions (Fig. 1). After 
evaluating several relevant criteria, we assigned each interaction 
a score of 0 (no confidence), 1 (low confidence or unsubstanti-
ated) or 2 (substantiated or of high confidence) (see detailed 
protocol below).

Completeness and replication of literature-curated datasets
As PPIs supported by multiple publications should be more reliable 
than those supported by only a single publication, we assessed the pro-
portion of multiply supported PPIs for yeast. We ranked the 11,858 
literature-curated yeast PPIs in BioGRID21 (LC-all downloaded in 
mid-2007). Only 25% of LC-all PPIs have been described in multiple 
publications (Fig. 1), with just 5% and 2% of these pairs described in 
≥3 or ≥5 publications, respectively. More than 75% of LC-all PPIs were 
thus described in a single publication. Consistent with this low portion 
of multiply supported PPIs, experimental retests have demonstrated 
a significantly lower quality for singly supported versus multiply sup-
ported literature-curated PPIs for yeast7.

Similar investigations for human and for Arabidopsis thaliana 
showed comparably low proportions of multiply supported PPIs. 
In the initial search space of ~7,000 × 7,000 genes for a first-draft 
human interactome mapping project, there are 4,067 binary  
literature-curated interactions31. Only 15% of these PPIs have been 
described in multiple publications (Fig. 1), with just 5% and 1% 
described in ≥3 or ≥5 publications, respectively. More than 85% of 
human PPIs in the literature-curated set are supported by a single 
publication, greater than the 75% for yeast. The set of Arabidopsis 
PPIs was collected from the only two protein-interaction databases 
that curate Arabidopsis protein interactions, TAIR15 and IntAct20. 
The Arabidopsis PPI dataset has fewer interactions supported by 
data in multiple manuscripts than yeast or human (Fig. 1), with just 
1% and 0.1% described in ≥3 or ≥5 publications, respectively, with 
93% of available Arabidopsis literature-curated PPIs supported by 
data in only a single publication. All told, the number of PPIs sup-
ported by data in multiple publications is small.

Literature-curated datasets are reported to be composed pri-
marily of small-scale experiments21,32. To assess the presumption 
that PPI databases are small-scale, we measured the proportion 
of total PPIs identified in high-throughput experiments. For 
yeast, we ranked the 8,933 interactions supported by data in a 
single publication by the number of distinct PPIs reported in each 
corresponding publication (Fig. 2a). More than 60% of protein 
pairs were curated from manuscripts that described more than 10 
interactions, all extracted from 6% of all the manuscripts curated. 
One-third of the total interactions came from less than 1% of 
all manuscripts that each describe 100 or more interactions (Fig. 
2a), which would reasonably be considered high-throughput. 
Thus, the yeast literature-curated dataset of PPIs supported by 
a single publication record is not composed solely of validated 
interactions from small-scale studies but has a marked portion 
of PPIs derived from high-throughput experiments. We similarly 
analyzed a dataset of human curated PPIs31 and found that this 
human PPI dataset is predominantly low-throughput (Fig. 2b), 
possibly because at the time these PPIs had been downloaded 
from the databases few medium- to high-throughput experiments 
had been published. For Arabidopsis, the proportion of the total 
literature-curated interactions derived from medium to high-
throughput manuscripts is about the same as for yeast (Fig. 2c). In 
sum, many available literature-curated PPI datasets are populated 
widely by PPIs from high-throughput experiments.

As an assessment of the completeness for literature-curated 
datasets is not possible (Table 1), we evaluated database overlaps 
as a surrogate for completeness, on the argument that different 
PPI databases should curate from the same set of PubMed reports. 
BioGRID reports the greatest completeness for yeast but is not yet 
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observations explain the poor reliability, relative to high-throughput 
datasets, of the singly supported literature-curated dataset in both 
computational and experimental comparative analyses7.

For human PPI recuration, we prepared two curation datasets. 
One was a presumed high-confidence literature-curated data-
set of interactions (LC-multiple) within the initial search space of  
~7,000 × 7,000 genes for a first-draft human interactome mapping 
project31 corresponding to pairs reported two or more times (two 
different PubMed identifiers) and curated in two or more databases 
(the five databases used were HPRD22, BIND41, MINT19, MIPS mam-
malian database16 and DIP18). From within this small (275 multiply 
supported interactions) ‘hypercore’ set of protein interactions31, 188 
interactions were left for recuration, after excluding homodimers.

The other dataset was a lower-confidence literature-sampled 
dataset of 188 interactions, generated by randomly selecting 
interactions from the initial search space5. Most of these interac-
tions have one publication linked to the interaction, but because 
sampling was random, several interactions had been reported in 
more than one publication.

In the LC-multiple recuration set, 38% of the initial curation unit 
values (defined in Table 2) were wrong (Fig. 4b and Supplementary 
Table 2 online). The most common errors were wrong species 
(assignment to a species other than human (Box 1)) and absence 
of a binding experiment supporting the interactions. Although 
40% of the human LC-multiple interactions were not supported by 
multiple publications after recuration, most of these interactions 
were supported in only one manuscript instead of two or more, 
perhaps constituting a ‘secondary’ dataset of reduced confidence 
(Supplementary Table 2).

For the presumably lower confidence literature-sampled data-
set of 160 interacting pairs (after removing interactions that had 
more than one supporting publication), 45% of interactions were 
not validated (Fig. 4c and Supplementary Table 3 online) and 55% 
were validated. Almost half of the randomly sampled interactions 
were not supported by recuration. The most common errors here 
were wrong species and wrong protein name (Fig. 4c).

Yeast and human have the largest amount of curated literature 
in interaction databases21,42. A model organism with fewer curated 
interactions might yield different results. We curated 100 higher- 
confidence protein interactions of Arabidopsis from the two inter-
action databases that curate Arabidopsis, TAIR15 and IntAct20. The 
results were improved relative to the yeast or human results, as 6 inter-
actions and 24 curation units were scored incorrect (Supplementary 
Table 4 online and Table 2). We scored the 24 errors as follows: 9 as 
‘no binding experiment’; 6 as ‘no binding partner’; 6 as ‘indirect’; and 
3 as ‘wrong protein’. The improved results for Arabidopsis likely reflect 
a smaller research community whose members can maintain unifor-
mity in gene and protein names15.

Why is reliability of literature curation so low?
Our findings of large error rates in curated protein interaction data-
bases, at least for yeast and human, are consistent with recent hints 
that the quality of literature-curated datasets may not be as high 
as widely perceived23,29,43–45. Perhaps occasionally curator error is 
responsible. However, we suggest that the errors are due not so much 
to curators but to the simple reality that extracting accurate informa-
tion from a long free-text document can be extremely difficult. Gene 
name confusion is particularly thorny30,46. An example from our 
curated yeast sample illustrates the difficulties. A purification with 

The results of this recuration (Fig. 4a and Supplementary 
Table 1 online) showed that 25% of the sampled interactions could 
be substantiated whereas three-quarters were not. Of the inter-
acting pairs in the sample, 35% were incorrectly curated. These  
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for large-scale biology data are under development59, and their 
development is wholeheartedly endorsed by the biocuration com-
munity so as to reduce curation error30.

Our findings, although possibly critical of the quality of existing 
PPI curation, must not be used for quality evaluation of the underly-
ing scientific literature. Actually, some PPI publications do warn of 
possible cross-contamination60 or even occasionally provide heuris-
tic confidence scores61, warnings that should be taken into account 
in the curation.

a tandem affinity purification tag with Vps71/Swc6 (slash separates 
synonymous approved names) as bait47 pulls down a protein named 
Swc3, but double-checking this finds that the coresponding open 
reading frame is actually SWC3 (locus name YAL011w), and not the 
ALR1/SWC3 (locus name YOL130w) open reading frame curated in 
the database. A shared synonym thoroughly muddled the curation.

Common curation practice has been to score equally every 
interaction reported in a publication21,48, even though common 
experimental practice consists of first screening for new interacting 
proteins, then focusing on and substantiating one or a few of the 
most interesting interactions while leaving the others aside. Perhaps 
more curator judgment is needed, applying higher ranking to veri-
fied interactions and lower ranking to unverified ‘along for the ride’ 
interactions. Users can then choose the confidence level suitable to 
their needs. Given the demands of systems biology, perhaps biologi-
cal databases should no longer serve as mere repositories of data but 
should appraise data49. Recent small incremental steps at developing 
a confidence score for curated PPIs have been taken50,51.

The difficulty of literature curation is often underappreciated4,21,30. 
The lack of formal representation of PPIs in published manuscripts 
makes it difficult, if not impossible, to extract the PPI data in usable 
form. Designation of the species of origin of the protein interactors, 
an absolutely critical piece of information, is often buried or lack-
ing altogether; protein or gene name synonyms used in a particular 
manuscript are hard to trace back to the canonical protein or gene 
names, especially in older manuscripts; and standardized descriptions, 
sometimes all description, of the methods used are absent. Faced with 
these difficulties, the curator is forced either to omit the information 
altogether (curated false negative) or make an educated guess, even 
though guesses, albeit educated ones, are often erroneous (curated 
false positive). The small overlaps noted between curated yeast inter-
actions in different databases (Fig. 3) might be due to differential 
treatments of potential curated false negatives.

Our observations that literature-curated datasets have inherent 
reliability difficulties should influence thinking about proper gen-
eration of positive reference sets29. Already the human positive refer-
ence sets generated in our sampled recuration efforts have proven 
useful in multiple investigations5,27,52.

It is still rarely doubted that literature-curated interactions 
are better than datasets generated with any high-throughput 
technology6,21,53,54. Our findings lead us to argue otherwise. If rig-
orously carried out, high-throughput experimental PPIs can be of 
higher quality than literature-curated interactions5,25,27.

Improving reliability of literature-curated ppI datasets
The difficulty of curation arises partly because PPI data are 
not submitted to databases in standardized format upon 
publication55,56, unlike DNA-sequence or protein-structure data. 
The difficulty that curators have in extracting PPI information 
from manuscripts has led to the promulgation of the minimal 
information about a molecular interaction experiment (MIMIx) 
initiative55. MIMIx standardizes the presentation of PPI informa-
tion in published manuscripts regarding species, protein names, 
methodological descriptions and protein identifiers, making it 
easier for curators to extract the pertinent information33. Once 
widely promulgated, which should come about sooner if the 
structured digital abstract57,58 project gains traction, MIMIx will 
greatly improve curation such that the erroneous curation uncov-
ered here will be lessened. Other minimal information initiatives 
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is not substantiated by alternative methods) or 2 (high confidence: 
multiple validations by alternative methods).

Two different curators independently curated and scored all 
interactions. A third independent curator resolved the few scor-
ing conflicts.

Human PPI recuration. We compiled the human PPI dataset as 
previously described31. First, we classified the method codes used by 
each database as binary (for example, two hybrid methods) or indi-
rect (for example, co-affinity purification)25. Then, we selected only 
protein interactions with binary support for subsequent analysis31. 
The multiply supported literature-curated dataset comprised 585 
curation units (Table 2) representing 188 PPIs, each reported in two 
or more publications and curated in two or more PPI databases. The 
dataset randomly selected from the full human literature-curated 
dataset31 comprised 240 curation units representing 188 PPIs.

The types of information we collected during recuration were: 
the gene symbols and GeneID of each interactor; the associ-
ated PubMed identifier; the name and the identifier number of 
the interaction assay following the standard ‘interaction detec-
tion method’ vocabulary implemented in Proteomics Standards 
Initiative–Molecular Interactions34; the region of each protein 
used for the interaction assay (marked full-length if the entire 
protein sequence was used); the species for each interacting pro-
tein; and clarifying free-text comments used by the curator when 
needed. Interpretative fields included; an assessment of whether the 
interaction was bona fide, that is, not erroneous; an assessment of 
whether the interaction was indeed binary; and an error field, using 
a simple controlled vocabulary to classify erroneous curation units 
such as ‘wrong protein’, ‘wrong species’, ‘no binding experiment’, ‘no 
binding partner’ (interaction between the proteins is not shown), 
‘indirect’ (no direct interaction is shown), ‘redundant PubMed 
identifier’ (some manuscripts (usually crystallographic structure 
determination manuscripts) have two distinct PubMed identifier 

Curation protocols
Yeast PPI recuration. For each randomly selected protein pair, we 
read in detail the reporting manuscript (text, figures and supporting 
information), searching for all supporting information about the 
presumed interaction. We answered five questions for each protein 
pair. (i) Is there any information in the manuscript that supports 
the interaction? (ii) Has the experiment supporting the interaction 
been done at low throughput? As the perception persists that low-
throughput experiments have greater reliability21, knowing this is 
important. (iii) Are the interacting proteins mentioned together 
in the text? Lack of co-citation indicates that the authors did not 
actually focus on that particular interaction. (iv) Is the interac-
tion supported by multiple methods? (v) Is the interaction likely 
direct? That is, did the method(s) used gauge binary interaction 
or membership in the same complex?Lastly, we assigned to each 
interacting pair an overall score of 0 (no confidence: no mention of 
the interacting pair, negative answer to the other four questions), 1 
(low confidence: interacting pair is mentioned but the interaction 

table 2 | Summary of curation results for human and Arabidopsis

sampled dataset Interaction units Curation unitsa

Human LC-multiple Correct: 172 (91.5%) 
Incorrect: 16 (8.5%)

Correct: 362 (62%) 
Incorrect: 223 (38%)

Human literature 
sampled

Correct: 88 (55%) 
Incorrect: 72 (45%)

Correct: 88 (55%) 
Incorrect: 72 (45%)

Arabidopsis Correct: 94 (94%) 
Incorrect: 6 (6%)

Correct: 201 (89.3%) 
Incorrect: 24 (10.7%)

aFor human a curation unit is an interaction reported in one publication regardless of the number 
of databases curating the interaction. An interaction reported in three distinct manuscripts and 
curated in two databases represents three curation units. For Arabidopsis a curation unit is an 
interaction reported in one publication or one database. An interaction reported in three distinct 
manuscripts and with all three curated in the two Arabidopsis PPI databases represents six curation 
units.
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Figure 4 | Summary of recuration results. (a) Confidence scores 
of 100 interacting pairs randomly drawn from the yeast literature-
curated dataset supported by only a single publication. Score 0: 
erroneous, not reported in the associated publication; score 1: 
reported in the associated publication but not verified; score 2: 
reported and verified. (b) Recuration results of the literature-
curated sample for human PPIs reported in multiple publications. 
Proportion of correct and erroneous curation units (left) and 
a distribution of different types of curation errors (right). (c) 
Summary of curation results of randomly sampled sets from human 
literature-curated interacting pairs reported in a single publication. 
Correct and erroneous curation units (left); distribution of different 
types of curation errors (right).
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addenda

We assessed literature-curated protein-protein interaction (PPI) data-
sets for the parameters of completeness, coverage and quality by sev-
eral means, concluding that such datasets might be “possibly of lower 
quality than commonly assumed.” A Correspondence71 by members 
of the International Molecular Exchange Consortium (IMEx), while 
accepting many of our points, objected to our recuration exercise to 
assess quality, finding our criteria “subjective.” We argue that the crite-
ria were commonsensical and essentially capture how these databases 
are often described.

A wide swath of the scientific community, from computer scientists 
and engineers to physicists, systems biologists and molecular biolo-
gists, use literature-curated datasets as ‘gold-standard’ positive controls 
with the tacit understanding that this information is nearly perfect. 
Whether user impressions were formed from statements made by 
database authors18–21 or not, belief that database entries accurately cor-
respond to high-quality, direct physical interactions is widespread6,72. 
The standards we used to assess quality are generally accepted by the 
IMEx members, but one that remains problematic is the definition of 
binary interactions. A meaningful fraction of database users is under 
the impression that ‘binary interaction’ means direct pairwise PPIs, 
and that is the definition we tried to apply. The definition that the 
IMEx databases apply is that of ‘binary representation’, meaning any 
pairwise association between two entities, direct or indirect. Although 
technically correct from an informatics viewpoint, binary represen-
tation likely does not accurately reflect biophysical reality. To better 
match user expectations, one IMEx database has adjusted their website 
presentation to allow users to filter ‘spoke expanded co-complexes’ 
from binary interactions, although all reported interactions are ini-
tially classified as ‘binary’.

Another widespread perception is that curated databases contain 
predominantly low-throughput interactions, whereas the reality is that 
curated databases have a substantial portion of interactions derived 
from high-throughput experiments (Fig. 2 in our Perspective). The 
point is not whether high-throughput interaction experiments are of 
worse or better quality than low-throughput experiments, but that 
greater transparency should be provided so that users can filter the 
data according to their needs.

As a result of applying the criteria that we did, based on the obser-
vations above, the error rates we reported reflected not only errors in 
curation but also how well the underlying data meet the standards set 
forth. The details for the yeast, human and plant recurations are avail-
able in the Supplementary Note.

Our efforts are aimed at alerting the scientific community that liter-
ature-curated interactions may need further scrutiny or classification 
to qualify as a ‘gold standard’ for users who are specifically interested in 
direct pairwise PPIs. Closer inspection will allow the community to be 
the ultimate judge of how useful these curation units turn out to be.

We updated our original Supplementary Table 2 on LC-multiple 
human recurated dataset to show the databases from which each inter-
action came (Supplementary Table 1). Almost 90% of interactions, 
and 95% of the problematic curation units, came from non-IMEX 

databases (HPRD22 and BIND17). We had been requested to omit this 
information originally, but for IMEX databases there is minimal differ-
ence in error rates between our recuration and that of Salwinski et al.71. 
A download discrepancy, which IntAct has now mended so that it can-
not recur, necessitated the recuration of the errors for the Arabidopsis 
curation (Supplementary Table 4 in our original Perspective). We now 
score the 24 curation errors as: 3 ‘no binding experiment’ (formerly 9); 
6 ‘no binding partner’ (formerly 6); 11 ‘indirect’ (formerly 6); 3 ‘wrong 
protein’ (formerly 3); and 1 ‘wrong species’ (formerly 0).

Unfortunately the download dates for the interaction data in our 
original Perspective were unclear or missing. The download date for 
the yeast interaction data was originally reported as mid-2007 but is 
actually early 2006. Human interaction data were downloaded from 
HPRD, BIND, MINT, MIPS and DIP in mid-2005, as described in 
ref. 31. Arabidopsis interaction data from IntAct and TAIR were first 
downloaded in February 2008. The second download, which we used 
in the analysis above, occurred in March 2009 when the download 
inconsistencies were pointed out to us.

Our contentions that literature-curated datasets are imperfect 
were corroborated by a paper published concurrently73. Especially 
telling was the observation in that paper that many “databases lack 
a substantial portion of PPIs, emphasizing the need to integrate 
multiple PPI databases”73, a concern fully echoed by our original 
finding of low overlaps between curated PPI databases (Fig. 3 in 
our original Perspective). The problem of low overlaps should be 
mitigated once the IMEx exchange of curation between databases 
becomes implemented33.

Other investigators have reported that literature-curated interaction 
datasets are less perfect than is widely presumed. In papers in Trends in 
Biochemical Sciences44,45,51 the authors argued over a distressing lack 
of reproducibility of curated interactions and contended that “protein 
interactions reported in the literature and curated in interaction data-
bases might not occur as presented.” Other reports have questioned 
the presumed perfection of curated PPIs23,29,43,74, even one report by 
several authors of Salwinski et al.71: “a comparison of publications 
curated by both MINT and IntAct between 2003 and 2005 revealed 
that the two databases annotated exactly the same interaction pairs 
in only 6 out of 52 publications”75. BioGRID now grants that provi-
sions are not made for quality assessment in curation: “We make no 
judgement calls on the methods or even, within reason, the quality of 
the data themselves”76. Perhaps quality of the underlying data should 
in some way begin to be assessed, to match community expectations 
of curated data.

Curation to extract protein-protein interactions from the litera-
ture is absolutely critical to the advancement of systems biology and 
proteomics. Increased transparency and appropriate communication 
of what is currently available in curated datasets will ultimately help 
these efforts. Preliminary steps toward generating confidence scores 
have been reported for curated50, predicted77 and experimental27 PPI 
datasets. These measures go in the right direction and their further 
development should be encouraged and appropriately funded.

Addendum: Literature-curated protein interaction datasets
Michael E Cusick, Haiyuan Yu, Alex Smolyar, Kavitha Venkatesan, Anne-Ruxandra Carvunis, Nicolas Simonis, Jean-François Rual, 
Heather Borick, Pascal Braun, Matija Dreze, Jean Vandenhaute, Mary Galli, Junshi Yazaki, David E Hill, Joseph R Ecker, Frederick P Roth & 
Marc Vidal
Nat. Methods 6, 39–46 (2009); published online 30 December 2008; addendum published after print 25 November 2009.
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