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ABSTRACT

Motivation: Many classifications of protein function such as Gene

Ontology (GO) are organized in directed acyclic graph (DAG)

structures. In these classifications, the proteins are terminal leaf

nodes; the categories ‘above’ them are functional annotations at

various levels of specialization and the computation of a numerical

measure of relatedness between two arbitrary proteins is an

important proteomics problem. Moreover, analogous problems are

important in other contexts in large-scale information organization—

e.g. the Wikipedia online encyclopedia and the Yahoo and DMOZ

web page classification schemes.

Results: Here we develop a simple probabilistic approach for

computing this relatedness quantity, which we call the total ancestry

method. Our measure is based on counting the number of leaf nodes

that share exactly the same set of ‘higher up’ category nodes in

comparison to the total number of classified pairs (i.e. the chance for

the same total ancestry). We show such a measure is associated

with a power-law distribution, allowing for the quick assessment of

the statistical significance of shared functional annotations.

We formally compare it with other quantitative functional similarity

measures (such as, shortest path within a DAG, lowest common

ancestor shared and Azuaje’s information-theoretic similarity) and

provide concrete metrics to assess differences. Finally, we provide a

practical implementation for our total ancestry measure for GO and

the MIPS functional catalog and give two applications of it in specific

functional genomics contexts.

Availability: The implementations and results are available through

our supplementary website at: http://gersteinlab.org/proj/funcsim

Contact: mark.gerstein@yale.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

The systematic classification of protein function is of great

importance in functional genomics, as it organizes our thinking

about the biological roles of proteins. Various databases

collecting functional information from the literature have

been developed to meet this need. Among the most important

classification schemes are GO, MIPS, GenProtEC and Ecocyc

(Harris et al., 2004; Karp et al., 1996; Mewes et al., 2006; Riley

and Space, 1996). Whereas GO represents a classification

across organisms, MIPS, GenProtEC and Ecocyc focus

on well-studied individual organisms (e.g. Saccharomyces

cerevisiae and Escherichia coli).
In many contexts, it is important to compare proteins within

the framework of a functional classification and to define a

proper measure of the degree of functional similarity between

them. For instance, in developing sequence and structure com-

parison methods and annotation transfer schemes, similarity in

sequence and structure needs to be correlated with functional

similarity (Hegyi andGerstein, 2001; Orengo et al., 1999;Wilson

et al., 2000). Moreover, there are many interesting applications

for functional similarity measures in the automatic analysis

of high-throughput genomics experiments, e.g. the analysis of

mRNA expression profiles, protein–protein interactions or

chIP-chip experiments (Horak et al., 2002; Lee et al., 2002).

1.1 The problem of defining functional similarity

It is not obvious how to best compute functional similarity

from the existing classification schemes. On a most simple level,

researchers often need to ask whether two proteins are members

of the same functional class; this can essentially be described as

a Boolean functional similarity measure (giving the answer ‘yes’

or ‘no’). There are obviously several problems with this

approach. On the one hand, it is desirable to work with

systems that contain many different functional classes because

detailed information on protein function allows for a high

differentiation between proteins. On the other hand, there are

limits to the level of detail in many practical applications. This

is, e.g. a problem in the automatic classification of protein

function from DNA microarray data. If there are too few

proteins in a functional class, no reliable statistics can be

gathered on it, confounding reasonable statistics (Brown et al.,

2000; Mateos et al., 2002; Wu et al., 2002). More importantly,
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Fig. 1. Illustration of different functional similarity measures discussed in the article using a hypothetical tree. (a) Illustration of the example

tree structure. This tree structure is adapted from MIPS. Each node represents a functional class, which is named as in the MIPS database. The

number below the name in the parentheses shows the size of each functional class. A, B, C and D are different genes belong to distinct classes. Genes

A and B each have two different functions. The tree structures in all panels have exactly the same configuration as this one. (b) An example tree

structure adapted from the Wikipedia online encyclopedia. Each node represents a cuisine class. Two specific dishes belonging to different cuisine

classes are shown at the bottom. Please note that this tree is not complete and might be slightly different from the real one in Wikipedia.

(c) Calculation of topological distance. The distances between A and B at two parts of the tree are 2 (red) and 3 (green), respectively. The topological

distance of AB is therefore 2. (d) Illustration of finding the lowest common ancestor for protein pairs. (e) Calculation of information-theoretic

similarity between genes A and B. The semantic similarity between nodes 01.01.01 and 01.01.03 and that between 02.01 and 02.02 are the information

contents of nodes 01.01 (red) and 02 (purple), respectively. (f) Calculation of total ancestry similarity between genes A and B. The genes in

the box under each node belong to that functional category. These common edges and ancestors form a specific pattern, which can be represented by

only the set of the lowest common ancestors (i.e. in this case, nodes ‘01.01’ and ‘02’, highlighted as red). The idea is to calculate the frequency of a

protein pair having this pattern among all possible pairs in the database. This frequency is a natural similarity metric. The lower the frequency,

the higher the similarity. There are seven gene pairs sharing the same set of lowest common ancestors as AB, which are connected by thin lines in

the graph.

H.Yu et al.

2164

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/16/2163/197865 by C
ornell U

niversity Library user on 27 April 2023



a functional similarity measure is much more desirable to be a

continuous quantity that varies in relation to the degree of

common functional properties between proteins.
Most classification systems have the structure of a tree

(e.g. MIPS; see Fig. 1a) or a directed acyclic graph (DAG)

(e.g. GO)—please note that a tree is a special case of a DAG.

One could simply cut off the classification graph at some

arbitrary level to obtain classes of sufficient size for a particular

application. But it is often not clear how to do this in a

systematic way. For instance, the DAG structure of GO does

not explicitly contain discrete levels of classes. But even for

classification systems with tree structures (such as MIPS)

it is not clear whether two unrelated classes are at the same

level of biological detail just because they are in the same

level of the tree hierarchy. The edges between classes may

have different weights, but these are not explicitly defined.

Furthermore, different parts of a functional classification

system may have different degrees of detail, because (1) there

are varying amounts of knowledge on specific biological

processes; (2) intrinsically, some biological processes have

more detail and therefore have more depth in the classification

system. In this case, a certain level at one part of a functional

classification system clearly reflects different degrees of func-

tional similarity than that at another part.
An additional problem is that many proteins are members

of multiple functional classes. This is because (1) some

proteins truly have multiple functions; (2) a protein

often needs more than one label to describe its function.

An example of the latter is Hac1p, which is a transcription
factor that regulates membrane biosynthesis (Cox and
Walter, 1996), therefore, Hac1p is associated with two parts

(transcription and metabolism) of the MIPS functional
classification system. How does one define functional similarity
in this context?

In the following, we discuss three non-Boolean measures
of similarity between protein pairs (a topological, an informa-
tion theoretic and a total ancestry measure) that address

some of the problems we mentioned. These problems arise in
many other contexts with a DAG structure. For example, the
Wikipedia online encyclopedia categorizes various terms (see

Fig. 1b); Yahoo and DMOZ web page classification schemes
categorize web pages; and, the US patent classification system
categorizes inventions. We believe that these methods measur-

ing similarities will be applicable to items within these DAG
structures, as well. The results can be very helpful for people
using these systems: they make it much easier to find relevant

terms, web pages and patents, which could significantly
expedite the process of searching through these huge systems.

2 NON-BOOLEAN MEASURES OF FUNCTIONAL
SIMILARITY

2.1 Topological similarity

2.1.1 Topological distance A more advanced measure of
functional similarity than the Boolean measure is to compute

the number of edges one has to traverse in going from one
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                                        = max { -log(4000/6000), -log(5500/6000), -log(6000/6000)}
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                =  0.263

(e) (f)

Fig. 1. Continued.
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node to another. In case of multiple paths between two nodes

(as in a DAG), one can simply take the minimum or average of

the different path lengths. The minimum path is appealing as it

yields an actual mathematical distance that verifies the three

distance axioms in metric spaces. In graph theory, this measure

is known as the shortest path length between nodes

(see Fig. 1c). (As this measure takes into account the topology

of the DAG, we shall call this metric the ‘topological distance’.)

There are a number of known algorithms to compute this

distance such as the Floyd–Warshall algorithm or the Dijkstra

algorithm (Aho et al., 1974; Gusfield, 1997; Swamy and

Thulasiraman, 1981). The topological distance is defined for

classes rather than proteins. For proteins with multiple classes,

one can again simply take the minimum of the set of lengths,

yielding an actual distance.
As mentioned above, one might want to weight edges

differently. The Dijkstra algorithm also allows the computation

of minimum path lengths in case the classification graph

has weighted edges. However, given a classification system,

it is not clear how to actually go about quantifying the

edge weights.

2.1.2 Lowest common ancestor The topological distance
(as defined above) does not record at what level in a

classification hierarchy two proteins share their first common

ancestor class although this information is clearly useful in

characterizing their similarity. It should be noted that the

distance between the root node of a classification system

and the lowest common ancestor of two proteins yields another

distance metric (see Fig. 1d). In general, this distance correlates

with the significance of the similarity between the two proteins.

Again, we note that two proteins may be members of multiple

functional classes and therefore may have multiple lowest

common ancestors. In this case, one can measure the distances

between all lowest common ancestors and the root node and

simply take the maximal (or minimal) distance.

2.2 Azuaje’s information theoretic similarity (ITS)

Semantic and information theoretic approaches provide

alternative methods for quantifying similarities between objects

in a classification DAG. Such approaches are based on

counting the frequency of how many objects each node in the

classification graph contains, which, in turn, allows quantifying

the probability or information theoretic entropy that an object

is member of such a node. Examples of such information

theoretic definitions are Resnik’s method for measuring

semantic similarity and Lin’s similarity measure (Guo et al.,

2006; Lin, 1998; Resnik, 1995; Wang and Azuaje, 2004).

The basic principles of these methods are the same. Here,

we will use one method to illustrate the use of information

theoretic entropy to measure the functional similarity between

protein pairs, which we call Azuaje’s ITS method (Wang

and Azuaje, 2004):

first, the similarity between two functional terms ci and cj is

calculated by:

sim ci,cj
� �

¼ max
c2Sðci,cjÞ

� logðpðcÞÞ½ �

where S(ci, cj) is the set of parent terms shared by both ci and cj,

p(c) describes the probability of finding a child of a functional

term c in the whole database. It is calculated as the ratio of the

number of objects (i.e. proteins) included in term c over the

total number of objects in the classification system.

In information theory, �log(p(c)) measures the information

content of c. The value of this similarity metric ranges between

0 and infinity.
Next, let us consider a pair of gene products, gi and gj, which

are annotated by a set of terms Ai and Aj, respectively. Ai and

Aj comprise m and n terms, correspondingly. The semantic

similarity between these two proteins, SIM(gi, gj), may be

defined as the average inter-set similarity between terms from

Ai and Aj:

SIM gi, gj
� �

¼
1

m� n
�

X

ck2Aj,Cp2Aj

sim Ck,Cp

� �
:

Figure 1e uses a specific example to illustrate how the semantic

similarity between protein pairs is calculated.

2.3 Total ancestry similarity

2.3.1 Probability formalism The notion of the lowest
common ancestor and the probabilistic nature of the informa-

tion theoretic measures lead us to another definition of

functional similarity that combines several of the qualities of

the other measures. One can combine elements of the

topological distance and the lowest common ancestor distance

within a statistical framework to arrive at a probabilistic level

of similarity. Obviously, a pair of proteins should be very

similar if they belong to a functional group (i.e. the lowest

common ancestor node) with few proteins, whereas the

similarity will be less significant if many proteins belong to

that group.
Given two proteins that share a specific set of lowest

common ancestor nodes in the classification structure,

one can count the total number of protein pairs n that also

have the exact same set of lowest common ancestors

(see Fig. 1f). This number is expected to be low for proteins

that share a very detailed functional description, but very

high for proteins that have no function in common. For

instance, if a functional class contains only the two proteins

of interest, then the count would yield n¼ 1. On the other

hand, if the root node is the lowest common ancestor of two

proteins, n is the number of protein pairs contained in

the classification.
The count n can be normalized to represent a statistical or

probability-like measure P:

P ¼ n=N

where N is the total number of protein pairs in the

classification. (For instance, MIPS classifies 4779 of the

6000 S.cerevisiae proteins, thus yielding N¼ 4779� 4778/2

protein pairs; see Fig. 1f). Please note that we can trivially

convert this probability into an information content (to make

it more comparable to Azuaje’s ITS method) by simply

computing �log P.
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2.3.2 P-value calculation Figure 2 shows that the cumulative
density distributions (F) of the (normalized) functional

similarities (P) based on both the GO biological process

annotation and the MIPS functional catalog approximately

follow power law distributions (see Fig. 2; for MIPS,

F¼ 1.9438P0.5668; for GO, F¼ 1.9945P0.5598; we estimated the

parameters of the power law distributions by performing

a simple linear regression on the log–log scaled graph).

Interestingly, the exponents of the two power laws are virtually

the same for both the MIPS and GO annotation. In fact,

it can be empirically shown that the cumulative density

distribution of any DAG structure follows a power law

distribution (see Supplementary Fig. 4). This feature is useful

for practically assessing the statistical significance of functional

similarity measurements. For a given functional annotation

scheme, the parameters of the power law distribution can be

relatively easily determined from a random sample of

functional similarity values and subsequent regression.

Knowledge of the power law parameters then allows the
computation of P-values for observed functional similarity
measurements.

3 CONSISTENCY OF SIMILARITY MEASURES

There are several ways to assess the consistency of these

functional similarity measures.

3.1 Comparing different measures of functional

similarity

3.1.1 Topological similarity versus total ancestry
similarity Figure 3 shows that the topological and total

ancestry similarity measures are positively correlated, as
expected. However, as mentioned above, the topological
similarity does not measure the distance of the lowest

common ancestor to the root of the classification graph. The
total ancestry similarity measures can aid in finding cases where
the lowest common ancestor is very near the root node in the

classification.
For instance, there are 39 protein pairs in the GO biological

process classification that have a topological distance of zero,

but for which the total ancestry measure is greater than 1/3. In
each of these pairs, the two proteins have one functional class in
common, but these tend to be functional classes of a very
general type. For instance, 26 of the 39 pairs are members of the

general class ‘metabolism’.

3.1.2 Azuaje’s ITS similarity versus total ancestry
similarity Even though Azuaje’s ITS method provides a
semi-probabilistic measure of functional similarity, it is not

equivalent to the total ancestry similarity that we proposed
(see Fig. 4): it looks for the smallest functional term (i.e. the one
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are members of the same protein complex (according to the MIPS

complexes catalog).

Developing a similarity measure

2167

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/16/2163/197865 by C
ornell U

niversity Library user on 27 April 2023



contains fewest proteins) that two proteins share. However,

a pair of proteins can share only large functional terms; but

if they share many such terms, they should still be considered

as functionally similar. Because all of the classification systems

are far from complete right now, many proteins only have

rough functional descriptions, i.e. they are only associated with

large terms. Therefore, how to take these large functional terms

into consideration is of great importance to a good functional

similarity measure. The total ancestry measure solves this

problem naturally. It does not look at individual terms, but

rather examines the whole set of the shared terms. Even though

each individual term may contain a lot of proteins, it is much

less likely that many of these proteins will share a number of

different terms. For example, Doa4p and Pre1p are two

subunits of the 26S proteasome based on the MIPS complex

catalog. Clearly, their functions should be extremely similar

as they form a stable complex. However, since they only belong

to a number of large functional terms in GO, their functional

similarity determined by the information-theoretic method

is not significant (less than half of all the protein pairs).

On the contrary, the total ancestry method ranks this pair

among the top 5% most functionally similar pairs, which

makes more biological sense.
Interestingly, there are only 278 protein pairs that are

among the top 5% most functionally similar pairs measured

by Azuaje’s ITS method, but are not significant (less than

half of all the protein pairs) according to the total ancestry

method. None of the known interacting pairs within the

MIPS complexes is included in these 278 pairs. Consequently,

we can see that the similarity assignment by Azuaje’s ITS

method is less optimal, compared with our total ancestry

method. Moreover, the distribution of the ITS scores of these

pairs is clearly concentrated towards the lower boundary,

indicating that these pairs can be easily pushed below the

cutoff with the insertion of many more functionally similar

pairs in front of them by the total ancestry method

(see Supplementary Fig. 1).
Furthermore, all the pairs that are determined as similar by

the information-theoretic measures will have a good similarity

score by our total ancestry method. The reason is that, if two

proteins share a small functional term, the number of proteins

sharing the whole set of the terms that these two proteins share

will be even smaller. As a result, the scores by the two methods

are also positively correlated (Pearson correlation

coefficient¼ 0.54; P-value510�15).

3.2 Consistency under reorganizations of the

classification system

As mentioned above, the classification systems are constantly

updated with new information and are sometimes reorganized.
The topological distance measure tends to be very sensitive to

any change in the structure of a classification graph. However,

ideally, a functional similarity measure would be robust with

respect to some of these changes. For instance, as additional

classes are introduced into the graph to accommodate newly

characterized proteins, the information-theoretic and total

ancestry similarity measures tend to be more robust against

such changes, and leads to only minor perturbations to the

relationships between already classified proteins. For example,

the information content of a functional class only takes into

consideration the size of this class; it is not related to the

organization of its descents. If a new descent class is introduced

or the relationships between its descents are re-arranged, its

information content is left unchanged, as long as the total

number of genes in this class remains the same. Similar reasons

also apply to the total ancestry measure.

Overall, an advantage of Azuaje’s ITS and the total ancestry

similarity measures is that they could practically distinguish

between reorganization events that should change functional

similarity and those that should leave it unaffected.

4 IMPLEMENTATION OF SIMILARITY MEASURES

We have implemented all of the similarity measures discussed

above and calculated different functional similarity scores for
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   (8)

02.02 

Set of LCAs for genes A and B

SIM(A, B) = (−log(18/26) − log(15/26)) / 4 = (0.160 + 0.239) / 4 = 0.10

SIM(C, D) = −log(8/26) = 0.512 >> SIM(A, B) --> CD are more similar

P (A, B) = 16 / 325 = 0.05

P (C, D) = 28 / 325 = 0.09 >> P (A, B) --> AB are more similar

01.02 01.03

Q
R

Set of LCAs for genes C and D

Fig. 4. Illustration of the differences between the information-theoretic

similarity measure and the total ancestry measure. Genes C and D share

the lowest common ancestor 02.01, which includes eight genes. Genes A

and B share two lowest common ancestors in nodes 01 and 02, which

are both one level higher in the classification system than node 02.01.

Therefore, the information-theoretic similarity measure (as well as the

topological distance measure and the lowest common ancestor measure)

will show that CD are more similar than AB. However, in this

schematic example, there are only seven pairs sharing the same set of

lowest common ancestors as AB. Therefore, the total ancestry measure

will show that AB are actually more similar than CD. A really

biological example is proteins Doa4p and Pre1p, two subunits of the

26S proteasome.
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both GO and MIPS functional classification systems. The

implementations and results are available through our supple-

mentary website at: http://www.gersteinlab.org/proj/funcsim.

5 APPLICATIONS OF FUNCTIONAL SIMILARITY
MEASURES

Well-defined functional similarity measures could facilitate the

genome-wide analyses in many applications. Here, we briefly

outline two examples.

5.1 Analysis of mRNA expression data

The automatic classification of proteins into functional classes

given their expression profiles in cDNA microarray using

different machine-learning algorithms has had only limited

success so far. In this context, it has been observed that

machine-learning algorithms often assign proteins as false

positives that are actually biologically related to the class of

true positives (Mateos et al., 2002).
In Figure 5a we show an example of classifying proteins

belonging to the class ‘TCA cycle’ in MIPS, using a neural

network machine-learning algorithm [details explained in

Mateos et al. (Mateos et al., 2002)]. We performed several

iterations of machine-learning steps. After each learning step,

we determined which proteins were correctly or incorrectly

classified by cross-validating the results with the MIPS data.

Then we added those proteins that appeared as false positives

in the previous round as belonging to the original class

(‘TCA cycle’) in the next round. We found that such an

iterative procedure converged to a relatively coherent set of

proteins, which are functionally related to the original TCA

cycle proteins. The functional similarity measures allow us to

quantify the relationship of these proteins to the original

class (see Fig. 5a), rather than classifying them as false positives

in a Boolean way (‘true’ or ‘false’). Please note that we did

not develop a new learning algorithm. What we showed

here is that the traditional learning algorithms can benefit

from the non-Boolean values of the functional similarity that

our method produces.
Figure 5b shows the general relationship between distance

in the gene expression space and the distance between genes

in the MIPS functional catalog. It shows that for small

gene expression distances, the proportion of small functional

distances is substantially greater than that of large functional

distances. [We used the Spellman dataset (Spellman et al.,

1998), and a Euclidian distance in gene expression profiles

between pairs of genes of the normalized vector of 79 gene

expression values.] GO classification yields a similar

picture (data not shown). As we increase the gene expression

distance, larger functional distances are more likely.

One interpretation of this is that clusters that result from

Eisen plots (Eisen et al., 1998) are likely to indicate functional

similarity of the genes participating in the cluster. The converse

is not true. We have observed that the gene expression

distance between genes is rather independent of the functional

distance, thus indicating that classes with similar function

will be ‘far’ in gene expression space. This agrees with our

earlier observation that most functional classes are poorly

learned from expression data by machine-learning algorithms

(Mateos et al., 2002).
Perhaps surprisingly, the total ancestry measure for

MIPS and GO generally yield very different values and are

only weakly correlated (Pearson correlation coefficient ¼�0.21;

see Supplementary Fig. 2). Similar results can be observed for

the topological measure. This may be due to the different

organization nature of MIPS and GO classification

schemes (Ruepp et al., 2004).

5.2 Prediction of protein–protein interactions/complexes

Another potential application of the functional similarity

measure is the prediction of protein–protein interactions.

This is possible because proteins that participate in similar

biological processes are more likely to interact than those

that are operating in very different or unrelated processes. It is

possible to statistically predict the chance that two proteins are

interacting in a complex based on their biological process

annotation. Figure 2 also shows that, at all different levels of

significance, interacting protein pairs are always more likely to

be functionally similar than randomly chosen ones, which, to

some degree, confirms the validity of our approach.
A caveat of such a prediction is that many functional

annotations were derived from protein–protein interaction

experiments in the first place. Thus, using such data blindly

to ‘predict’ interactions may amount to circular reasoning.

However, one can explicitly consider only those functional

annotations that were derived from experiments other than

protein–protein interactions. It is possible to identify these from

the evidence codes that indicate which data sources were used

to arrive at a functional assignment and that accompany each

annotation in the GO database.
Figure 6a shows the statistical distribution of known

interacting and non-interacting proteins in a subset of the

GO annotation that includes only evidence unrelated to

protein–protein interaction experiments: the subset of the

GO biological process annotation considered here is solely

based on characterizations of genetic phenotypes. Figure 6a

shows that there is a strong signal for protein–protein

interactions in these data. For instance, protein pairs with a

normalized functional similarity value between 5� 10�7and

5� 10�6 are on average 45.55 times more likely to be in the

same complex than randomly chosen protein pairs. For a

specific example: Ssa1p is an ATPase involved in protein

folding and nuclear localization signal (NLS)-directed nuclear

transport. It is a member of heat shock protein 70 (HSP70)

family (Kim et al., 1998). Ydj1p is also a protein chaperone

involved in regulation of the HSP90 and HSP70 functions

(Kimura et al., 1995). They have an extremely good functional

similarity score of 1� 10�7 (L¼ 98.7), but they are not included

in the MIPS complex catalog. However, previous studies

have shown that Ssa1p and Ydj1p form a chaperone complex

(Hon et al., 2001).
Finally, we calculated the enrichment of functionally similar

protein pairs among the known interacting pairs. Total 98.5%

of the interacting pairs are functionally similar as measured

by the total ancestry method, whereas the corresponding value

is only 56.7% for Azuaje’s ITS method (P-value 510�10).
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Fig. 5. Relationship between gene expression distance and functional similarity. (a) The functional similarity of proteins recruited in successive

rounds of automatic classifications of proteins belonging to the class ‘TCA cycle’ in MIPS, based on gene expression data by Eisen et al. (Eisen et al.,

1998). Nodes in the concentric circles indicate MIPS functional classes of false positives at different iterations. Solid lines connect classes that share

common proteins. The lower graph shows the average and SD of the total ancestry functional similarity between the false positives at different

iterations and the proteins in the class ‘TCA cycle’. For comparison, we show the expected values of functional similarity between random protein

pairs. (b) The average values of the topological distance (MIPS) at given distances in expression space (Spellman et al., 1998).
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Similar results were also observed for the co-expressed pairs

(see Supplementary Fig. 3). Thus, the functional similarity

scores calculated by the total ancestry method relate better to

protein interaction and gene co-expression, when compared to

those calculated by the ITS method.
It should also be noted that similar practices (relating GO or

MIPS functional relationships to predicting protein’s proper-

ties, e.g. interaction, sub-cellular localization) have been carried

out by a number of previous studies (Azuaje et al., 2006; Lei

and Dai, 2006; Wu et al., 2006).

6 DISCUSSION

We have presented a new probabilistic measure, named the

total ancestry method, for computing the functional similarity

between pairs of proteins and compared it with other measures

of functional distance. We explored different properties of these

four measures. The total ancestry similarity naturally measures

the depth of the lowest common ancestor in a classification

graph and changes in response to updates of the classification

system in a robust and intuitive way. We discussed potential

applications in analyzing genomic data, such as mRNA

expression profiles and protein–protein interactions.

Furthermore, our measure can be readily applied to other

non-biological contexts, e.g. the Wikipedia online encyclopedia

and the Yahoo and DMOZ web page classification schemes. In

these contexts, proteins in our calculation correspond to the

leaf nodes in the DAGs of interest.
One major disadvantage of our method is that it is

computationally much more expensive than all other methods
mentioned in the article because it examines the set of lowest

common ancestors of all protein pairs in a given genome
for any two proteins of interest. However, in practice, the

similarity scores were calculated for the whole S.cerevisiae

A

y = normalized
functional similarity # positives # negatives P(y|pos) P(y|neg) L

22               147               0.0325 0.0003 98.7

81               1,173            0.1198 0.0026 45.5
187             4,396            0.2766 0.0099 28.1

168             13,242          0.2485 0.0297 8.4

218             426,910        0.3225 0.9575 0.3

B

y = normalized
functional similarity # positives # negatives P(y|pos) P(y|neg) L

< 5×10−7 - - 0.0000 0.0000 NA

5×10−7 – 5×10−6 - - 0.0000 0.0000 NA

5×10−6 – 5×10−5 24 61 0.1159 0.0027 42.5

5×10−5 –  5×10−4 104 382 0.5024 0.0171 29.4

>= 5×10−4

< 5×10−7

5×10−7 – 5×10−6

5×10−6 – 5×10−5

5×10−5 – 5×10−4

>= 5×10−4

79 21,900 0.3816 0.9802 0.4

Fig. 6. (a)The statistical distribution of positive (interacting) and

negative (non-interacting) protein pairs for the complete MIPS

annotation. As a reference for protein pairs that are members of the

same complex (‘positives’), we used the MIPS complexes catalog, a list

of protein complexes in S.cerevisiae. As a reference for protein pairs

that are not interacting (‘negatives’), we compiled a list of protein pairs

that are present in different subcellular compartments (Jansen et al.,

2003). These references of positive and negative examples allow us to

assess the relationship between functional similarity of proteins

and their tendency to be in the same complex. The first column

shows different intervals of the normalized functional similarity, and

the second and third columns the number of positive and negative

protein pairs that were found within these intervals. These numbers

allow us to calculate the conditional probabilities in columns four

and five. Finally, column six gives the likelihood ratio L, defined as the

ratio of these two conditional probabilities. The posterior odds of

finding a protein interaction (‘posterior’¼ after considering the level of

functional similarity) is equal to the likelihood ratio L times the prior

odds of finding an interaction (‘prior’¼before considering functional

similarity). Thus, for instance, protein pairs with a normalized

functional similarity value55� 10�7 are on average 98.71 times more

likely to be members of the same protein complex than any randomly

chosen protein pair. Higher functional similarity is clearly correlated

with a higher chance that two proteins are interacting. The signal for

protein interactions contained in the functional similarity data is similar

to that contained in the (noisy) data gained from high-throughput

protein–protein interaction experiments. Although such datasets may

only predict protein–protein interactions with a relatively high false

positive rate, it has been shown that the combination of multiple

datasets of such quality can lead to reliable predictions of protein

complexes. (b) For comparison, the statistical distribution of positive

(interacting) and negative (non-interacting) protein pairs for the

complete GO annotation that includes evidence based either solely or

partially on protein–protein interaction experiments. As expected, the

likelihood ratios are somewhat larger than in part a for the same

functional similarity ranges.
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Fig. 5. Continued.
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genome in530min using a normal PC [Intel(R) 2.16GHz CPU

with 2GB RAM].
Another interesting issue is that our total ancestry method

focuses on the coinciding categories between two proteins,

but ignores the missing ones (in fact, this is true for all current

methods). For example, let’s consider three proteins A, B and C

(A has a function 10.03; B has functions 10.03, 01.01.01,

11.01.02, 12.03.04 and C has a function 10.02; here the

functional class names follow the MIPS functional category

convention—each number represents one category and a sub-

category is separated from its parent category by a dot). Using

our total ancestry method, AC and BC will have the same

functional similarity (i.e. they all share the same functional

category—category 10). One could argue that, since B has

many more functions other than 10.03, it is less ‘devoted’ to the

functional category 10; therefore, BC should be functionally

less similar than AC. One way to extend our method to

accommodate this is to assign a weight to each functional

category that a certain protein belongs to so that the sum of all

the weights equals to one. Then, instead of counting the exact

number of protein pairs within a set of lowest common

ancestors, one could use a weighted count to calculate the total

ancestry similarity.

However, we still believe that considering only coinciding

categories actually makes biological sense for two main

reasons. First, as discussed earlier, some proteins need more

than one label to describe their function (e.g. see the example of

Hac1p described above). In this case, being in one functional

category does not make the protein less ‘devoted’ to another

category. Second, one of the main advantages of our method

is that it naturally takes into account the fact that current

functional classification schemes are far from complete.

Thus, many proteins belong to only a few categories perhaps

because their other functions have been discovered yet.

Under these circumstances, if one were to include the

missing ones into the calculation, the incompleteness of

the classification scheme becomes a major factor and makes

the calculated similarity much less accurate.

There are obvious parallels in other scientific disciplines in

taking a ‘classification system’ and turning it into a distance

metric. Networks of computers or telephones have been studied

under the aspect of distances. The problem of defining

appropriate measures of similarity in these other disciplines,

is however not completely resolved. For example, in a recent

paper Huffakker et al. attempted to define different distance

metrics in the internet that best correlates with the lowest

latency correlation between hosts (Huffaker, et al., 2002).

Two of the distance measures used in this study were related to

the shortest path length, and the other two were specific to the

problem (actual geographical distance and packet round

trip time). It seems that in these fields the issue of defining

a measure of distance between pairs of nodes is far from

being resolved.

A completely different measure of functional similarity is

the dot product measure of functional similarity suggested in

Lan et al. (2002). This measure relies on representing protein

function in a very different way, not in terms of its position in a

DAG structure, but in terms of a vector of molecular

interactions. The dot product, or the angle between these two
vectors, gives a measure of functional similarity.
Finally, there are also ways of assessing the similarity of

the function among groups of more than two proteins.
This assessment of functional similarity within such groups
of proteins usually makes the assumption that the proteins

have been sampled randomly from the genome/proteome
without replacement. The standard hypergeometric distribution
describes the probability distribution of functional annotations

in this sample, given the frequency at which these annotations
occur in the genome/proteome as a whole. This is for instance
used for finding functional labels that are significantly over-

represented in the clusters of genes derived from transcriptional
profiling data. In the future, one of the challenges is to look
at how to use one of these continuous measures for a group

of proteins.
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