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Several attempts have been made to systematically map
protein-protein interaction, or ‘interactome’, networks.

However, it remains difficult to assess the quality and coverage

of existing data sets. Here we describe a framework that uses
an empirically-based approach to rigorously dissect quality
parameters of currently available human interactome maps.
Our results indicate that high-throughput yeast two-hybrid
(HT-Y2H) interactions for human proteins are more precise
than literature-curated interactions supported by a single
publication, suggesting that HT-Y2H is suitable to map a
significant portion of the human interactome. We estimate
that the human interactome contains ~ 130,000 binary
interactions, most of which remain to be mapped. Similar
to estimates of DNA sequence data quality and genome size
early in the Human Genome Project, estimates of protein
interaction data quality and interactome size are crucial

to establish the magnitude of the task of comprehensive
human interactome mapping and to elucidate a path toward
this goal.

The protein-protein interactome of an organism is the network
formed by all protein-protein interactions that can occur at a range
of physiologically relevant protein concentrations. Mapping pro-
tein-protein interactions is crucial, albeit not sufficient, for unra-
veling the dynamic aspects of cellular networks—including when,
where and for what purpose protein interactions do occur in vivo'.
Currently available human protein-protein interactome maps have
been derived using HT-Y2H??, high-throughput coaffinity purifi-
cation followed by mass spectrometry?, curation of published low-
throughput experiments®>'® or computational predictions!'>!2,
Despite a few attempts>>!>14 it remains difficult to accurately
estimate the quality and coverage of these interactome maps.
Differentiation between sets of protein pairs that can interact
(biophysical interactions) and do interact (biological interactions)
is only possible with reliable biophysical interactome maps. How-
ever, several issues remain unresolved, including what proportion
of currently available interactome maps represents true biophysical
interactions and what proportion represents artifacts; whether the
interactions provided by curated low-throughput experiments are
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superior in quality to those obtained by high-throughput strategies,
as suggested previously!>~!7; and whether the currently available
interactome maps represent a significant or a negligible fraction of
the human biophysical interactome. Here we provide insights that
are crucial for developing a strategy for comprehensive interactome
mapping—that is, for estimating the size of the human interactome
and thus an endpoint to the project, and for selecting suitable
technologies, a realistic timeline and a funding model to achieve
this goal.

Previous attempts to assess the quality of interactome maps for
humans!®!418 or other species!>1>18-2? relied on measuring either
the extent to which interacting proteins share other biological
attributes, such as coexpression, or the extent to which different
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Figure 1 | Conceptual framework for interactome mapping. The concepts of
screening completeness (fraction of all pairwise protein combinations tested),
assay sensitivity (fraction of all biophysical interactions identifiable by a
given assay), sampling sensitivity (fraction of all identifiable interactions that
are detected in a single trial) and precision (fraction of pairs reported by a
given assay that are true positives) can be estimated independently and
combined to empirically estimate the size of binary interactomes. Solid black
lines in a given network graph represent true biophysical interactions present
in that network; dashed lines represent true biophysical interactions missing
from that network; and solid colored lines represent biophysical artifactual
pairs present in that network.

maps of the same interactome share common interactions.
Both approaches suffer several inherent limitations. Methods
that evaluate the quality of interactions with respect to mRNA
coexpression®>?3 are systematically biased against true biological
interactions between proteins whose mRNAs are not necessarily
correlated, or are even anticorrelated, in expression. Because avail-
able annotations for protein function and localization are far from
comprehensive, lack of evidence for colocalization of a given pair of
proteins does not imply that the interaction observed between these
proteins is an artifact. Methods based on measuring the extent of
overlap between two interactome maps!>?%?! require that the
corresponding data sets be derived from identical or similar assays.
Existing analyses have not always fulfilled this requirement!>, Most
existing methods for quality assessment do not distinguish between
the multiple sources of false negatives and false positives associated
with any interactome mapping strategy. For instance, interactions
missed by a single screen of an assay but identifiable after multiple
screens must be distinguished from interactions that would never
be identified by that assay even after a saturating number of screens.

Here we developed a framework to estimate various quality
parameters associated with currently used protein-protein inter-
action assays, namely screening completeness, assay sensitivity,
sampling sensitivity and precision. We generated empirical data
to rigorously dissect these quality parameters without relying on
correlation with other biological attributes. Combining these
parameters provides an estimate of the size of the human binary
biophysical interactome and projects a path toward the completion
of its mapping.

RESULTS
An interaction mapping framework
To accurately assess the quality of a given interactome map, we need
to consider every possible source of false negatives (true inter-
actions missing) and false positives (spurious pairs reported)
associated with the assay used to generate the map. Our framework
considers four parameters to estimate quality: screening complete-
ness, assay sensitivity, sampling sensitivity and precision (Fig. 1).
Screening completeness is the fraction of the total possible space
of open reading frame (ORF) pairs that is tested to generate a given
interactome map. Because currently available ORF resources®>?*
only allow proteome-wide investigations of one protein isoform
per gene, we ignored isoforms encoded by alternatively spliced
transcripts here. For example, if we assume that the human genome
consists of 22,500 protein-coding genes (N = 22,500 x 22,500/2
protein pairs), then the screening completeness of the Center for
Cancer Systems Biology Human Interactome version 1 (CCSB-
HI1) data set’, a proteome-scale HT-Y2H effort that tested
n = 7,000 x 7,000/2 human protein pairs, is n/N, or ~10%.
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Assay sensitivity is the fraction of all biophysical interactions that
can possibly be identified by an assay conducted under a specific set
of experimental conditions. For example, a given HT-Y2H assay
may be unable to detect interactions involving specific types of
membrane proteins or requiring post-translational modifications
that do not occur in yeast cells.

Sampling sensitivity is the fraction of all identifiable interactions
that are found in a single trial of an assay conducted under a specific
set of experimental conditions. When testing tens, if not hundreds,
of millions of protein pairs in any space of pairwise combinations,
it might be necessary to sample that space multiple times to report
all identifiable interactions.

Lastly, precision is the fraction of observed pairs in an inter-
actome data set that are true positives. False-positive pairs reflect
technical artifacts that erroneously score positive in a given assay
conducted under a specific set of experimental conditions. We
distinguished between two types of artifactual pairs: stochastic false
positives, which are observed in only one or a few trials of an assay,
and systematic false positives, which are observed in many or
all trials.

Estimation of assay sensitivity

Estimation of the assay parameters described above requires
reference sets of positive and negative interacting pairs. To compile
a positive reference set (PRS) of high-confidence human binary
protein-protein interactions, we started with interactions curated
from the literature. From these, we chose 188 pairs present in our
human ORFeome v1.1 clone collection®* that are supported by the
greatest number of publications and curated by the highest number
of databases. Systematic recuration of all publications thought to
support these 188 protein pairs? verified 107 direct binary inter-
actions that involve human proteins and are supported by multiple
publications. Ninety-two of these interactions involve full-length
proteins and constituted our Homo sapiens PRS version 1 (hsPRS-
v1; Fig. 2a and Supplementary Table 1 online). Proteins involved
in the 92 hsPRS-v1 interactions show broad cellular localization
(Fig. 2b), suggesting that they are representative of the entire
human proteome. It is impossible to generate a set of negative
interacting pairs with absolute confidence, so we compiled a
surrogate random reference set (hsRRS-v1) of 188 protein pairs
chosen randomly from the space of all ORFeome v1.1 pairs after
excluding known interactions (Fig. 2c).

PRS and RRS pairs can be used to experimentally calibrate
conditions of an assay to achieve an optimal trade-off between
the fraction of PRS and RRS pairs reporting positive?®. We
measured the fraction of hsPRS-v1/hsRRS-v1 pairs scoring positive
across a range of experimental and scoring conditions of a stringent
version of the Y2H system (Y2H-CCSB)? and the mammalian
protein-protein interaction trap assay (MAPPIT)?” (Supplemen-
tary Table 2 online and Fig. 2d.e).

The results for the hsPRS-v1 and hsRRS-v1 pairs with Y2H-
CCSB confirmed that the specific experimental conditions used in
generating our first human interactome map, CCSB-HI1 (ref. 2),
reflected good assay design. We also derived suitable experimental
conditions for the MAPPIT assay. Under these experimental con-
ditions, we estimated the assay sensitivity of Y2H-CCSB and
MAPPIT to be 17% and 21%, respectively (Fig. 2f and Supple-
mentary Table 3 online). Using a larger, more recently updated set
of ~1,500 literature-curated interactions that are supported by

multiple publications, we estimated an assay sensitivity of 20% for
Y2H-CCSB, consistent with our hsPRS-vl-based estimate. Y2H-
CCSB and MAPPIT recovered partially overlapping sets of hsPRS-
vl interactions. Of the 92 hsPRS-v1 pairs, 27 (29%) were reported
by at least one assay, and of those, 7 (26%) were detected by
both assays (Fig. 2f,g). That 20 (74%) of the 27 positive hits are
specific to a single assay reflects complementarities between the
two assays.

We estimated the false-positive rate (rate at which hsRRS-v1
pairs scored positive) of Y2H-CCSB and MAPPIT to be <0.5%
and 2%, respectively (Fig. 2f and Supplementary Table 4 online).
The results of testing hsRRS-v1 pairs by Y2H-CCSB do not permit
a direct and reasonable estimate of the false-discovery rate asso-
ciated with the CCSB-HI1 data set. The millions of pairs tested by
Y2H-CCSB in the high-throughput screen leading to the genera-
tion of CCSB-HI1 consist mostly of noninteracting pairs, so the
number of noninteracting pairs tested in the HT-Y2H screen is
orders of magnitude higher than the size of hsRRS-vl. Conse-
quently, small changes in the hsRRS-v1-based estimate of the false-
positive rate of Y2H-CCSB can have a large effect on the resulting
estimate of the false-discovery rate of CCSB-HI1. Rather than using
the Y2H-CCSB experiments on the hsRRS-v1 pairs, we instead
used two alternate and independent approaches to estimate the
false-discovery rate of our Y2H-CCSB assay: retesting Y2H-CCSB
interactions in MAPPIT, and modeling repeated screens of
Y2H-CCSB.

Precision of existing human interactome data sets

We estimated the precision of the two existing HT-Y2H human
interactome data sets, CCSB-HI1 (ref. 2) and Max Delbriick Center
for Molecular Medicine Human Interactome version 1 (MDC-HI1;
ref. 3), as well as a low-throughput literature-curated human
interactome data set?, by measuring the extent to which a subset
of 188 positive pairs chosen randomly from each data set (Supple-
mentary Table 1) retested in MAPPIT. To do so, we first bench-
marked the performance of each data set in MAPPIT experiments
against the false-positive rate of MAPPIT and the false-negative rate
of MAPPIT. We estimated these benchmarks by evaluating the
fraction of hsRRS-vl and hsPRS-v1 pairs reporting positive by
MAPPIT, respectively. The results with the hsRRS-v1 pairs pro-
vided an estimate of MAPPIT’s false-positive rate that was suffi-
ciently resolved for estimating false-discovery rates of the various
interactome data sets, as the size of the hsRRS-v1 is similar to the
size of each of the three different interactome data sets tested.
Relative to the proportion of hsPRS-v1 and hsRRS-v1 pairs scoring
positive (21% and 2%, respectively), the fractions of pairs that
scored positive in the three data sets were 8% for literature curated,
10% for MDC-HI1 and 27% for CCSB-HI1 (Fig. 3a and Supple-
mentary Table 4).

To adjust the analysis for potential data set biases, we first
minimized the effect of differences between the sequences of the
clones originally used to report the interactions and sequences of
the full-length clones used here. We considered only pairs for which
the proteins originally used were described as full length or,
whenever identifiable, pairs for which the isoforms originally
used were the same (‘same’) as the ones used here. Second, because
the CCSB-HI1 and MDC-HII data sets were each described in a
single publication, we compared them to the subset of literature-
curated interactions also supported by a single publication
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, we did not

use the results of testing the hsRRS-v1 pairs to estimate the false-discovery rate of the Y2H-CCSB assay. (e) Assay sensitivity and background positive rate of the

MAPPIT assay after varying experiment-to-control-ratio (ECR) scores (Supplementary Methods). (f) Top, assay sensitivity and background positive rate of Y2H-

pairs scoring positive in at least one configuration and in both pairwise mating experiments is shown. This condition reflects the assay sensitivity of the specific

experimental and scoring conditions of Y2H-CCSB used to generate CCSB-HI1 (ref. 2). Bottom, Venn diagram of hsPRS-v1 pairs scoring positive in the two assays.
(g) Results of testing each hsPRS-v1 pair and each hsRRS-v1 pair using Y2H-CCSB and MAPPIT. Yellow or blue shaded squares represent protein pairs scored

the interactions available in the curated literature of low-throughput experimentally derived interactions (LC). (b) Distribution of cellular location of proteins in
positive by a given assay.

the hsPRS-v1 and hsRRS-v1. () Method by which hsRRS-v1 pairs were chosen from the possible pairs in our human ORFeome v1.1 clone collection?. (d) Assay
CCSB and MAPPIT under the specific experimental conditions used in the rest of this study (Supplementary Methods). For Y2H-CCSB, the fraction of hsPRS-v1

sensitivity (fraction of hsPRS-v1 pairs scoring positive) and background positive rate (fraction of hsRRS-v1 pairs scoring positive) of the Y2H-CCSB assay based

Figure 2 | Assay sensitivity and background positive rate of binary interactome mapping assays. (a) Method by which hsPRS-v1 interactions were chosen from
on varying experimental and scoring conditions, including use of an alternate protocol (Supplementary Methods). Because of limited sample size
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Figure 3 | Precision and sampling sensitivity

in interactome data sets. (a) Comparison of
interactome data sets by comparing the rate of
observing a positive by MAPPIT given a positive in
the data set. LC, literature-curated interactions.
(b) Interactome data sets were further compared
after removing various biases by considering
interactions originally derived using full-length
(FL) proteins and using Y2H assays. (c) Precision
of each tested data set computed by accounting
for the rate of detecting hsRRS-v1 pairs and Y2H-
supported hsPRS-v1 pairs by MAPPIT in b. Error
bars represent estimated s.d. of the mean using a
Monte Carlo simulation of scores observed in a
given assay. (d,e) Sampling sensitivity and Y2H-
CCSB repeat screens. White bars represent protein
pairs uncovered in only one screen; progressively
darker shades of gray represent protein pairs
reported in increasing numbers of screens.

(d) Total numbers of positive pairs reported after
one, two, three or four Y2H-CCSB repeat screens.
(e) Predicted saturation curve of the number of
uncovered interactions against the number of
screens for Y2H-CCSB after modeling the data in d
and assuming a single isoform per gene in the
search space.
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(‘single’), which represents most currently available literature-
curated interaction information?. Including interactions sup-
ported by multiple publications in the literature-curated data set
would be circular, as our hsPRS-v1 benchmark was derived from
literature-curated interactions supported by multiple publications.
Lastly, to account for the moderate bias of MAPPIT in detecting
Y2H-supported (‘Y2H’) interactions, we considered the subset of
hsPRS-v1 and literature-curated pairs supported by at least one
Y2H experiment in the corresponding curated publications (Sup-
plementary Data 1 and Supplementary Table 5 online). Based on
these consolidated data sets, 34% of Y2H-supported hsPRS-v1
pairs (‘PRS-Y2H’) and 2% of hsRRS-vl pairs scored positive.
Relative to this, the fractions of pairs that scored positive in the
three subsets of protein pairs were 10% for literature curated
(single, full length, Y2H), 31% for MDC-HII1 (same, full length)
and 27% for CCSB-HI1 (same, full length; Fig. 3b). Thus, the two
HT-Y2H data sets performed comparably to the PRS-Y2H pairs in
MAPPIT, whereas the literature-curated interactions supported by
a single publication performed poorly. Given the fraction of PRS-
Y2H pairs and hsRRS-v1 pairs scoring positive by MAPPIT, we
computed the precision of each of the three data sets as 25% for
literature curated (single, full length, Y2H), 83% for MDC-HI1
(same, full length) and 79% for CCSB-HI1 (same, full length;
Fig. 3¢ and Supplementary Table 3).

Sampling sensitivity and stochastic false-discovery rate

To estimate sampling sensitivity and the number of screens
required to achieve saturation, we repeated four Y2H-CCSB screens
(‘repeat screens’) in a defined search space of 1,822 DB-Xs (‘baits’
representing 1,744 unique genes) against 1,796 AD-Ys (‘preys’

16 18 20

Number of Y2H-CCSB screens

senting ~ 3 million pairwise combinations
(Supplementary Table 6 online). We devel-
oped a probabilistic model that considered
the search space of 3 million protein pairs to
be a mixture of true biophysical interactions and noninteracting
pairs. Using a bayesian approach, our model estimated the fraction
of all identifiable true biophysical interactions found in one, two, or
a saturating number of screens, and the fraction of noninteracting
pairs erroneously detected in a screen. In short, our approach
estimated distributions of values of the above parameters that fit
the experimental results observed in the repeat screens.

Of the 3 million pairwise combinations tested, the four Y2H-
CCSB repeat screens together reported 240 protein-protein
interactions (Supplementary Tables 7 and 8 online). Of these
interactions, 49% appeared in multiple screens. The total number
of new interactions identified after successive screens showed an
increasing trend, indicating that more interactions would be found
with additional screens (Fig. 3d). On the basis of our model, we
estimated that the sampling sensitivity per screen is 45% and that
after a saturating number of screens, Y2H-CCSB can identify 71
interactions per million pairs tested (Fig. 3e). Approximately six
screens are needed to reach 90% saturation. Notably, the number of
single hits (interactions found in only one of several screens)
decreases, whereas the contribution of multiple hits dominates
after multiple screens. Adjusting for these repeat screens being done
in only one Y2H configuration (bait-prey versus prey-bait), we
estimated that after testing both configurations, the sampling
sensitivity per screen is 53%, and that after a saturating number
of screens, Y2ZH-CCSB can identify 118 interactions per million
pairs tested (Supplementary Table 3).

Our model estimated that approximately eight of every million
noninteracting pairs tested falsely report positive in Y2H-CCSB.
Consequently, our model estimated a stochastic false-discovery rate
of 12%, meaning that 12% of the interactions reported in a single
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Y2H-CCSB screen correspond to stochastic false positives. Because
the MAPPIT experiments (Fig. 3¢) evaluated the union of systema-
tic and stochastic false positives in a given data set and estimated
an overall false-discovery rate of 21% for CCSB-HI1, we
deduced a systematic false-discovery rate of 14% (Supplementary
Methods online).

The MAPPIT experiments showed that existing human HT-Y2H
maps have high precision. However, the fraction of CCSB-HI1 and
MDC-HI1 interactions common to both maps is small, although
statistically significant—only 6% and 2%, respectively (P = 10~ 8;
Supplementary Data 2, Supplementary Fig. 1 and Supplemen-
tary Table 9 online). Our results indicate that low sampling
sensitivity and differences in assay sensitivity are likely to account
for the small overlap.

Estimation of the size of the human interactome

We estimated four important parameters associated with the
quality of human binary interactome maps (Fig. 1). For the
Y2H-CCSB assay evaluated here, we computed the screening
completeness of the repeat screens as ~ 1%; the hsPRS-v1 experi-
ment estimated an assay sensitivity of ~17% (Fig. 2f); the model
of the repeat screens estimated a sampling sensitivity of ~53%
(Fig. 3e); and the MAPPIT experiment estimated a precision of
~79% (Fig. 3c). We also estimated the variation of these estimates
associated with sampling (Supplementary Table 3). Integrating
these parameters, we predict that the entire human interactome,
excluding splice variant complexity, contains 74,000-200,000 bin-
ary biophysical interactions (Table 1).

Interacting protein pairs and shared functional annotation

A statistically significant fraction (P < 1073), but not all, of the
interacting protein pairs in CCSB-HI1 and MDC-HII1 shared
functional annotations compared to random expectation (Fig. 4).
Given the high technical quality of these data sets shown here,
interacting pairs that do not share known functional annotations
could be promising candidates for biological discovery, particularly
true biological interactions that involve proteins currently lacking
adequate functional annotations, or they could be true biophysical

Table 1 | Sizing the human interactome

Parameter Test Result
Average number of interactions  Repeat screen 199

detected per screen experiment

Screening completeness of Ensembl 1.2%

repeat screen search space version 44.36f

Assay sensitivity hsPRS-v1 experiment 17 + 3.8%
Sampling sensitivity per repeat ~ Repeat screen 53.1 + 10%
screen experiment

Precision MAPPIT experiment 79.4 + 15.9%

Systematic false-discovery rate ~ MAPPIT and repeat 13.6 + 14.5%

screen experiments

Stochastic false-discovery rate Repeat screen 11.7 £ 6.1%

experiment

130,111 + 32,618
(73,548-199,688)°

Estimation of parameters of the binary interactome mapping framework. Average values + 1 s.d.
of each parameter, based on Monte Carlo simulation (n = 10,000 runs), are indicated after
accounting for testing protein pairs in both bait-prey and prey-bait configurations. 3The range
of interactome size reported corresponds to the 95% confidence interval of the size predicted.

Size of the human interactome  Combining all

parameters
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Figure 4 | Analysis of interacting pairs in CCSB-HI1 and MDC-HI1 interactome
maps for their ability to share specific Gene Ontology (GO) functional
annotations. P values indicate the probability of observing shared annotation
by chance (compare black bars to white bars), computed using Fisher's exact
test. Gray bars reflect the fractions of interacting pairs that do not share
specific GO functional annotations. Analysis was done on MDC-HI1 and
CCSB-HI1 interactions reported using full-length ORFs.

interactions that do not occur physiologically. We call this latter
class ‘pseudointeractions) by analogy to pseudogenes. Pseudointer-
actions could correspond to ancient biological interactions that
have evolved to lose physiological relevance and provide interesting
insights into the evolution of the interactome.

DISCUSSION

Several previous studies have estimated the precision of existing
maps or the size of interactomes!®~1>18:20-2328 Our empirical
framework addresses limitations of these studies (detailed discus-
sion in Supplementary Data 3 online). Methods that rely on
correlation with other biological attributes to estimate the precision
of interactome maps often use as a benchmark literature-curated
interaction data sets, which are sociologically biased; assume that
knowledge of biological attributes, such as Gene Ontology func-
tional annotation, is complete and unbiased; and are inherently
constrained by preexisting paradigms regarding the expectation for
interacting protein pairs to share biological attributes. Approaches
based on analyzing the extent of overlap between interactome
maps!>202! suffer specific limitations in their implementations,
such as comparing maps that were not derived using the same assay,
or using literature-curated data sets as a reference set, which may
not be appropriate given a potentially higher false-positive rate than
previously anticipated (Fig. 3c)?. Earlier studies also did not
consider one or more of the parameters that influence interactome
map quality—completeness, systematic false-discovery rate, sto-
chastic false-discovery rate, assay sensitivity and sampling sensitivity
—which could in turn significantly affect estimates of interactome
size. Together, these limitations may have led to overestimated false-
discovery rates for HT-Y2H human interactome maps.

Our framework overcomes these limitations by considering every
possible source of false negatives and false positives, using a high-
quality reference set requiring interactions to be supported by
multiple publications and to pass additional recuration, assessing
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false-discovery rates directly using information from independent
protein-protein interaction assays, and comparing overlaps
between four homogeneously derived repeat screens to assess the
sampling sensitivity and stochastic false-discovery rate of Y2H-
CCSB. Close attention to these parameters will be vital to design the
strategy, such as the number of screens and types of assays to use,
for future interactome mapping projects.

The hsPRS-v1 and hsRRS-v1 provide hundreds of experimen-
tally testable clone pairs of positive and random reference sets for
binary protein-protein interactions. Previous assays typically relied
on testing one or a few positive control pairs and a few or no
random control pairs. Although our reference sets are a first version
and will be improved, they mark a substantial effort toward the
standardized calibration of binary interaction mapping assays, an
objective that has not been previously achieved systematically.

Although interaction data sets curated from low-throughput
literature are commonly perceived to be of better quality than data
sets generated with high-throughput technologies'>"7, the results
of our MAPPIT experiments indicate that stringent implementa-
tions of HT-Y2H assays produce interaction data sets with technical
quality at least as good as, if not superior to, literature-curated
interactions (Fig. 3c). These results substantiate previous compu-
tational analyses of human?® and yeast®® interactome maps. Large-
scale curation of the primary literature is challenging and may have
higher error rates than previously anticipated?®. High-throughput
interactome mapping strategies have several advantages over low-
throughput strategies: (i) because defined search spaces are used,
information about positives (pairs observed to interact) and
negatives (pairs not observed to interact) is available; (ii) experi-
ments are standardized and therefore well controlled, comparable
and scalable; (iii) cost-efficient strategies can be developed; and (iv)
high-throughput strategies are less sociologically biased than low-
throughput experiments.

Implementation of our framework can be improved in various
ways. The statistical power of the analyses can be increased by
testing more PRS interactions, repeatedly screening larger search
spaces or using additional independent assays for measuring
precision. Our current implementation does not consider multiple
splice isoforms per gene, so we are most likely to underestimate the
interactome size. Additional modifications to the framework will be
required to thoroughly analyze nonbinary complex comembership
maps, such as those generated by high-throughput coaffinity
purification followed by mass spectrometry*. More refined esti-
mates can be made with future enhancements, but the central
concepts and overall approach are in place for design and compre-
hensive evaluation of any interactome mapping assay. Our group
recently developed an interaction tool kit consisting of four
independent assays to evaluate the quality of any protein interac-
tion data set?’. Ongoing technological advancements related to
assay automation and cost reduction will enable testing of
expanded versions of the PRS and thousands (rather than hun-
dreds) of Y2H, literature-curated and other interactions using
these assays.

Similar to estimates of the number of protein-coding genes in the
human genome, ~ 14,000-300,000 in the early 1990s®!, empirical
sizing of the interactome is crucial to establish the complexity of the
network and to estimate how far we are from a complete human
interactome map. Assuming one splice isoform per gene, we predict
that the size of the human interactome is ~ 130,000 interactions.

This confirms two previous estimates of human interactome size,
which ranged from 150,000 to 370,000 interactions®!?. Of the
~ 23,000 currently reported human interactions (a combination of
~17,000 literature-curated interactions and ~ 6,000 HT-Y2H
interactions), our measurements indicate that ~ 10,000 (~42%)
are true binary physical interactions (Supplementary Data 4
online). Thus, the fraction of interactions identified so far repre-
sents ~ 8% of the full interactome.

With 22,500 protein-coding genes, nearly 250 million protein
pairs need to be tested individually, clearly requiring unbiased,
systematic and cost-effective high-throughput approaches. Inter-
actome mapping is gradual: six screens are necessary to reach 90%
saturation with Y2H-CCSB. No single assay offers complete assay
sensitivity. The fraction of protein-protein interactions detectable
by the specific version of HT-Y2H used here (Y2H-CCSB) is
~17%. Combining different versions of the Y2H system and
using increased expression of both hybrid proteins can increase
this proportion to ~40% (data not shown and ref. 26). Still,
comprehensive mapping of the interactome will require the devel-
opment of additional high-throughput versions of MAPPIT and
other assays?°.

The potential impact on biology of a complete and reliable
biophysical protein interaction map cannot be overestimated.
Our results offer a quantitative roadmap in this direction,
uncovering both the magnitude of the task ahead as well as the
potential roadblocks.

METHODS

Overview. The Y2H-CCSB experiments were done as described”
with minor changes. MAPPIT experiments were done essentially as
described®?. Mathematical modeling of the repeat screens was
done using a bayesian approach. All parameters observed from
either the experimental data or the mixture model were used as
inputs into a Monte Carlo simulation to calculate the correspond-
ing magnitudes of corresponding numbers reported in the text.
Detailed descriptions of all data sets and methods can be found in
Supplementary Methods.

Note: Supplementary information is available on the Nature Methods website.
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