
cause these are the only mutations that will fix.
This might help explain why similar beneficial
mutation rates are estimated in very diverse or-
ganisms under very diverse environments. These
estimates are obtained in populations with very
large effective sizes (4, 5, 9, 16), which are like-
ly to produce strong underestimations of Ua.

It is plausible that, in natural habitats, pop-
ulation sizes will be large. If the effective size
of a bacterial species is much higher than 104

(25), then our results imply that clonal inter-
ference plays a major role in limiting the adap-
tation of these asexual organisms. As such, if
there is a chance for recombination, clonal in-
terference will be much lower and organisms
will adapt faster. This has been predicted the-
oretically (14), although the empirical evidence
is still very preliminary (26, 27). Given our re-
sults, we anticipate that clonal interference is
important in maintaining sexual reproduction
in eukaryotes. Notably, mutation accumulation
experiments in Saccharomyces cerevisiae and
Arabidopsis thaliana have detected a signifi-
cantly large number of mutants with increased
fitness (28, 29).

Given the estimates for the overall mutation
rate in E. coli (30) and its genomic deleterious
mutation rate (1), our estimate of Ua implies that
1 in 150 newly arising mutations is beneficial
and that 1 in 10 fitness-affecting mutations in-
creases the fitness of the individual carrying it.
Hence, an enterobacterium has an enormous

potential for adaptation and may help explain
how antibiotic resistance and virulence evolve
so quickly.
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Divergence of Transcription
Factor Binding Sites Across
Related Yeast Species
Anthony R. Borneman,1* Tara A. Gianoulis,2 Zhengdong D. Zhang,3
Haiyuan Yu,3 Joel Rozowsky,3 Michael R. Seringhaus,3 Lu Yong Wang,4
Mark Gerstein,2,3,5 Michael Snyder1,2,3†

Characterization of interspecies differences in gene regulation is crucial for understanding the
molecular basis of both phenotypic diversity and evolution. By means of chromatin
immunoprecipitation and DNA microarray analysis, the divergence in the binding sites of the
pseudohyphal regulators Ste12 and Tec1 was determined in the yeasts Saccharomyces cerevisiae, S.
mikatae, and S. bayanus under pseudohyphal conditions. We have shown that most of these sites have
diverged across these species, far exceeding the interspecies variation in orthologous genes. A group of
Ste12 targets was shown to be bound only in S. mikatae and S. bayanus under pseudohyphal
conditions. Many of these genes are targets of Ste12 during mating in S. cerevisiae, indicating that
specialization between the two pathways has occurred in this species. Transcription factor binding sites
have therefore diverged substantially faster than ortholog content. Thus, gene regulation resulting from
transcription factor binding is likely to be a major cause of divergence between related species.

Differences in related individuals are
generally attributed to changes in gene
composition and/or alterations in their

regulation. Previous efforts to examine diver-
gence of regulatory information have relied on
the analysis of conserved sequences in puta-
tive promoter regions (1, 2). However, these

approaches are limited because transcription
factor (TF) binding sites are often short and
degenerate, making their computational detec-
tion difficult (3). In addition, requiring the con-
servation of motifs across species precludes the
detection of sequences that are evolutionarily
divergent.

The detection of binding sites with chromatin
immunoprecipitation andmicroarray (ChIP-chip)
analysis (4, 5) offers the ability to globally map
TF binding locations experimentally rather than
computationally. For species such as yeasts, where
genome sequences of numerous related species
are available (6), this approach can allow for the
evolutionary comparison of binding sites of con-
served TFs across species.

We have used this approach to investigate
evolutionary divergence in the targets of two
developmental regulators in the Saccharomyces
sensu stricto yeasts S. cerevisae, S. mikatae, and
S. bayanus. In S. cerevisiae diploids, Ste12 and
Tec1 act cooperatively to regulate genes during
pseudohyphal development (7–9), whereas in
haploid cells, Ste12 regulates mating genes
(10). The binding sites of Ste12 and Tec1 were
mapped in all three species under low-nitrogen
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(pseudohyphal) conditions with the use of tripli-
cate ChIP-chip experiments and species-specific
high-density oligonucleotide tiling microarrays
(fig. S1) (11). Ste12 bound to 380, 167, and 250
discrete sites, whereas Tec1 bound to 348, 185,
and 126 sites, in S. cerevisiae, S. mikatae, and
S. bayanus, respectively (tables S1 to S6). For
each species, the two factors bound to a high
proportion of common regions (86, 80, and
87% for S. cerevisiae, S. mikatae, and S. bayanus,
respectively), suggesting that the cooperative
interaction observed between Ste12 and Tec1 in
S. cerevisiae is conserved across the three Sac-
charomyces species.

Analysis of the signal tracks allowed for
global comparisons in TF binding to be made
among the species, revealing qualitative and
quantitative differences in ChIP binding regions

(Fig. 1A). To systematically perform interspecies
comparisons, we removed regions that were not
represented across all three yeast genomes (12).
Comparison of the overlap in binding across spe-
cies as a function of rank order revealed sig-
nificant binding differences throughout the rank
order, indicating that even strong targets from one
speciesmay not be bound in the others (Fig. 1B). As
a control, replicate experiments from S. cerevisiae
(12) displayed >98% concordance in binding.

Overall, three classes of TF binding events
were observed: those conserved across all three
species, those present in two of the three species,
and species-specific binding events (Fig. 1C). Of
the 221 and 255 targets bound in total by Ste12
and Tec1, respectively, only 47 (Ste12, 21%) and
50 (Tec1, 20%) targets were conserved across all
three species (Figs. 1C and 2A). The conserved

binding events were present throughout the rank
order, indicating that both highly occupied and
less-occupied regions are conserved (tables S7 and
S8). To ensure that these binding differences were
not due to the scoring threshold used, we cal-
culated signal distributions for unbound orthologs
of target regions (12). Of the unbound orthologous
regions, 80% had signals similar to background,
indicating that most will be unaffected by thresh-
old changes (fig. S2). Evenwhen identical binding
regions were used, 23% differed in their intensity
by at least 1.5 fold between species (0% between
S. cerevisiae replicates), suggesting that quantita-
tive differences exist in site occupation or binding
strength between species (Fig. 2B and tables S9
and S10). Thus, most target genes were bound in
only one or two of the three species, indicating
considerable divergence in binding sites across
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(12). (C) Gene target overlap across the three Saccharomyces species.
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these yeasts (Fig. 2C). Because the fraction of
nonconserved genes among S. cerevisiae, S.
mikatae, and S. bayanus is less than 0.05% (2),
the amount of variation in TF binding is
substantially larger than that of gene variation.

One possible cause for the interspecies differ-
ences in the ChIP binding locations is divergence
in binding site sequences. To examine this pos-
sibility, we investigated sequence motifs in both
bound and orthologous unbound regions across
the three Saccharomyces species. Position weight
matrices (PWM), representing the putative bind-
ing motifs for Ste12 and Tec1, were generated
from the ChIP-chip data (13). Analysis of the
Tec1 targets of the three species revealed an over-
represented sequence motif that matched the
known Tec1 consensus (7) (Fig. 3A), whereas the
targets of Ste12 in S. cerevisiae and S. mikatae
revealed a motif that was similar to the known
binding sequence (14) (Fig. 3B). This sequence
was not overrepresented in S. bayanus.

With the use of the PWM sequences, ChIP
bound regions and orthologous unbound regions
from each species were then scored for the
presence of each motif (15). There were several

significant classes of TF binding events, with
those genes bound by all three factors present
near the top of both the Tec1 (all bound, motif in
all) and Ste12 (all bound, with and without motif)
lists (Fig. 3, C and D). For promoter regions that
displayed evolutionarily conserved ChIP binding
in all three Saccharomyces species, 83% (Tec1)
and 24% (Ste12) of the regions contained at least
one significant occurrence of the PWMmotif for
that factor in each species (Fig. 3, E and F). In
contrast, 2 and 62% of the promoters that
displayed conserved ChIP binding did not
contain a match to the PWM in at least two of
the three species. Thus, the Ste12 motif is not
present in a high proportion of pseudohyphal-
responsive genes, implying that Tec1 may target
Ste12 to these regulatory regions (16).

In contrast to the previous results in which
experimentally determined binding correlated
with the presence of predicted motifs, there were
many examples where a species-specific loss of
binding and/or a loss of sequence have occurred.
There were 48 (Tec1, 14% of total binding
events) and 35 (Ste12, 10% of total binding
events) experimentally bound regions that con-

tained a PWM match where the orthologous
region in at least one other species neither was
bound nor contained a motif match. For these
loci, loss of ChIP binding is concordant with the
loss of the motif for this factor, providing clear
examples of regions where network evolution
occurred through the gain or loss of regulatory
sequences.

Furthermore, there were 45 (Tec1, 12%) and
9 (Ste12, 3%) instances where a PWM match
occurred in all three species but where that region
was experimentally bound in only two species
(Fig. 2D). Either these loci are occupied at other
times in the life cycle or they are not functional.
Conversely, in 11 (Tec1, 3%) and 22 (Ste12, 6%)
instances, genomic regions displayed conserved
ChIP binding, but at least one species was missing
a PWM motif match (Fig. 2E). Thus, sequence
conservation does not readily predict binding.

To further examine the role of conserved ver-
sus nonconserved ChIP binding events and mo-
tifs, we compared these results with expression
microarray studies of pseudohyphal formation in
S. cerevisiae (17). Of the ChIP binding gene
targets that had significantly altered expression
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(~20% of the ChIP targets, a several-fold enrich-
ment), there was no enrichment for genes with
conserved binding (11% bound versus 14% un-
bound) or PWM matches (12% with motif
versus 16% without motif) (table S11). Thus,
sequence-based motif analyses in the absence
of experimentally determined binding data are
not sufficient for the accurate prediction of TF
binding profiles and gene function. In addition,
the presence of nonconserved ChIP targets up-
stream of pseudohyphal-regulated genes at the
same frequency as conserved targets indicates that
nonconserved sites are likely to be functional.

To elucidate the biological importance of both
the conserved and species-specific gene targets,
we mapped each bound region to its downstream
target genes by identifying open reading frames
(ORFs) that were 3′ of and directly flanking each
ChIP binding event (tables S7 and S8). Con-
served Ste12 and Tec1 gene targets displayed
enrichment for two gene ontology (GO) (18)
categories: “filamentous growth” and “regulation
of transcription from RNA polymerase II
promoters” (Fig. 4A). Because most of the genes
from within the second category encode TFs, the
predicted downstream TF networks of S. baya-
nus and S. mikatae were compared to those of S.
cerevisiae (19) to determine which connections
had been maintained during the evolution of the
Saccharomyces sensu stricto group (Fig. 4C).
The binding of Ste12 and Tec1 to downstream
TFs was shown to be highly conserved (73%
across the three species). The network of S.
mikatae was most diverged and had several key
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regulatory omissions including Flo8 (not bound
by either Ste12 or Tec1) andMga1 (not bound by
Ste12). Thus, although important differences can
be found, TF binding to the promoters of other TFs
was highly conserved between species relative to
the level of conservation observed for other genes.

From those groups of genes that did not
display conserved binding across the three spe-
cies, one notable class was bound by Ste12
specifically in S. mikatae and S. bayanus and was
enriched in genes involved in mating (GO
category: “reproduction in single-celled orga-
nisms”) in S. cerevisiae (Fig. 4, A and B). Unlike
the gene targets in the diploid cells used in this
study, these genes are targets of Ste12 in haploid
S. cerevisiae cells (20, 21), and this differential
binding occurs despite the presence of conserved
Ste12 binding motifs (fig. S3). Thus, Ste12
binding targets may be occupied under different
conditions across related species. In S. cerevisiae,
Ste12 binds to these sites only during mating,
whereas in S. mikatae and S. bayanus, Ste12
binds to these same regions in diploid cells.

To extend this study outside of Saccharomy-
ces yeasts, we also mapped the binding of the
Candida albicans Ste12 ortholog, Cph1 (22).
Cph1 functions in the dimorphic switch of this
yeast, a process that shares many genetic com-
ponents with pseudohyphal growth (23). A total
of 52 significant Cph1ChIP binding events (table
S12) was detected under dimorphic growth
conditions, with many residing upstream of
known pathogenicity determinants (24–27).
From these gene targets, 33 have recognizable
orthologs in S. cerevisiae, and of these orthologs,
10, 10, and 13 displayed conserved binding with
S. cerevisiae, S. mikatae, and S. bayanus,
respectively. Although most gene targets of

Cph1 in C. albicans are not conserved with the
Saccharomyces species, the C. albicans ortho-
logs bound by Ste12, like those from S. mikatae
and S. bayanus, included a significant number of
genes that function during reproduction and
mating in S. cerevisiae (P = 4 × 10−3) (18). Thus,
in C. albicans, like in S. mikatae and S. bayanus,
the Ste12 ortholog also binds to genes required for
mating in S. cerevisiae under filamentous growth
conditions, raising the possibility that these genes
have become more specialized in S. cerevisiae.

We find that extensive regulatory changes can
exist in closely related species, which is consist-
ent with a recent study that showed that distinct
regulatory circuits can produce similar regulatory
outcomes in S. cerevisiae and C. albicans (28).
Furthermore, although S. cerevisiae and S.
mikatae are quite similar to one another at the
nucleotide sequence level, they are equally dif-
ferent to each other and to S. bayanus in their TF
profiles.We expect that the extensive binding site
differences observed in this study reflect the rapid
specialization of these organisms for their distinct
ecological environments and that differences in
transcription regulation between related species
may be responsible for rapid evolutionary adap-
tation to varied ecological niches.
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High-Speed Imaging Reveals
Neurophysiological Links to Behavior
in an Animal Model of Depression
Raag D. Airan,1* Leslie A. Meltzer,2* Madhuri Roy,1 Yuqing Gong,3,4
Han Chen,3 Karl Deisseroth1,5†

The hippocampus is one of several brain areas thought to play a central role in affective behaviors,
but the underlying local network dynamics are not understood. We used quantitative voltage-
sensitive dye imaging to probe hippocampal dynamics with millisecond resolution in brain slices
after bidirectional modulation of affective state in rat models of depression. We found that a
simple measure of real-time activity—stimulus-evoked percolation of activity through the dentate
gyrus relative to the hippocampal output subfield—accounted for induced changes in animal
behavior independent of the underlying mechanism of action of the treatments. Our results define
a circuit-level neurophysiological endophenotype for affective behavior and suggest an approach
to understanding circuit-level substrates underlying psychiatric disease symptoms.

The hippocampus, as an integral com-
ponent of the limbic system, is a focus of
depression research (1), drives other brain

regions implicated in depression, and appears to

serve as a primary site of action for antidepres-
sants that inhibit pathological hyperactivity (2, 3).
Complicating this picture, however, is evidence
suggesting that antidepressants can stimulate

hippocampal activity. Antidepressant-induced hip-
pocampal neurogenesis is linked to behavioral
responses (4, 5); moreover, excitatory hippocam-
pal neurons are injured by chronic stress (6, 7).
Animal models have proven useful in identifying
molecular and cellular markers relevant to
depression (8–10) but have not identified neuro-
physiological final common pathways relevant to
behavior. Voltage-sensitive dye imaging (VSDI)
could allow analysis of disease-related neural
activity on millisecond time scales, with micro-
meter spatial resolution and a scope spanning
entire brain networks (11). We applied VSDI
to hippocampal physiology in the chronic mild
stress (CMS) model, a well-validated rodent
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