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Accurately defining the coding potential of an organism, i.e., all protein-encoding open reading frames (ORFs) or
“ORFeome,” is a prerequisite to fully understand its biology. ORFeome annotation involves iterative computational
predictions from genome sequences combined with experimental verifications. Here we reexamine a set of
Saccharomyces cerevisiae “orphan” ORFs recently removed from the original ORFeome annotation due to lack of
conservation across evolutionarily related yeast species. We show that many orphan ORFs produce detectable
transcripts and/or translated products in various functional genomics and proteomics experiments. By combining a
naïve Bayes model that predicts the likelihood of an ORF to encode a functional product with experimental
verification of strand-specific transcripts, we argue that orphan ORFs should still remain candidates for functional
ORFs. In support of this model, interstrain intraspecies genome sequence variation is lower across orphan ORFs than
in intergenic regions, indicating that orphan ORFs endure functional constraints and resist deleterious mutations. We
conclude that ORFs should be evaluated based on multiple levels of evidence and not be removed from ORFeome
annotation solely based on low sequence conservation in other species. Rather, such ORFs might be important for
micro-evolutionary divergence between species.

[Supplemental material is available online at www.genome.org.]

Comparative genomics, involving homology searching of ge-
nome sequences between evolutionarily related species, is a pow-
erful tool for predicting functional regions in a genome sequence
without prior biological knowledge. To date, complete genome
sequences are available for more than 500 different organisms
across all three domains of life (Liolios et al. 2006). Comparative
genomics of bacteria, yeast, worm, fly, and human have led to
extensive revision of complete sets of predicted protein-encoding
open reading frames (ORFs), or “ORFeomes” (McClelland et al.
2000; Brachat et al. 2003; Cliften et al. 2003; Kellis et al. 2003;
Stein et al. 2003; Clamp et al. 2007; Clark et al. 2007). Removal
from earlier versions of predicted ORFeomes of ORFs that are
poorly or not conserved in other species (“orphan ORFs”) is a
critical revision proposed by these comparative genomic studies.
The principle underlying removal of orphan ORFs is that selec-
tive constraints on functional DNA sequences should prevent
deleterious mutations from occurring (Hardison 2003).

However, lack of evolutionary conservation does not guar-
antee lack of functional significance. It may be imprudent to
eliminate putative ORFs from predicted ORFeomes solely based

on lack of cross-species conservation. Different species, no matter
how evolutionarily close, might express distinct ORF products. In
support of this possibility, the pilot Encyclopedia of DNA Ele-
ments (ENCODE) project on 1% of the human genome has re-
vealed that experimentally identified functional elements are not
necessarily evolutionary constrained (Birney et al. 2007). In ad-
dition, although evolutionary conservation implies functionality
for the product of a predicted ORF, experimental validation is
required to demonstrate its biological significance. Therefore,
cautious experimental reinvestigation of the functionality of pre-
dicted ORFs is needed to improve the accuracy of genome anno-
tation.

To this end we set out to examine potential functionality of
orphan ORFs in Saccharomyces cerevisiae based on available ex-
perimental evidence. Three independent comparative genomic
analyses (Brachat et al. 2003; Cliften et al. 2003; Kellis et al. 2003)
have predicted 648 annotated ORFs as “spurious” or “false,” rep-
resenting 10% of originally annotated ORFs. Notably, 10 out of
these 648 orphan ORFs have since been validated as functional
by small-scale experiments. For example, although YDR504C
lacks clear orthologs in other yeast species, its deletion causes
lethality upon exposure to high temperature while in stationary
phase (Martinez et al. 2004). Given the time-consuming efforts of
traditional “one-gene-at-a-time” inquiries, many predicted ORFs
have not been individually characterized. However, as the first
sequenced eukaryotic organism, S. cerevisiae has been used inten-
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sively for functional genomics and pro-
teomics studies, providing valuable
functional evidence that allow further
evaluation of coding potential of the or-
phan ORFs.

Using currently available func-
tional genomics and proteomics data
sets, we collate functional evidence for a
significant portion of S. cerevisiae orphan
ORFs, finding that many orphan ORFs
produce detectable transcripts and/or
translated products. Using a naïve Bayes
model, we predict the likelihood that
any S. cerevisiae ORF encodes a func-
tional product and show that the num-
ber of orphan ORFs with potential func-
tional significance is higher than ex-
pected by chance. Notably, we provide
experimental verification for strand-
specific transcription of many orphan
ORFs. Finally, we report that interstrain
intraspecies genome sequence variation
is lower across orphan ORFs than in in-
tergenic regions. Altogether our results
demonstrate that orphan ORFs should
not be excluded from current ORFeome
annotation simply because they fail to
show interspecies sequence conserva-
tion. We suggest that orphan ORFs
should be included in future genome-
wide experimental studies to reveal their
bona fide identity either as functional
ORFs or as randomly occurring misan-
notated ORFs.

Results

Evidence for biological significance
of S. cerevisiae orphan ORFs

The genome annotation of S. cerevisiae
has undergone continuous modification
through computational and experimen-
tal efforts since the original release in
1996 (Goffeau et al. 1996; Fisk et al.
2006). Three independent comparative
genomic analyses compared the conser-
vation of DNA or predicted protein se-
quences among several ascomycete spe-
cies (Brachat et al. 2003; Cliften et al.
2003; Kellis et al. 2003), recommending
that 402, 513, and 495 ORFs, respec-
tively, be removed from the S. cerevisiae
predicted ORFeome because their puta-
tive counterparts in other yeast species
accumulate stop codons and frame-shift
mutations (Fig. 1A). The union of these three comparative analy-
ses is a set of 648 orphan ORFs called “spurious” or “false” in
these studies (Fig. 1A).

High-throughput functional genomics and proteomics ap-
proaches have recently accelerated functional characterization of
predicted ORFs. Several of these genome-wide approaches, such

as gene-expression profiling or in vivo characterization of protein
complexes, have detected transcripts or translated products of
orphan ORFs. For example, in a proteome-wide purification of
yeast protein complexes (Krogan et al. 2006), 85 proteins identi-
fied by mass spectrometry were encoded by orphan ORFs.

To provide a systematic reanalysis of S. cerevisiae orphan

Figure 1. Experimental evidence for S. cerevisiae orphan ORFs. (A) Percentages indicate proportions
of orphan ORFs detected at least in one of 13 functional genomics and proteomics data sets (Table 1).
Note that ORFs rejected by all three comparative genomic studies analyzed here (Brachat et al. 2003;
Cliften et al. 2003; Kellis et al. 2003) show similar percentages. (B) Supporting experimental evidence
for each of 648 ORFs observed as orphan by three comparative genomic studies (Brachat et al. 2003;
Cliften et al. 2003; Kellis et al. 2003). Complete lists of ORFs and supporting experimental evidence are
in Supplemental Table 2. Columns are ordered from the ORF with most evidence (ORF X1; left) to the
one with the least evidence (ORF X648; right). Data sets were grouped together by type of experimental
approach, transcriptional on top and translational at the bottom. In total, there are 477 orphan ORFs
with transcriptional evidence, 180 with translational evidence, and 145 with both transcriptional and
translational evidence.
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ORFs, we collected 13 large-scale studies (Table 1) informing on
either transcription or translation of orphan ORFs. The transcrip-
tome studies included tiling arrays (David et al. 2006), high-
density Affymetrix chip analysis (Holstege et al. 1998), SAGE
analysis (Velculescu et al. 1997), and cDNA sequencing (Miura et
al. 2006). Because many (69%) of the orphan ORFs overlap with
another annotated ORF, we only included transcriptome studies
able to detect strand-specific transcripts. Protein–protein interac-
tion studies included proteome-scale yeast two-hybrid screens
(Uetz et al. 2000; Ito et al. 2001) and affinity pull-downs of tagged
proteins followed by mass spectrometry (Gavin et al. 2002, 2006;
Ho et al. 2002; Krogan et al. 2006). For yeast two-hybrid studies,
we considered an ORF being translated only if its product was
involved in a protein–protein interaction as a prey. Protein ex-
pression studies included global surveys of protein abundance
(Ghaemmaghami et al. 2003) and subcellular localization (Ku-
mar et al. 2002; Huh et al. 2003).

Out of the 648 orphan ORFs, most (79%) have been detected
in at least one of these data sets. The proportion of orphan ORFs
detected was nearly the same for ORFs rejected by each of the
three comparative genomics analyses independently (80% for
Brachat, 79% for Cliften, and 79% for Kellis) and for the 276
orphan ORFs discarded by all three (79%) (Fig. 1A). Among the
648 orphan ORFs, many were detected by more than one ap-
proach. In total, 145 orphan ORFs (22%) were both detected as
transcripts and translated products (Fig. 1B). A similar distribu-
tion of functional evidence was observed for the orphan ORFs
rejected by all three comparative genomic analyses (Supplemen-
tal Fig. 1).

Evaluating biological significance of S. cerevisiae ORFs
by a naïve Bayes approach

High-throughput approaches have inherently limited coverage
(not all ORFs are detectable) and precision (detection of some
ORFs might be artifactual). Therefore information from large-
scale data sets needs to be accepted cautiously. We chose a naïve
Bayes model to quantify the observations reported above, be-
cause this approach can integrate dissimilar types of data sets
into a common probabilistic framework with maximal coverage
and precision (Jansen et al. 2003; Yu et al. 2004). By use of such
an integration scheme, evidence (i.e., features) from several data
types can be accumulated to estimate with increasing confidence
the likelihood that an ORF encodes a functional product.

As with any machine learning algorithm, naïve Bayes mod-
els need a training set of gold standard positives (GSPs) and nega-

tives (GSNs). The Saccharomyces Genome Database (SGD), the
arbiter of genome annotation for budding yeasts, has categorized
all S. cerevisiae ORFs into three major groups based on conserva-
tion across species and on available experimental characteriza-
tion: “verified” (4449 ORFs), “uncharacterized” (1333 ORFs), and
“dubious” (823 ORFs) (Fisk et al. 2006). Both verified ORFs and
uncharacterized ORFs are conserved across species. Verified ORFs
have clear small-scale experimental evidence for the existence of
functional ORF products, but uncharacterized ORFs do not. Du-
bious ORFs are thought not to encode a functional product due
to (1) lack of conservation across species, and/or (2) absence of
any small-scale experiment demonstrating detectable mRNA or
protein production or phenotypic effects. We used all 4449 veri-
fied ORFs as the GSPs and all 823 dubious ORFs as the GSNs.
Although ideally the GSNs should be depleted of functional
ORFs, this cannot exactly be true for the dubious set. However,
the dubious set is likely enriched with nonfunctional ORFs. It is
common practice to use an “enriched” set of negatives in train-
ing data sets (Miller et al. 2005; Xia et al. 2006).

We calculated the ratio of the fraction of GSPs present in
each of the 13 functional genomics and proteomics data sets
divided by the fraction of GSNs present in each data set, which
measures the confidence levels (Supplemental Table 1). The
product of these ratios of the 13 data sets for each ORF is defined
as the likelihood ratio (LR) of an ORF, i.e., the likelihood of each
ORF to encode a functional product (see Methods). We used the
base 10 logarithmic form of LR (LLR) as final prediction scores
(Supplemental Table 2). Out of the large-scale studies integrated,
several did measure similar biological features of ORFs and ORF
products. However, we treated all 13 data sets as independent
features, due to the low correlation between them (Supplemental
Tables 3, 4).

To evaluate the performance of the naïve Bayes model, we
used threefold cross-validation (see Methods). After randomly
dividing both the GSPs and GSNs into three separate equal sets,
we used two of the three sets as the training set to calculate LLRs
and the remaining set as the test set to identify positives and
negatives. The true-positive rate (TP rate: fraction of GSPs that are
predicted to be functional) and the false-positive rate (FP rate:
fraction of GSNs that are predicted to be functional) were calcu-
lated at different LLR cutoffs. The resulting couplets (TP rate–FP
rate) were used to plot a receiver operating characteristic (ROC)
curve. We ran this process three times so that each of the three
sets was a test set and the remaining two constituted the training
set. Each ROC curve looked similar (Supplemental Fig. 2), which

Table 1. Thirteen functional genomics and proteomics data sets integrated in our analysis

Functional genomics and proteomics data sets Evidence detected Approach category

Velculescu et al. 1997: Transcriptome characterized by SAGE mRNA transcript SAGE
David et al. 2006: Transcriptome characterized by oligonucleotide tiling array mRNA transcript Oligonucleotide tiling array
Miura et al. 2006: Full-length cDNA analysis mRNA transcript Map transcription start site
Holstege et al. 1998: Measurement of the transcripts abundance mRNA transcript Affymetrix GeneChip
Ghaemmaghami et al. 2003: Expression of TAP-tagged proteins Protein expression Protein abundance
Huh et al. 2003: Localization of GFP-tagged proteins Protein localization Protein localization
Kumar et al. 2002: Subcellular localization of transposon-tagged proteins Protein localization Protein localization
Gavin et al. 2002: Protein complexes characterization Peptide sequence Mass spectrometry
Ho et al. 2002: Protein complexes characterization Peptide sequence Mass spectrometry
Gavin et al. 2006: Protein complexes characterization Peptide sequence Mass spectrometry
Krogan et al. 2006: Protein complexes characterization Peptide sequence Mass spectrometry
Ito et al. 2001: Protein–protein interaction mapping by yeast two-hybrid Protein physical interaction Yeast two-hybrid
Uetz et al. 2000: Protein–protein interaction mapping by yeast two-hybrid Protein physical interaction Yeast two-hybrid
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validated the overall quality of our training set. A final ROC curve
was plotted by using potential LLR cutoffs from all three training
subsets and their associated TP rate and FP rate based on the
predictions from the complete training set (Fig. 2A). The signif-
icant deviation of the final ROC curve from the 45° random ROC

line indicates that our model has substantial predictive value
(area under ROC curve = 0.982). To assess the contribution of
each data set to the final prediction scores, we successively omit-
ted one data set and repeated the training and cross-validation
procedures. We plotted ROC curves for all procedures (Supple-

Figure 2. Evaluating functionality of S. cerevisiae ORFs. (A) ROC curve (blue) for naïve Bayes predictions based on 13 functional genomics and
proteomics data sets. The diagonal (black dotted line) is the expected ROC curve for random, where the TP rate equals the FP rate. The two LLR cutoffs
highlighted on the curve were used later as thresholds for categorizing orphan ORFs. (B) All 6718 S. cerevisiae ORFs were divided into 20 bins by
decreasing LLR. Each bin has similar numbers of ORFs. The false-positive rates associated with the minimum LLR in each bin are listed. Distributions of
verified ORFs, orphan dubious ORFs, “other” dubious ORFs, and all other ORFs in each bin are shown. Orphan dubious ORFs tend to have a higher LLR
than ORFs classified as dubious for other reasons.
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mental Fig. 3) and observed little difference when excluding any
single data set. Thus it seems that no single data set dominates
the prediction.

We divided all 6718 S. cerevisiae ORFs into 20 bins ranked by
decreasing LLR, with each bin containing similar numbers of
ORFs. Verified ORFs localized mostly in the higher LLR bins
(92.5% of all verified ORFs distributed between bin 1 and bin 15),
while dubious ORFs localized in lower LLR bins (only 4.98% of
dubious ORFs distributed between bin 1 and bin 15) (Fig. 2B).
Such segregation between verified ORFs and dubious ORFs was
expected, given that the ORFs used in the training as GSPs (veri-
fied ORFs) are bound to have a higher LLR than the ones used in
the training as GSNs (dubious ORFs). An unanticipated result of
the naïve Bayes predictions is that orphan dubious ORFs have
overall higher LLR (P < 10�15 by Mann-Whitney U test) (Fig. 2B)
than ORFs classified as dubious for reasons other than strict lack
of interspecies sequence conservation (e.g., a mutant phenotype
described for the ORF could be ascribed to mutation of an over-
lapping well-characterized ORF) (Fisk et al. 2006). This suggests
that orphan dubious ORFs might be more likely to encode func-
tional products than “other” dubious ORFs.

For an ORF to be considered “most-likely” functional in our
naïve Bayes predictions, its posterior odds (the product of the
prior odds and the likelihood ratio) has to be larger than 1 (see
Methods). We can estimate that the prior odds for any given ORF
to be most-likely functional is ∼5.4 (4449 GSPs divided by 823
GSNs). Hence, we used LLR = log10(1/5.4) = �0.7 (FP rate = 0.07)
as the cutoff for an ORF to be most-likely functional (bins 1–15).
Among the 648 orphan ORFs, 54 ORFs with LLR � �0.7 were
thus assigned to a set of most-likely functional orphan ORFs.
Although the percentage of verified ORFs decreased significantly
from bin 16 to bin 20 compared with the first 15 bins (Fig. 2B),
there were still 3.4% and 2.5% of verified ORFs (152 and 111
ORFs) in bins 16 and 17, respectively. We classified the 199 or-
phan ORFs in bins 16 and 17, with an LLR between �0.7 (FP
rate = 0.07) and �3.1 (FP rate = 0.32), as “moderately-likely” to
encode a functional product. The remaining 395 orphan ORFs
distributed between bins 18 and 20 were called “least-likely”
functional ORFs. Detectability limitations in the large-scale data
sets integrated in our predictions may have biased against these
least-likely ORFs. Integration of new lines of experimental evi-
dence in the future could still potentially identify promising
functional ORF candidates among the least-likely ORFs.

Experimental evidence for expression of S. cerevisiae orphan
ORFs

We next experimentally measured mRNA expression for orphan
ORFs using reverse transcription–polymerase chain reaction (RT-
PCR) (Fig. 3A). Strand specificity was needed to ensure that the
transcripts detected were transcribed from the predicted DNA
strand and to exclude artifacts caused from read-through tran-
scription on the opposite strand (Craggs et al. 2001).

We tested strand specificity on two verified S. cerevisiae ORFs
that both contain introns: YER133W (GLC7) and YBR078W
(ECM33) (see Methods). Given the presence of introns in these
ORFs, the sense-strand transcripts should be appreciably shorter
in length than the antisense-strand transcripts. Spliced tran-
scripts of the expected sizes were obtained in reactions where
strand-specific primer was added for cDNA synthesis (Fig. 3B). No
RT-PCR products were obtained in reactions without RT, demon-
strating absence of contaminating genomic DNA in the poly(A)

mRNA template preparation. No RT-PCR products were observed
in the absence of cDNA primer for first-strand cDNA synthesis,
demonstrating that the second step of standard PCR amplifica-
tion contained no active reverse transcriptase for the synthesis of
incorrect strand cDNA from antisense strand–specific primer.
The identities of RT-PCR products were confirmed by sequenc-
ing.

Thereafter we applied our strand-specific RT-PCR to 201 or-
phan ORFs that do not overlap any other annotated ORF. The
requirement for nonoverlap further reduces the false-positive
rate, because it is less likely that there would be any transcription
from the incorrect strand. Among 201 nonoverlapping orphan
ORFs tested under conditions of growth on rich media, RT-PCR
products of expected size were obtained for 105 ORFs (Supple-
mental Table 2). Although the available supporting experimental
evidence for these 105 ORFs is not strikingly different from the
ORFs whose transcripts were not detected by strand-specific RT-
PCR (Supplemental Fig. 4), the detected ORFs have a significantly
higher average LLR (�3.4 � 0.2) than the ones undetected by
RT-PCR (�3.8 � 0.2, P = 0.03 by Mann-Whitney U test) (Fig.
3C), demonstrating the validity and robustness of our predic-
tions for positives. In particular, YJL199C, a dubious ORF, has the
highest LLR among 201 tested ORFs and was detected by RT-PCR.
YJL199C was recently predicted to encode a metabolic protein
based on large-scale protein–protein interaction studies (Samanta
and Liang 2003).

Notably, out of 49 orphan ORFs tested that had not been
detected by any of the 13 data sets (Table 1), 29 were expressed
(Supplemental Table 2), among which YPR096C was recently
found to encode a ribosome-interacting protein (Fleischer et al.
2006) and YOR235W was shown through a genome-wide phe-
notypic analysis to be involved in DNA recombination events
(Alvaro et al. 2007). Therefore, we suggest that more experimen-
tation is needed before rejecting ORFs from the S. cerevisiae
ORFeome annotation.

Interstrain intraspecies sequence conservation for S. cerevisiae
orphan ORFs

The available experimental evidence from large-scale data sets,
combined with our experimental support for many orphan ORFs,
implies that lack of interspecies conservation does not necessar-
ily dispel the bona fide functionality of an ORF. Functional or-
phan ORFs may have a relaxed selective constraint due to their
dispensable roles in other species and may therefore rapidly lose
sequence similarity even in closely related species (Schmid and
Aquadro 2001). However, select species–specific functions may
stringently constrain sequence divergence of functional orphan
ORFs within species (Domazet-Loso and Tautz 2003). Therefore,
we examined the intraspecies conservation of orphan ORFs in S.
cerevisiae, using single nucleotide polymorphism (SNP) informa-
tion from genome resequencing of multiple strains of S. cerevisiae
by the Saccharomyces Genome Resequencing Project (SGRP)
(http://www.sanger.ac.uk/Teams/Team71/durbin/sgrp/
index.shtml). Among the 37 currently available strain sequences,
four (SK1, W303, Y55, and DBVPG6765) have been sequenced at
twofold coverage or higher. We used the SNP data from these
four genomes to assess nucleotide variation in different genomic
regions across S. cerevisiae strains. We compared nucleotide di-
vergence among three genomic features: orphan ORFs, nonor-
phan ORFs, and intergenic regions, considering only the regions
that do not overlap with any other annotated ORF (see Methods).
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Figure 3. Two-step strand-specific RT-PCR. (A) Schematic diagram of the strand-specific RT-PCR procedure. (B) Electrophoretic analysis of strand-
specific RT-PCR products. Reverse ORF-specific primers (OSPR), with sequences complementary to the ORF-coding strand, were used for first-strand
cDNA synthesis. Second-step PCR amplifications used a pair of forward (OSPF) and reverse ORF-specific primers (OSPR). As controls, the first step of
RT-PCR was performed without reverse transcriptase for detecting contamination by genomic DNA, or without the OSPR primer for detecting residual
reverse transcriptase activity in second-step PCR reactions. Two intron-containing verified ORFs, YER133W (genomic DNA length: 1464 bp; coding
sequence length: 939 bp) and YBR078W (genomic DNA length: 1737 bp; coding sequence length: 1407 bp), were used to test the strand specificity.
An extra control for these two verified ORFs was a standard PCR action using yeast genomic DNA as template and the same pair of ORF-specific primers.
The observed difference in the length of PCR products amplified from genomic DNA versus poly(A) mRNA manifested the strand specificity. Strand-
specific RT-PCR results of 201 nonoverlapping orphan ORFs were analyzed on 1% agarose E-gel (Invitrogen). Of the reactions 53% (105 ORFs) gave rise
to visible RT-PCR products of the expected sizes. Three orphan ORFs, YJL199C (327 bp), YJR108W (372 bp), and YDR344C (444 bp), are shown as
examples of successful RT-PCR reactions. (C) Comparison of the average LLR between nonoverlapping ORFs detected and undetected by strand-specific
RT-PCR. Error bars, SEM.
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Across the four strains analyzed, orphan ORFs showed higher
nucleotide divergence (7.0 � 0.4 SNPs per kb) than did nonor-
phan ORFs (3.7 � 0.1 SNPs per kb, P < 10�5 by Mann-Whitney U
test), but less than intergenic regions (15.5 � 0.2 SNPs per kb,
P < 10�15 by Mann-Whitney U test) (Fig. 4A). Such intermediate
nucleotide divergence for orphan ORFs suggests that at least a
portion of them are subject to significant intraspecies evolution-
ary constraints. Such “interstrain intraspecies” conservation of
orphan ORFs indicates potential functionality of an ORF in ad-
dition to experimental evidence.

Among the 648 orphan ORFs, the most-likely functional
ones displayed a significantly lower nucleotide divergence
(3.8 � 0.7 SNPs per kb) than both moderately-likely (6.4 � 0.8

SNPs per kb, P = 0.016 by Mann-Whitney U test) and least-likely
ORFs (7.7 � 0.6 SNPs per kb, P = 0.005 by Mann-Whitney U test)
(Fig. 4B). Although the moderately-likely category does have a
lower nucleotide divergence than least-likely category, the differ-
ence is not significant (P > 0.05 by Mann-Whitney U test). Be-
cause different types of SNPs, such as synonymous or nonsyn-
onymous substitutions, could have distinct effects on an ORF
product, we applied another test to compare sequence conserva-
tion among the three groups, measuring the percentage of ORFs
with preserved reading frames (absence of stop codons or frame-
shift mutations) across all four S. cerevisiae strains. A decreasing
trend was observed from most-likely to least-likely ORFs (Fig.
4C), with significant differences among the three categories

Figure 4. Interstrain intraspecies sequence conservation for orphan ORFs. (A) Distribution of nucleotide divergence in different genomic features. We
binned three types of genomic features, (1) non-orphan ORFs (red curve), (2) orphan ORFs predicted by three comparative genomic analyses (blue
curve) (Brachat et al. 2003; Cliften et al. 2003; Kellis et al. 2003), and (3) intergenic regions (green curve), using a window of an average three SNPs
per kb across four S. cerevisiae strains. Each dot represents the fraction of genomic features in each bin. Numbers on the X-axis represent the maximum
number of SNPs per kb in each bin. For instance the first bin collects the genomic regions that have between zero and three SNPs per kb in four strains.
The inset zooms in on the 0–21 SNPs per kb range with SEM displayed. (B) Comparison of nucleotide divergence among three predicted categories of
orphan ORFs based on their LLRs. Error bars, SEM in each category. (C) Comparison of the percentage of ORFs among the three predicted categories
of orphan ORFs that have reading frames preserved across four S. cerevisiae strains.
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(P = 0.03 by �2 test). The coexistence of high interstrain intraspe-
cies conservation with high likelihood of functionality demon-
strates that some orphan ORFs face functional constraints that
protect them from deleterious intraspecies mutations.

In summary, analysis of nucleotide variation in multiple S.
cerevisiae strains, combined with multiple lines of experimental
evidence, suggest that reevaluation of the functionality of all
ORFs, especially orphan ORFs, is warranted.

Discussion

We report here that many interspecies nonconserved ORFs or
orphan ORFs predicted by comparative genomic analyses in S.
cerevisiae show evidence of transcription or translation, as re-
ported in various functional genomics or proteomics data sets.
We used a naïve Bayes probabilistic integration of a heteroge-
neous set of large-scale data sets to predict the likelihood that a
predicted ORF encodes a functional product. Threefold cross-
validation demonstrated high performance for this approach,
which revealed that orphan ORFs are more likely functional than
are ORFs classified as dubious for reasons other than strict lack of
sequence conservation across species. Independent strand-
specific RT-PCR confirmed that many orphan ORFs are indeed
expressed. Although presence of transcripts is not sufficient by
itself to conclude that an ORF encodes a functional product, the
correspondence between our RT-PCR results and naïve Bayes pre-
diction scores demonstrated both the potential functionality of
orphan ORFs and the robustness of our prediction method. Con-
firming that orphan ORFs could be functional, many show signs
of interstrain intraspecies negative selection, such as lower
nucleotide divergence than intergenic regions and retaining an
intact reading frame in multiple S. cerevisiae strains.

Collectively our findings argue that the likelihood that an
ORF encodes a functional product is best evaluated by combining
multiple lines of experimental and evolutionary evidence
(Snyder and Gerstein 2003). The potential functionality of or-
phan ORFs in S. cerevisiae suggests that experimentally verified
functional sequences are not always conserved across species.
Such nonconserved functional sequences might be responsible
for species-specific phenotypic differences, making S. cerevisiae
“cerevisiae” and not some other species in the Saccharomyces ge-
nus. An alternative explanation is that there are some functional
elements evolving neutrally and conferring no specific benefit to
the organism (Birney et al. 2007). Either way, experimental in-
vestigation has an irreplaceable role in determining biologically
relevant DNA sequences. Comparative genomics has demon-
strated analytic power in predicting functional regions before
availability of any experimental information (Hardison 2003).
When experimental information does become available (mainly
from high-throughput functional genomics and proteomics
analyses), then its integration should revise the genome annota-
tion accordingly. The naïve Bayes model implemented here can
be readily applied to all organisms.

Although we provide confidence scores about the likelihood
of a predicted ORF to encode a functional product, comprehen-
sive functional characterization of an ORF needs more concrete
evidence from genetics, cell biology, and biochemistry than
simple evidence of transcription or translation. The functional
genomics or proteomics data sets used in our naïve Bayes predic-
tions only investigated a few growth conditions, generally
growth on rich media, limiting investigation of functions unique

to the development and physiology of S. cerevisiae. Given the
limited functional information obtained so far under laboratory
conditions about uncharacterized ORFs (Pena-Castillo and
Hughes 2007), perhaps what is needed are studies of yeast cells
outside the laboratory. Upon such a shift, data sets generated
under diverse conditions will become available, and our ap-
proach will then be available to aid precise and powerful anno-
tation of genomes.

Methods

Large-scale data sets analysis
We collected 13 published functional genomics and proteomics
data sets of S. cerevisiae, summarized in Table 1 with references to
the data sources. Only ORFs identified by the same primary
SGDID in the publication and in the January 2007 version of
SGD annotation were included. We assigned “presence” or “ab-
sence” of transcript or translated product of every ORF in each
data set. For protein complexes characterization data sets (Gavin
et al. 2002, 2006; Ho et al. 2002; Krogan et al. 2006) all proteins
that were identified as peptides were considered “present,” inde-
pendent of further filtration by the investigators. For high-
throughput yeast two-hybrid (Uetz et al. 2000; Ito et al. 2001),
only proteins identified as preys were considered present. Only
protein–protein interactions classified as “core” by Ito et al.
(2001) were included. Transcripts identified by SAGE (Velculescu
et al. 1997) and assigned to “class 1” by the investigators were
considered present; all others, absent. We divided the Affymetrix
Genechip data (Holstege et al. 1998) into two groups: intensity of
expression strictly positive but less than or equal to 1, and inten-
sity strictly more than 1. These two groups were treated sepa-
rately in the naïve Bayes model. The normalized intensity of
expression per probe (David et al. 2006) was averaged, and the
percentage of probes whose intensity was higher than this aver-
age was considered as the intensity of expression of each ORF.
We then extracted four groups (undetected, intensity strictly
positive but less than 0.4, intensity strictly more than or equal to
0.4 but less than 0.8, and intensity strictly more than or equal to
0.8) that were treated separately in the naïve Bayes model. The
remaining data sets were not reprocessed.

The naïve Bayes model
If the numbers of positives are known among the total number of
ORFs, the “prior” odds of finding a positive are

Oprior =
P�pos�

P�neg�
=

P�pos�

1 − P�pos�
.

The “posterior” odds are the odds of finding a positive after con-
sidering N different feature data sets with values f1 ... fN:

Opost =
P�pos|f1 . . . fN�

P�neg|f1 . . . fN�
.

The likelihood ratio LR is defined as

LR�f1 . . . fN� =
P�f1 . . . fN|pos�

P�f1 . . . fN|neg�
.

According to Bayes rule, the posterior odds can be expressed as

Opost = LR�f1 . . . fN�Oprior .

If the N features are conditionally independent, LR can be sim-
plified to
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LR�f1 . . . fN� = �
i=1

N

L�fi� = �
i=1

N P�fi|pos�

P�fi|neg�
.

LR can be computed from contingency tables relating positive
and negative examples with the N features (we binned the feature
values f1 . . . fN into discrete intervals). Since Oprior is a fixed value,
Opost is determined by LR. We used log-likelihood ratio (log10 LR
or LLR) as the final prediction score. The higher the LLR of a
certain ORF, the more likely it is a positive, i.e., a functional ORF.

Threefold cross-validation
We divided the whole training set into three subsets randomly.
We then trained the model with two subsets and tested its per-
formance on the third subset. We repeated this step three times
so that each subset was used once to test the performance. We
calculated the ROC curve with the predictions for the whole
training set by combining the results from the three repeated
tests.

Strand-specific RT-PCR
S. cerevisiae strain S288C was grown in yeast extract-peptone-
dextrose (YPD) medium at 30°C to mid-exponential phase. Yeast
cells were then harvested and used for total RNA isolation with
an RNeasy kit (Qiagen). Poly(A) RNA was subsequently enriched
by Oligotex mRNA kit (Qiagen). Before RT-PCR experiments,
Poly(A) RNA was subjected to DNA-free DNase treatment (Am-
bion) to eliminate genomic DNA contamination. Genomic DNA
was extracted from yeast culture by the DNeasy blood and tissue
kit (Qiagen). We modified a strand-specific RT-PCR method pre-
viously described (Craggs et al. 2001), using the GeneAmp ther-
mostable rTth reverse transcriptase RNA PCR kit (Applied Biosys-
tems). DNase-treated poly(A) RNA sample (25 ng) was denatured
for 5 min at 70°C with 2 µL of 10� rTth reverse transcriptase
buffer and 1 µL of 10 µM reverse ORF-specific primer comple-
mentary to the ORF-coding strand (OSPR). While the template
and the primer were still incubating at 70°C, a preheated reaction
mixture was added consisting of 2 µL of 10 mM MnCl2 solution,
1.6 µL of 10 mM dNTP mix, and 2.5U of rTth polymerase. The
temperature was lowered for 2 min to 55°C for annealing and
then raised for 30 min to 70°C for the first-strand cDNA synthe-
sis. After the cDNA synthesis, 20 µL of prewarmed 1� chelating
buffer was added to chelate Mn2+ followed by heating the mix-
ture for 30 min at 98°C to inactivate the reverse transcriptase
activity of rTth. Second-step PCR reactions were performed in a
50-µL reaction volume using one-tenth of the synthesized first-
strand cDNA as template, forward ORF-specific primer (OSPF) and
OSPR as primers, and one unit of High Fidelity Platinum Taq
polymerase (Invitrogen). The OSPR complementary to the ORF-
coding strand was used in both first-strand cDNA synthesis and
second-step PCR amplification. The OSPF complementary to the
opposite strand was used only in the second-step PCR amplifica-
tion. Both OSPR and OSPF were designed using the OSP Program
(Hillier and Green 1991). The OSPR starts from the last nucleotide
of the termination codon, while the OSPF starts from A of the
ATG initiation codon. Primers used for RT-PCR of 201 nonover-
lapping orphan ORFs are listed in Supplemental Table 5.

Interstrain intraspecies conservation analysis
SNP information from the four strains SK1, Y55, DBVPG6765,
and W303 were extracted from the website of the Sanger Institute
Saccharomyces Genome Resequencing Project (http://
www.sanger.ac.uk/Teams/Team71/durbin/) on September 18,
2007 (R. Durbin and E. Louis, pers. comm.). The preassembly
SNPs were taken into account only when their quality was “con-

firmed.” They were mapped to the ORFeome of the reference
strain S288C as annotated by SGD on January 2007, as well as to
intergenic regions that are annotated as “not feature” (ftp://
genome-ftp.stanford.edu/pub/yeast/data_download/sequence/
genomic_sequence/intergenic/NotFeature.fasta.gz). The nucleo-
tide divergence of each ORF was then computed by averaging the
number of SNPs per kb found in each of the four strains, count-
ing insertions and deletions as one event independently of their
length. For overlapping ORFs, only the regions unique to the
ORFs themselves were considered for counting SNPs. To be con-
sidered as a preserved reading frame in our analysis, the ORF had
to show neither stop codons nor frame-shift mutations in any of
the four strains. The reading frame of an ORF was not considered
preserved if the ORF had an insertion or deletion (indel) longer or
equal to 20 bp, no matter whether the indel caused a frame-shift
or not.
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