
despite their socioeconomic importance. Until
now, the selection of genomes for sequencing
has been determined on the basis of genome
simplicity and not agronomic relevance, with
serious consequences for crop improvement and
food security [for example, by neglecting wheat
or choosing the diploid of cotton, Gossypium
raimondii, to sequence first rather than focus-
ing on the economically important tetraploid
G. hirsutum (24)]. Our work may pave the way
for a major change in how the next genomes
for de novo sequencing are selected, thereby
accelerating improvements in economically im-
portant crop species.
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Current yeast interactome network maps contain several hundred molecular complexes with
limited and somewhat controversial representation of direct binary interactions. We carried out a
comparative quality assessment of current yeast interactome data sets, demonstrating that
high-throughput yeast two-hybrid (Y2H) screening provides high-quality binary interaction
information. Because a large fraction of the yeast binary interactome remains to be mapped, we
developed an empirically controlled mapping framework to produce a “second-generation”
high-quality, high-throughput Y2H data set covering ~20% of all yeast binary interactions. Both
Y2H and affinity purification followed by mass spectrometry (AP/MS) data are of equally high quality
but of a fundamentally different and complementary nature, resulting in networks with different
topological and biological properties. Compared to co-complex interactome models, this binary
map is enriched for transient signaling interactions and intercomplex connections with a
highly significant clustering between essential proteins. Rather than correlating with essentiality,
protein connectivity correlates with genetic pleiotropy.

Acrucial step toward understanding cel-
lular systems properties is mapping net-
works of physical DNA-, RNA-, and

protein-protein interactions, the “interactome
network,” of an organism of interest as com-
pletely and accurately as possible. One approach
consists in systematically testing all pairwise
combinations of predicted proteins to derive
the “binary” interactome. Early attempts at bi-
nary interactome mapping used high-throughput
yeast two-hybrid (Y2H) screening, in which

a protein interaction reconstitutes a transcrip-
tion factor that activates expression of report-
er genes. High-throughput Y2H maps have
been generated for Saccharomyces cerevisiae
(1–3),Caenorhabditis elegans (4–6),Drosophila
melanogaster (7), and humans (8–10). An al-
ternative approach consists in generating “co-
complex” interactome maps, achievable by
high-throughput coaffinity purification followed
by mass spectrometry (AP/MS) to identify pro-
teins bound to tagged baits, as done for Esche-

richia coli (11, 12), S. cerevisiae (13–16), and
humans (17).

To investigate fundamental questions of inter-
actome network structure and function, it is nec-
essary to understand how the size and quality of
currently available maps, including thorough eval-
uation of differences between binary and co-
complex maps, might have affected conclusions
about global and local properties of interactome
networks (18, 19). Here, we address these issues
using the yeast S. cerevisiae as a model system.

First, we compared the quality of existing high-
throughput binary and co-complex data sets to
information obtained from curating low-throughput
experiments described in the literature (Fig. 1A).
For binary interactions, we examined (i) the sub-
set found by Uetz et al. in a proteome-scale all-
by-all screen (“Uetz-screen”), excluding the pairs
found in a focused, potentially biased experiment
involving only 193 baits (“Uetz-array”) (2); and
(ii) the Ito et al. interactions found three times or
more (“Ito-core”), independently from those found
one or two times (“Ito-noncore”), a distinction
recommended by the authors but seldom applied
in the literature (3). For co-complex associations,
we investigated two high-throughput AP/MS data
sets referred to as “Gavin” (15) and “Krogan”
(16). For literature-curated interactions, we con-
sidered only those curated from two ormore publi-
cations (“LC-multiple”) (20), which we judged of
higher quality than those curated from a single
publication.

To experimentally compare the quality of these
data sets, we selected a representative sample of
~200 protein interaction pairs from each one and
tested them by means of two independent inter-
action assays, Y2H and a yellow fluorescent pro-
tein complementation assay (PCA) (21) [Supporting
Online Material (SOM) I]. In PCA, bait and prey
proteins are fused to nonfluorescent fragments of
yellow fluorescent protein that, when brought in
close proximity by interacting proteins, reconstitute
a fluorescent protein in mammalian cells. In con-
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trast, reconstitution of a transcription factor in Y2H
experiments takes place in the nucleus of yeast
cells. In terms of assay designs, Y2H and PCA can
be considered as orthogonal assays and can be
used to validate each other’s results.

No single assay is expected to detect 100% of
genuine interactions, and the actual fraction of
positives detected is inherently linked to the
stringency at which the assay is implemented. To
identify the optimal scoring condition of each
assay, we selected a set of ~100well-documented
yeast protein-protein interaction pairs [“positive
reference set” (PRS)] and a set of ~100 random
pairs [“random reference set” (RRS)] (Fig. 1B;
SOMII).BecauseRRSpairswere pickeduniformly
from the 14 × 106 possible pairings of proteins
within our yeast ORFeome collection (22) (exclud-
ing those reported as interacting), these pairs are
extremely unlikely to be interacting.

Sampled pairs from binary Uetz-screen and
Ito-core data sets tested positive at levels as high
as those of the positive-control PRS, demonstrating
their high quality (Fig. 1C). A sample of literature-
curated LC-multiple interactions tested slightly
lower with Y2H, while being indistinguishable by
PCA (Fig. 1C), demonstrating that high-throughput
Y2H data sets can be comparable in quality to
literature-curated information. In marked contrast,
sampled pairs from Ito-noncore tested positive at
levels similar to those of the negative-control RRS,
confirming the low quality of this particular data
set (Fig. 1C).

Sampled pairs from Gavin and Krogan high-
throughput AP/MS data sets tested poorly in our
two binary interaction assays (Fig. 1C), albeit at
levels similar to those of Munich Information
Center for Protein Sequences (MIPS) complexes,
a widely used “gold standard” (23). This observa-
tion demonstrates that, at least for detecting binary
interactions, Y2H performs better than AP/MS.

Our experimental data quality assessment
shows that binary Uetz-screen, Ito-core, and
LC-multiple data sets are of high quality, whereas
Ito-noncore should not be used. AP/MS data sets,

although of intrinsically good quality (15, 16),
should be used cautiously when binary interaction
information is needed.

Our experimental results contrast markedly
with computational analyses that suggested that
high-throughput Y2H data sets contain more false-
positives than literature-curated or high-throughput
AP/MS data sets (24, 25). In computational analy-

ses, the quality of a data set is often determined by
the fraction of interactions also present in a pre-
defined gold standard set (24). Generally, MIPS
complexes have been considered as gold standard,
with all proteins constituting a given complex
modeled as interacting with each other. Such
modeling results in limited and biased sampling
issues against binary interactions because not all
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Fig. 1. Evaluation of S.
cerevisiae protein-protein in-
teraction data sets. (A) Num-
ber of interactions reported in
various large-scaleS. cerevisiae
protein-protein interaction data
sets. (B) Schema of pipeline
used to assemble binary posi-
tive and random reference sets.
(C) Fraction of a random sam-
ple of interactions from each
data set confirmed by Y2H
and PCA. (D) Fraction of pos-
itive interactions in each data
set calculated with MIPS and
Binary-GS. Error bars indi-
cate SE.
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proteins in a complex contact each other directly
(fig. S1), and not all direct physical interactions
occur within complexes (fig. S2 and SOM III).
Hence, although MIPS complexes are appropri-
ate for benchmarking co-complex membership
data sets, they are not appropriate for binary
interaction data sets. This distinction is corrob-
orated by the poor experimental confirmation
rate of pairs from MIPS complexes with binary
assays (Fig. 1C).

To computationally reexamine the quality of
existing yeast interactome data sets, we assem-
bled a binary gold standard set (“Binary-GS”)
of 1318 high-confidence physical binary interac-
tions (Fig. 1B and SOM III). Binary-GS includes
direct physical interactions within well-established
complexes, as well as conditional interactions
(e.g., dependent on posttranslational modifica-
tions), and thus represents well-documented di-
rect physical interactions in the yeast interactome
(26). When measured against Binary-GS, the
quality of high-throughput Y2H data sets (with
the exception of Ito-noncore) was substantial-
ly better (SOM IV and V) than that of high-
throughput AP/MS data sets (Fig. 1D). Our
results demonstrate the distinct nature of bina-
ry and co-complex data. Generally, Y2H data
sets contain high-quality direct binary interac-
tions, whereas AP/MS co-complex data sets are
composed of direct interactions mixed with pre-
ponderant indirect associations (SOM VI).

The proteome-wide binary data sets, Uetz-
screen and Ito-core, contain 682 and 843 inter-
actions, respectively (2, 3). The overlap between
these two data sets appears low (3, 24): 19%
of Uetz-screen and 15% of Ito-core interactions
were detected in the other data set. Given our
demonstration of high quality for these data sets
(Fig. 1, C and D), we conclude that the small
overlap stems primarily from low sensitivity (i.e.,
many false-negatives) rather than from low spec-
ificity (i.e., many false-positives, as previously
suggested).

Several factors might affect sensitivity. First,
the space of pairwise protein combinations actually
tested in each data set might have been consider-
ably different.We refer to the fraction of all possible
pairs tested in a given screen as the “completeness.”
For example, missing 10%of open reading frames
(ORFs) in each mapping project could reduce the
common tested space down to 66% [(0.9 × 0.9) ×
(0.9 × 0.9)] of all possible pairwise combinations.
Second, different protein interaction assays or
even different versions of the same assay detect
different subsets of pairs out of all possible inter-
actions, which explains partly the limited overlap
between data sets obtained with different Y2H
versions. For any assay, the “assay sensitivity” is
estimated as the fraction of PRS interactions
detected, which for our Y2H assay was deter-
mined empirically to be ~20% (Fig. 1C). Finally,
when screening tens if not hundreds of millions of
protein pairs in any tested space, that search space
might need to be sampled multiple times to report
all or nearly all interactions detectable by the assay

used. The fraction of all theoretically detectable
interactions by a particular assay found in a given
experiment is its “sampling sensitivity.” These
three parameters fully account for the seemingly
small overlap between Ito-core and Uetz-screen
(SOM VII), demonstrating that a large fraction
of the S. cerevisiae binary interactome remains
to be mapped. Therefore, we carried out a new
proteome-scale yeast high-throughput Y2H screen
(fig. S3).

We used 5796Gateway-clonedORFs available
in the yeast movable ORF (MORF) collection
(22). After subcloning these ORFs into Y2H vec-
tors and removing autoactivators (27, 28), our search
space became 3917 DB-Xs against 5246 AD-Ys,
representing a completeness of 77% (Fig. 2A and
SOM VI), comparable to that of recent AP/MS
data sets (15) (~78%; SOM VI).

To address sampling sensitivity, we deter-
mined what fraction of all detectable interactions
is found in each pass after eight trials in a search
space of 658 DB-X and 1249 AD-Y ORFs. A
single trial identified about 60% of all possible
interactions that can be detected with our high-
throughput Y2H, whereas three to five repeats
were required to obtain 80 to 90% (Fig. 2B and
SOM VI). Consequently, we screened the whole
search space three times independently to yield
an estimated sampling sensitivity of 85% (Fig.

2B). In total, ~88,000 colonies were selected,
of which 21,432 scored positive upon more de-
tailed phenotyping (SOM I). After identifying
all putative interaction pairs by sequencing, phe-
notypically retesting them with fresh cultures
from archival stocks, and eliminating de novo
autoactivators (28), we obtained a final data set,
“CCSB-YI1,” of 1809 interactions among 1278
proteins, which can be downloaded from our
Web site (http://interactome.dfci.harvard.edu/
S_cerevisiae).

To validate the overall quality of CCSB-YI1,
we tested 94 randomly chosen interactions by
PCA and mammalian protein-protein interaction
trap (MAPPIT; SOM I) (21, 29). MAPPIT takes
place at the mammalian cell membrane and mea-
sures interactions via activation of signal trans-
ducer and activator of transcription 3 (STAT3)–
dependent reporter expression. Using both PCA
and MAPPIT, we found that the confirmation
rate of CCSB-YI1 was similar to those of Ito-
core and Uetz-screen (Fig. 1C). The precision
[i.e., fraction of true positives in the data set (30)]
of CCSB-YI1 is estimated at 94 to 100% (Fig.
2C, fig. S4, and SOM VI). Additionally, the per-
formance of our high-throughput Y2H approach
was confirmed via a larger RRS of 1000 random
pairs (30) (Fig. 1B), none of which tested positive
(SOM II).
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Fig. 2. Large-scale Y2H interactome screen. (A) Com-
pleteness of the Y2H screen. (B) Sampling sensitivity of
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The overlaps of Uetz-screen (27%) and Ito-
core (35%) with CCSB-YI1 (Fig. 2D) can be ex-
plained by the completeness, assay sensitivity,
and sampling sensitivity of the three experiments
(SOM VII) and agree well with the results of the

pairwise confirmation of those two data sets (Fig.
1C). Similar principles apply to other large-scale
experiments such as AP/MS, likely accounting
for the low overlap between Krogan and Gavin
(~25%; fig. S5B).

Factoring in completeness, precision, and assay
and sampling sensitivity, we estimated that the
yeast binary interactome consists of ~18,000 T
4500 interactions (SOMVI), experimentally val-
idating previous computational estimates of 17,000
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to 25,000 interactions (31, 32). To obtain a more
comprehensive map of the binary yeast inter-
actome, we combined the three available high-
quality proteome-scale Y2H data sets (SOMVII).
The union of Uetz-screen, Ito-core, and CCSB-
YI1, “Y2H-union,” contains 2930 binary inter-
actions among 2018 proteins, which, according
to our empirical estimate of the interactome size,
represents ~20% of the whole yeast binary in-
teractome (Fig. 3A).

We reexamined global topological features of
this new yeast interactome network, facing lower
risk of overinterpreting properties due to limited
sampling and various biases in the data (18). To
contrast topological properties of the binary
Y2H-union network with that of the co-complex
network, we used an integrated AP/MS data set
(33), which was generated by combining raw
high-throughput AP/MS data (15, 16). This
“Combined-AP/MS” data set, composed of 9070
co-complex membership associations between
1622 proteins, attempts to model binary inter-
actions from co-complex data (Fig. 3A).

As found previously for other macromolecular
networks, the connectivity or “degree” distribu-
tion of all three data sets is best approximated by a
power-law (34) (fig. S6 and SOM VIII). Highly
connected proteins, or “hubs,” are reportedly
more likely encoded by essential genes than
less-connected proteins (35). Surprisingly, Y2H-
union lacked any correlation between degree and
essentiality (Fig. 3B). This discrepancy might
stem from biases in the data sets available at the
time of the original observation: interactions
reported in Uetz et al. (Uetz-array and Uetz-
screen) and literature-curated interactions. Al-
though Uetz-array is of high quality (fig. S7), its
experimental design could negatively influence
network analyses. Most hub proteins in Uetz-array
were found as baits (fig. S8), and the percentage of
essential proteins in the 193 bait proteins is twice as
high (34.7%) as that of all protein-encoding ORFs
in the yeast genome (18.4%), explaining the high
correlation between degree and essentiality (Fig.
3C). Likewise, literature-curated interactions seem
prone to sociological and other inspection biases
(SOM VII). Thus, we refrain hereinafter from
using LC-multiple in our further topological
and biological analyses. No significant correlation
between degree of connectedness and essentiality
was observed in any of the three proteome-wide
high-throughput binary data sets currently availa-
ble (i.e., Ito-core, Uetz-screen, and CCSB-YI1;
Fig. 3C), as well as in new versions of our C.
elegans and human interactome maps (fig. S9 and
SOM IX).

Hub proteins instead relate to pleiotropy, the
number of phenotypes observed as a consequence
of gene knockout (SOMI). Therewas a significant
correlation in Y2H-union between connectivity
and the number of phenotypes observed in global
phenotypic profiling analyses of yeast genes (36)
(Fig. 3D). Thus, the number of binary physical
interactions mediated by a protein seems to better
correlate with the number of cellular processes in

which it participates than with its essentiality. The
correlation between degree and number of phe-
notypes is not observed in Combined-AP/MS,
likely because co-complex associations reflect the
size of protein complexesmore than the number of
processes they might be involved in.

We confirmed the concept of modularity in
the yeast interactome network, whereby date hubs
that dynamically interact with their partners appear
particularly central to global connectivity, whereas
static party hubs appear to function locally in
specific biological modules (37). The propor-
tion of date and party hubs is substantially differ-
ent between Y2H-union and Combined-AP/MS
(Fig. 3E). There are significantly more date hubs
in the binary network, whereas party hubs are
prevalent in the co-complex network. In the bi-
nary network, date hubs are crucial to the topo-
logical integrity of the network, whereas party
hubs have minimal effects. However, in the co-
complex network, date and party hubs affect
the topological integrity of the network equally,
likely because most hubs in Combined-AP/MS
reside in large stable complexes, whereas hubs
in Y2H-union preferentially connect diverse cel-
lular processes.

Surprisingly, essential proteins strongly tended
to interact with each other (Fig. 4A and SOM IX).
By concentrating on the subnetwork formed by
interactions mediated by and among essential
proteins (fig. S10), we found a giant component
whose size ismuch larger than expected by chance
(Fig. 4B). To better understand the clustering of
essential proteins, we examined the interacting
essential protein pairs that are also reported to be in
the same complex; we found 106 interacting
essential protein pairs, a number greater than
expected by chance (Fig. 4C and SOM IX).

We investigated the overall relationships be-
tween Y2H-union and Gene Ontology (GO) at-
tributes (38), phenotypic and expression profiling
similarities (39), and transcriptional regulatory
networks (40). Both Y2H-union and Combined-
AP/MS show significant enrichment (allP < 10−10)
for functionally similar pairs in all three GO
branches (Fig. 5A) (41). There is also significant
enrichment of positive correlations of phenotypic
profiles (36) between interacting pairs in both
data sets (Fig. 5B and fig. S11). Such interactions,
when supported by strong phenotypic informa-
tion, constitute likely possibilities of functional
relationships. Lastly, both data sets are significant-

Fig. 4. Clustering of essential
proteins. (A) Average fraction of
essential proteins among pro-
teins whose distance is equal to
d from a protein selected from
essential, nonessential, and all
proteins. (B) Giant component
size of network formed by es-
sential proteins (arrow) compared
to 100,000 random networks of
same topological properties. (C)
The number of interacting es-
sential proteins that are also
found in the same complex com-
pared to 10,000 random selec-
tions of proteins of the same
number as essential proteins
(SOM IX).
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ly enriched with pairs coexpressed across many
conditions (fig. S12), althoughCombined-AP/MS
shows higher enrichment (Fig. 5C), agreeing
well with the different nature of the two assays:
AP/MS aims at detecting stable complexes,
whereas Y2H tends to detect more transient and
condition-specific protein interactions. This ob-
servation is further supported by enrichment of
kinase-substrate pairs in Y2H-union (SOM X
and fig. S13).

To explore the mechanisms underlying co-
expression of interacting protein pairs, we com-
bined transcriptional regulatory networks with
interactome network information (40). Interact-
ing proteins in both networks tended to be co-
regulated by common transcription factors (TFs;
Fig. 5D). Similar to what we observed in the co-
expression correlation analysis (Fig. 5C), the en-
richment of interacting pairs in Combined-AP/MS
was significantly higher than that of Y2H-union.
Notably, we observed a significant enrichment of
protein-protein interactions between TFs involved
in a common “multi-input motif” (42, 43) (MIM,
where multiple TFs co-regulate a given set of
genes; Fig. 5D and SOM X). The fraction of co-
regulating TF pairs is much higher in the binary
interactome than in the co-complex network, sug-
gesting that various TFs function together to form
transient complexes to differentially regulate tran-
scriptional targets (44).

These observations suggest that our binary
interactome data set is enriched in transient or
condition-specific interactions linking different
subcellular processes and molecular machines.
To further explore this possibility, we calculated
“edge-betweenness” for each interaction in a
merged network of all available interactions (SOM

XI), measuring the number of shortest paths be-
tween all protein pairs that traverse a given edge.
The higher edge-betweenness of interactions from
Y2H-union shows the tendency of Y2H to de-
tect key interactions outside of complexes sig-
nificantly more often than AP/MS (Fig. 5D).
Several examples of such complex-to-complex
connectivity are evident in a complete map of
MIPS complexes connected by Y2H interactions
(fig. S14).

Overall, we infer that Y2H interrogates a
different subspace within the whole interactome
than does AP/MS, and Y2H interactions repre-
sent key connections between different com-
plexes and pathways. Y2H and AP/MS provide
orthogonal information about the interactome
and are both vital to obtaining a complete picture
of cellular protein-protein interaction networks.
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Fig. 5. Biological features
of yeast interactome data
sets. (A) Enrichment of
interacting protein pairs (rel-
ative to random) that share
GO annotations in the
biological process, cellular
component, and molecular
function branches of GO
ontology. (B) Pearson corre-
lation coefficient (PCC) of
phenotypic profiles between
interacting pairs in different
data sets. (C) Coexpression
correlation between inter-
acting pairs. (D) (Left) En-
richment of interacting
proteins as targets of a
common TF (co-regulated),
and enrichment of inter-
acting TFs in a common
MIM (co-regulating) (*P <
10−3). (Right) Fraction of
bottlenecks from each data
set in the combined net-
work (SOM XI). Top 10%
of edges with the highest
betweenness are defined as “bottlenecks” (45).
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Ceramide Biogenesis Is Required
for Radiation-Induced Apoptosis
in the Germ Line of C. elegans
Xinzhu Deng,1 Xianglei Yin,1 Richard Allan,1 Diane D. Lu,1 Carine W. Maurer,2
Adriana Haimovitz-Friedman,3 Zvi Fuks,3 Shai Shaham,2 Richard Kolesnick1*

Ceramide engagement in apoptotic pathways has been a topic of controversy. To address
this controversy, we tested loss-of-function (lf) mutants of conserved genes of sphingolipid metabolism
in Caenorhabditis elegans. Although somatic (developmental) apoptosis was unaffected,
ionizing radiation–induced apoptosis of germ cells was obliterated upon inactivation of ceramide
synthase and restored upon microinjection of long-chain natural ceramide. Radiation-induced
increase in the concentration of ceramide localized to mitochondria and was required for
BH3-domain protein EGL-1–mediated displacement of CED-4 (an APAF-1–like protein) from the
CED-9 (a Bcl-2 family member)/CED-4 complex, an obligate step in activation of the CED-3 caspase.
These studies define CEP-1 (the worm homolog of the tumor suppressor p53)–mediated accumulation
of EGL-1 and ceramide synthase–mediated generation of ceramide through parallel pathways that
integrate at mitochondrial membranes to regulate stress-induced apoptosis.

Although studies that use genetic deficiency
in ceramide production support it as es-
sential for apoptosis in diversemodels (1),

many have questioned whether ceramide func-
tions as a bona fide transducer of apoptotic signals
(2). One reason for skepticism is that, despite
delineation of a number of ceramide-activated
proteins, no single protein has been identified as
mediator of ceramide-induced apoptosis. Recent
studies have suggested an alternate mode of cer-
amide action, based on its capacity to self-associate
and locally rearrange membrane bilayers into
ceramide-rich macrodomains (1 to 5 mm in diam-
eter), which are sites of protein concentration and
oligomerization (3). Ceramide may thus mediate
apoptosis through its ability to reconfigure mem-
branes, coordinating protein complexation at crit-
ical junctures of signaling cascades.

To establish the role of ceramide definitively,
we used a model of radiation-induced apoptosis
in Caenorhabditis elegans germ cells (4). Germ-
line stem cells, located at the distal gonad tip,
divide incessantly throughout adult life, with
daughter cells arresting inmeiotic prophase. Upon
exiting prophase, germ cells become sensitive to
radiation-induced apoptosis, detected morpholog-

ically just proximal to the bend of the gonadal arm
(5). This apoptotic pathway is antagonized by the
ABL-1 tyrosine kinase, requiring sequentially the
cell cycle checkpoint genes rad-5, hus-1, and
mrt-2; the C. elegans p53 homolog cep-1; and the
genesmakingup the conserved apoptoticmachinery,
the caspase ced-3, the apoptotic protease activating
factor 1–like protein ced-4, the Bcl-2 protein ced-9,
and the BH3-domain protein egl-1. This pathway
differs from apoptotic somatic cell death, which
is not subject to upstream checkpoint regulation
via the CEP-1 pathway (5, 6).

We identified conserved genes that regulate
C. elegans sphingolipid intermediary metabolism
and tested deletion alleles (Table 1 and table S1).
Screening for mutants resistant to radiation-
induced germ cell apoptosis revealed apoptosis
suppression in only deletion mutants of hyl-1 and
lagr-1, two of the three ceramide synthase (CS)
genes (Fig. 1A). CS gene products regulate de
novo ceramide biosynthesis, acylating sphinganine
to form dihydroceramide that is subsequently con-
verted to ceramide by a desaturase (7). CSs contain
six to seven putative transmembrane domains and
a Lag1pmotif [which confers enzyme activity (8)],
regions conserved in theC. elegans orthologs. The
deleted CS sequences in hyl-1(ok976) and lagr-
1(gk327) result in frameshifts that disrupt theLag1p
motifs (fig.S1A).Wedetecteda~1.6-kbhyl-1 transcript
in wild-type (WT) worms and a smaller ~1.35-kb
transcript in hyl-1(ok976), whereas we observed
a ~1.4-kb lagr-1 transcript in WT worms and a
~1.25-kb transcript in lagr-1(gk327) (fig. S1B).
In contrast, a deletionmutant of the thirdC. elegans

CS (9, 10), hyl-2(ok1766), lacking a 1626-base pair
fragment of the hyl-2 gene locus that eliminates
exons 2 to 5 corresponding to 74% of the coding
sequence, displayed no defect in germ cell death
(fig. S1C).

In N2WTstrain young adults, apoptotic germ
cells gradually increased in abundance with age
from a baseline of 0.7 T 0.1 to 1.8 T 0.2 corpses
per distal gonad arm over 48 hours. Exposure to a
120-gray (Gy) ionizing radiation dose increased
germ cell apoptosis to 5.2 T 0.3 cells 36 to 48
hours after treatment. In contrast, in hyl-1
(ok976) and lagr-1(gk327) animals, age-dependent
and radiation-induced germ cell apoptosis were
nearly abolished (Fig. 1A). Similar effects were
observed in the lagr-1(gk327);hyl-1(ok976) double
mutant (Fig. 1B). The rate of germ cell corpse
removal was unaffected in CS mutants, excluding
the possibility that defective corpse engulfment ele-
vated corpse numbers (table S2). In contrast, loss-
of-function (lf)mutations of hyl-1 or lagr-1 did not
affect developmental somatic cell death, nor did the
lf hyl-2(ok1766) mutation (table S3). These studies
indicate a requirement for twoC. elegansCS genes
for radiation-induced germline apoptosis.

To confirm ceramide as critical for germline
apoptosis, we injected C16-ceramide into gonads
of young adult WT worms. C16-ceramide is the
predominant ceramide species in apoptosis in-
duction by diverse stresses in multiple organisms
(11) and in low abundance inC. elegans (12, 13).
C16-ceramide microinjection resulted in time- and
dose-dependent increases in germ cell apoptosis
(Fig. 1C), with amedian effective dose of ~0.05 mM
gonadal ceramide. Peak effect occurred at ~0.1 mM
gonadal ceramide at 36 hours (6.6 T 0.8 versus 1.5 T
0.4 cell corpses per distal gonad arm, P < 0.0001),
qualitatively and quantitatively mimicking the
120-Gy effect in WT worms. In contrast, C16-
dihydroceramide, which differs fromC16-ceramide
in a trans double bond at sphingoid base position
four to five, was without effect (0.71 T 0.28 cell
corpses per distal gonad arm at ~1 mM), indicating
specificity for ceramide in apoptosis induction.
Furthermore, C16-ceramide microinjection into
lagr-1(gk327);hyl-1(ok976) animals (~1 mMgonadal
ceramide) resulted in a 5.7-fold increase in germ
cell apoptosis (from 0.60 T 0.17 to 3.43 T 0.88,P <
0.0001) (Fig. 1D). Note that the baseline level of
apoptosis in lagr-1(gk327);hyl-1(ok976)was less
than one-half that in WT worms. Moreover,
~0.005 mM gonadal ceramide, a concentration
without impact on germ cell apoptosis, completely
restored radiation (120 Gy)–induced apoptosis, an
effect inhibitable in a lf ced-3 background (Fig.
1E). C16-ceramide’s ability to bypass the genetic
defect and restore the radiation-response pheno-
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