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ABSTRACT

Microarray technology is currently one of the most
widely-used technologies in biology. Many studies
focus on inferring the function of an unknown
gene from its co-expressed genes. Here, we are
able to show that there are two types of positional
artifacts in microarray data introducing spurious
correlations between genes. First, we find that
genes that are close on the microarray chips tend
to have higher correlations between their expres-
sion profiles. We call this the ‘chip artifact’. Our
calculations suggest that the carry-over during the
printing process is one of the major sources of
this type of artifact, which is later confirmed by
our experiments. Based on our experiments, the
measured intensity of a microarray spot contains
0.1% (for fully-hybridized spots) to 93% (for
un-hybridized ones) of noise resulting from this
artifact. Secondly, we, for the first time, show that
genes that are close on the microtiter plates in
microarray experiments also tend to have higher
correlations. We call this the ‘plate artifact’. Both
types of artifacts exist with different severity in all
cDNA microarray experiments that we analyzed.
Therefore, we develop an automated web tool—
COP (COrrelations by Positional artifacts) to detect
these artifacts in microarray experiments. COP has
been integrated with the microarray data normaliza-
tion tool, ExpressYourself, which is available at http://
bioinfo.mbb.yale.edu/ExpressYourself/. Together, the
two can eliminate most of the common noises in
microarray data.

INTRODUCTION

cDNA microarray technology has enabled us to simultaneously
measure expression levels of tens of thousands of genes (1,2).
Many prior microarray analyses have focused on inferring
functional relationships from gene expression clusters (3,4).
The important assumption behind these analyses is ‘guilt-by-
association’, i.e. co-expressed genes tend to share similar
functions (5). However, we recognized that when analyzing
the raw expression data, the correlation in gene expression
might embody not only true biological effects, but also a
significant component related to artifacts in chip design.

Printing a microarray chip

As depicted in Figure 1, in microarray experiments, the DNA
samples are first prepared in 96-well (or 384-well) microtiter
plates. The printing robot then transfers the DNA samples
from the plates to the microarray chips using its 2 · 2 printing
2 printing tips (the organization of the printing tips on the

robot might be different. For example, many robots have
4 · 4 or 4 · 12 printing tips. But the underlying principle
is the same). The printing tips will then be cleaned and be
used to transfer the next four DNA samples. Therefore,
there are two important observations based on the printing
procedure of the microarray chips:

(i) There are multiple blocks on a microarray chip. Spots
within the same block are printed by the same printing tip;

(ii) Corresponding spots in different blocks are usually
neighbors on the 96-well plate, even though they are
far away on the chip.

Importance of our analysis

Nowadays, microarray experiments are widely used to
monitor genome-wide gene expression and have recently
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been implemented to study DNA–protein interactions and
tissue-specific gene expression (6–8). It is important to
draw the attention of microarray practitioners to the fact
that biology and artifact contributions are intermingled in a
nontrivial way. This introduces a challenge for separating
them by improving the experimental design and data analysis.
In particular, there is a growing interest to study the relation-
ship between gene expression and chromosomal proximity
(7,9). These studies have overlooked the fact that in many
microarray chips DNA spots were printed in an order related
to the gene order on the chromosomes. In this paper, we will
show two types of positional artifacts creating spurious corre-
lations between genes that simply happen to be close on the
microarray chips or microtiter plates, named as chip and plate
artifacts, respectively. We are also able to show that these
artifacts are generic to most microarray experiments, which
study different organisms and use different experimental
protocols. The chip artifact only produces 0.1% noise for
fully-hybridized spots, but it could be much more problem-
atic (up to 93% noise) for partially-hybridized ones. Careful
control and consideration of the artifacts in future microarray
analysis is therefore necessary, before any biological conclu-
sions can be made. To this end, we developed an automated
web tool, COP (COrrelations by Positional artifacts), which,
together with ExpressYourself, can detect and reduce these
artifacts in microarray experiments.

MATERIALS AND METHODS

Microarray experiments

Experimental data were obtained from microarray slides
printed in the Yale MCDB array facility. The array slides
were Corning UltraGAPS and were printed using a BioRad
ChipWriter Pro fitted with TeleChem SMP3 pins. The DNA
printed were two oligos, A and B (see Table 1). A third oligo,
named A0, is the reverse complement of A and was synthe-
sized with a Cy5 end label. After the slides were printed
with oligos A and B, they were hybridized with Cy5-labeled
A0 to detect the presence of the printed oligos. Hybridizations
were done overnight at 43�C in a Maui hybridization station.
Hybridized slides were scanned in an Axon Instruments
GenePix 4000 scanner. Both test and control chips were pro-
duced together in a single experiment to eliminate systematic
differences between experiments.

Normalization of microarray data

Even though both test and control chips were produced in the
same experiment, a number of variables (e.g. laser strength of
the scanner to obtain intensity measurements) might lead to
systematic differences in the intensity measurements of the
spots on microarray chips (10,11). Therefore, the intensities
between test and control chips were normalized before the

   

 

Figure 1. Illustration of experimental procedures to produce a microarray chip (A–C). Each color represents one printing tip. The spots in the same color are all
transferred by the same tip of the corresponding color.

e8 Nucleic Acids Research, 2007, Vol. 35, No. 2 PAGE 2 OF 12



comparison was performed. Our normalization procedure is
based on Quackenbush’s method which was reviewed in
(11). Because only A spots will hybridize with Cy5-labeled
A0 probes and there are the same number of A spots (80 in
total) on both test and control chips, the normalization factor
N is first calculated as:

N ¼
P80

i¼1 ATi
P80

i¼1 ACi

‚

where ATi and ACi represent the ith A spot on the test and
control chips, respectively.

Then, each element on the control chip was normalized as:

C0
i ¼ Ci · N:

In this way, the mean intensities of the test and control chips
are equal.

RESULTS AND DISCUSSION

Artifact related to positions on microarray chips—
chip artifact

Four widely-used yeast microarray datasets were first examined:

(i) Spellman-alpha, the alpha-factor arrested cell cycle
dataset from Spellman et al. (12);

(ii) Spellman-cdc15, the cdc15 arrested cell cycle dataset
from Spellman et al. (12);

(iii) Zhu-alpha, the alpha-factor blocked cell cycle dataset
from Zhu et al. (13);

(iv) Diauxic-shift, the diauxic shift dataset from DeRisi
et al. (14);

Previous studies have shown that there are chip-related
artifacts within microarray experiments (15–18). In particu-
lar, Balázsi et al. (16) suspected that the artifacts might be
introduced by the printing tips. Here, we revisited this prob-
lem from a different angle: to explore the microarray chip
artifact in a straightforward fashion, we calculated the
distribution of the average expression correlation coefficient
as a function of the distance of gene pairs on the chip
(Figure 2A). We calculated Pearson correlation coefficients
of log intensity ratios (LIRs) between different genes. The
correlation was calculated using all arrays with the same
layout in an experiment. All the control spots on the microar-
ray chips were excluded from our analysis. Furthermore,
because genes that are close on the chromosome tend to be
co-expressed, all the gene pairs that are within 10 open
reading frames (ORFs) away were also removed from our

analysis to eliminate any possible biological interpretation
of our results. The figure clearly shows that the closer the
gene pairs on the microarray chips, the higher the average
correlation coefficient, suggesting that at least a fraction of
the observed correlation in microarray experiments is due
to artifacts. We call this a chip artifact. Naively one could
expect that chip artifacts in microarray experiments would
be canceled when calculating a ratio of the sample and
reference cells. This is certainly not the case if the noise at
each microarray spot is not multiplicative.

Because of the nature of this chip artifact, we suspected
that the artifact may stem from the fact that the printing
tips are not cleaned completely; therefore, when printing a
spot on the chip, it carries over some of the DNA samples
from the previous one. As a result, each spot will, to some
degree-depending on the severity of the carry-over, hybridize
to the DNA probes complementary to the DNA samples of
the previous spot. The signal of each spot thus has an artificial
component related to the previous one, producing the chip
artifact observed in Figure 2A. To confirm this hypothesis,
we examine the chip artifact along X- and Y-directions of
microarray chips, separately (the X-direction is the printing
direction in our analysis). If our hypothesis holds, one
would expect to see that the chip artifact is more severe
along X-direction. Figure 2B shows that, within the same
printing block, average correlation coefficients along the
X-direction (i.e. the printing direction) are significantly
higher (P-values < 10�8) than those along the Y-direction.
The results are in good agreement with our expectation. Inter-
estingly, one might notice that the difference between X- and
Y-directions becomes larger at longer distance (peaks around
the distance of 30 spots), which cannot be explained by the
carry-over artifact alone. However, since the effective dis-
tance of the artifact is �30 spots as discussed below, this
increasing difference might be due to some combinatorial
effects of the chip artifact and other biological and/or artifi-
cial reasons. Furthermore, this phenomenon was not observed
in other three panels of Figure 2B, confirming that it is not a
general artifact.

Origin of the chip artifact confirmed by experiments

To further confirm the validity of our hypothesis—the chip
artifact results from the carry-over during the printing
process, we performed a series of microarray experiments
to create spots with and without carry-over contaminations.
Three different DNA probes were used: A, A0 and B. Probes
A and A0 are complementary to each other, whereas probe B
is not complementary to either of them (Table 1).

The basic idea here is to print the microarray chip with
probes A and B; then the chips are hybridized with Cy5-
labeled probe A0. In particular, we first produced a test
microarray chip, on which B spots have no contamination
of probe A. As illustrated in Figure 3A, these chips were
produced by printing all B spots first. Then the printing tips
were cleaned. All A spots were printed afterwards. Because
all B spots were printed before any A spot was ever printed,
carry-over contamination of B spots is not possible. Sec-
ondly, we produced a control chip in the same fashion as nor-
mal microarray experiments: each spot on the microarray
chip was printed based on their chip order (see Figure 3B).

Table 1. Probes used in the microarray experiments

Name Sequence (written 50–30)

A CTGTACCATGGTCCAAGCTCAATTGGAACAACGTAA
TCCATACGAGTCAGATGAAGAAGCTCACGGAGGT

A0 ACCTCCGTGACGTTCTTCATCTGACTCGTATGGATTA
CGTTGTTCCAATTGAGCTTGGACCATGGTACAG

B AGGAGAAGCTGCGACGCTGGAATTTCGGAATAATTA
ATTATCCTCCACAAGGCTCTCGTGTTTATTGTGT
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In this way, all B spots, except the first one, were printed after
an A spot. If the printing tips were not cleaned completely,
these B spots will contain both B probes and some carried-
over A probes. Then, both chips were hybridized with

probe A0. And, the intensities of the B spots on the two
chips were measured and compared.

Because probe B is not labeled with Cy5 and is not
complementary to Cy5-labeled probe A0, no B spot should

A

B

Figure 2. (A) Average correlation coefficient distribution as a function of the distance of gene pairs on the chip. All gene pairs on the chip are included for this
analysis, except those that are close on the chromosome. (B) Average correlation coefficient distribution as a function of the distance of gene pairs on the chip in
X- and Y-directions. P-values calculated by t-tests measure the statistical difference between the correlations of genes that are within the same printing block in
X- and Y-directions. Please note that only gene pairs that are printed by the same tip (i.e. within the same printing block) are included for this analysis. The
distance between two genes is measured in terms of the number of spots on the chip, i.e. the number of printed spots separating the two. All gene pairs that are
close on the chromosome (within 10 ORFs) were excluded from the analysis. Error bars in all figures represent the standard errors of the data.
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produce any detectable signal. However, Figure 3C clearly
shows that B spots with possible carry-over contaminations
on the control chip on average have significantly higher inten-
sity (P-value < 10�15) than those without carry-over on the

test chip, whose intensities are minimal. This result indicates
that B spots on the control chip are indeed contaminated by
A probes, confirming that the origin of the chip artifact is
possibly the carry-over during the printing process. The

Figure 3. Illustration of the experimental design to uncover the role of carry-over in producing the chip artifact in microarray experiments. (A) Producing the test
chip: All B’s are printed first without probe A carry-over. (B) Producing the control chip: Probes A and B are printed alternatively onto the chip. The numbers in
both (A) and (B) indicate the order in which each spot is printed to the chip. (C) Comparison of the intensities of B’s with and without carry-over. All intensities
were normalized against the test chip (see Methods and Materials section). P-value is calculated using the t-test.
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microarray experiments were repeated several times and
the results remain the same (see Supplementary Figure 1).
In our experiments, the intensities of contaminated B spots
and A spots are of the magnitudes of 100 and 10 000,
respectively. Therefore, the signal of a fully-hybridized spot
contains �0.1% noise as measured by our experiments.
Please note that one should not interpret the 0.1% signal-to-
noise ratio as the amount of probes being carried over,
because the intensity measure and the amount of probes
are no longer linear when the intensity is too high or too
low (19). More importantly, because most spots in microarray
experiments are not saturated, the signal-to-noise ratio
should be worse. For example, the un-contaminated B spots
only have an average intensity of 8.5, which means the arti-
ficial carry-over intensity accounts for 93% of the measured
intensities of the contaminated ones [average intensity of
122.5; (122.5 � 8.5)/122.5 ¼ 93%]. For most of the lowly-
expressed genes, this artifact could therefore become a
huge problem (although extremely low intensity spots are
often filtered out, making the situation a little better).

Even though the experimental results indisputably show
that the carry-over during printing is a major source of
the chip artifact, Figure 2B indicates that other factors
might also contribute to it: if the carry-over were the only
source, one would expect to see little artificial correlations
between genes along the non-printing direction (i.e. the
Y-direction in Figure 2B). This is not the case for all four
experiments in Figure 2B genes along the Y-direction clearly

have spurious correlations related to their chip distance,
although it is much less severe than that along the
X-direction. Other possible sources for the chip artifact
include incomplete washing of cDNA after hybridization
and image scanning. We also tested these possibilities by
experiments: Figure 4A shows that microarray chips were
printed with three different layouts. All B spots were printed
first, eliminating the possibility of probe A carry-over. In the
first layout, the first three rows of B spots are far away from
any A spot. These B spots, called B0, will receive minimal
effects from A spots, if any. In the second layout, each B
spot has two neighbors that are A spots. If the two possibili-
ties above held, these B spots, called B2, would be affected
by the nearby A spots. In the third layout, each B spot is
surrounded by four A spots. These B spots, called B4,
would have the maximal effects from the surrounding A
spots, again if the above possibilities held. However,
Figure 4B clearly shows that this is not the case. B0 spots
actually have higher average intensity than those of B2 and
B4 spots (see also Supplementary Figure 2). There may be
other possible sources. But our calculations confirm that the
carry-over plays a major role in creating the chip artifact
discussed here.

Effective distance of the chip artifact

Now that the cause of the chip artifact has been
determined, we next investigated the effective distance of

Figure 4. Illustration of the experimental design to uncover the role of other possible sources in producing the chip artifact in microarray experiments. (A)
Producing microarray chips with different layouts. All B spots were printed first. (B) Comparison of the intensities of B’s with and without possible
contamination. All intensities were normalized against the chip with layout I (see Methods and Materials section).
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the carry-over artifact how many spots after printing a
certain probe does the carry-over effect of this probe disap-
pear? We designed a similar experiment as the ones above
(see Figure 5A): first, probe A was printed (A1), followed
by six B spots (B2–B6). Then, another A spot was printed
(A8). The printing tips were washed after each spot. After
the chip was hybridized with Cy5-labeled A0 probes, the
intensity of each spot was measured. Figure 5B shows
that there is a strong tendency for the carry-over intensity
to decrease (P < 0.02), which agrees well with our
intuition. However, all six B spots still have intensities
much higher than those without any carry-over effect
(P <10�4). The A8 spots serve as quality control to confirm
that there is no systematic bias for spots at different
positions (see Supplementary Figure 3). Based on the
regression, the estimated effective distance is �30 spots

(see Supplementary Figure 4). This estimated effective
distance also agrees well with the observed range of the
chip artifact in Figures 2 and 6, even though it is reason-
able to believe that the specific effective distance will be
different in different microarray experiments. However, it
should be noted that there might be other contributing fac-
tors to such a long effective distance, which is a possible
direction for future analysis.

Artifact related to positions on microtiter plates—
plate artifact

Since all four experiments analyzed so far were published
at least five years ago, it is interesting to see whether the
chip artifact has diminished with the advance of microarray
technology. Therefore, we analyzed three newly-published

Figure 5. Illustration of the experimental design to determine the effective distance of the chip artifact. (A) All spots are printed based on their chip order.
(B) Comparison of the intensities of B’s printed after the A spot. All intensities were normalized against the test chip in Figure 3A (see Methods and Materials
section). The P-value of the regression is calculated by the significance test for linear regression. The P-value measuring the intensity difference between
B7 spots and un-contaminated spots is calculated by the t-test.

PAGE 7 OF 12 Nucleic Acids Research, 2007, Vol. 35, No. 2 e8



microarray experiments in three different organisms
performed by three independent labs:

(i) Yeast, the microarray karyotyping dataset from Dunn
et al. (20);

(ii) Worm, the ER stress response dataset from Viswanathan
et al. (21);

(iii) Human, the colon cancer dataset from Giacomini et al.
(22);

Figure 5 clearly shows that the chip artifact still remains in all
of the three newly-published experiments. More interest-
ingly, all three curves show striking periodicities. When we
examined the periodicities more closely, we found that the
period of each curve corresponds to the size of one printing
block in each experiment. As we discussed above, corre-
sponding spots in different blocks are actually neighbors on
the microtiter plates, because of the printing procedure of
the microarray experiments (see Figure 1C). Therefore, our

Figure 6. Average correlation coefficient distribution as a function of the distance of gene pairs on the chip. All three curves show striking periodicities,
corresponding to the size of the printing block in the three experiments. All gene pairs that are close on the chromosome (within 10 ORFs) were excluded from
the analysis.
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results show that genes that are close on the microtiter plates
tend to have artificially higher correlations. We call this a
plate artifact. The magnitude of this artifact is obviously
less dominant than that of the chip artifact discussed above,
but is nevertheless non-negligible. The plate artifact is clearly
related to the cross-contamination during the sample-
preparation and PCR processes. It could also explain the
spurious correlations observed in Figure 2B along the
Y-direction: the nearby spots along the Y-direction are very
close on the plate as well (see Figure 1), even though they
are not printed one after another.

Consequences of positional artifacts

The positional artifacts (both chip and plate artifacts) that we
showed here exist with different severity in every microarray
experiment that we examined. These artifacts introduce

spurious correlations between genes which just happen to
be close on the microtiter plates or microarray chips. They
thus create substantial issues, especially because more and
more people have become interested in analyzing the
relationships between gene expression and chromosomal
location recently (9,23). However, since a gene’s position
on the plates and chips in many microarray experiments are
just a transformation of its chromosomal location, it can be
shown that these positional artifacts could lead to false
biological conclusions:

To illustrate this point, we calculated the distribution of
average correlation coefficient between the expression levels
of all yeast genes as a function of their chromosomal order
(see Figure 7A). Here, we only examined the three yeast
cell-cycle experiments (12,13), all of which show surprising
periodicities. The shorter periodicity is 2 ORFs and the longer
one is 22 ORFs, which is further confirmed by the Fourier

   

Figure 7. (A) Pair correlation function for Spellman-alpha-factor arrested cell cycle dataset (red), Spellman-cdc15 arrested cell cycle dataset (black), and
Zhu-alpha factor blocked cell cycle dataset (light blue), the inset highlights the staggered characteristics. X-axis represents the distance between gene pairs.
Y-axis represents the percentage of highly correlated pairs that have a given distance. (B) Power spectrum of the pair correlation function of co-expressed gene
pairs determined by the Fourier transformation. Two common frequencies are indicated by the arrows. Please note that the distributions are manually shifted 20 U
along the Y-axis to separate them from each other to clearly show the peaks. (C) Chip distance map and (D) Expression correlation coefficient map. Both maps
are produced using Spellman-alpha-factor arrested cell cycle dataset, whose x- and y-axis represent the first 100 ORFs on chromosome IV. In the distance map,
the color on each spot represents the distance between the gene on x-axis and the gene on y-axis. In the expression correlation coefficient map, the color
represents the correlation coefficient between the gene pair.
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transformation of the three distributions (see Figure 7B).
Without considering the positional artifacts we mentioned
above, one could come to the conclusion that these periodici-
ties show the effects of the chromosomal structure on gene
expression. This is particularly exciting given that the longer
periodicity of 22 ORFs (�42 kb) is of the order of the size of
the chromatin loop domains, which range from 20 to 100 kb
(24). However, taking into consideration the chip architec-
ture, one could easily see that these periodicities are the
results of the positional artifacts: First, in all three experi-
ments, genes are placed on the microtiter plates based on
their chromosomal order—neighboring genes on the chromo-
some are also neighbors on the plate. Because of the way in
which the chip are produced as illustrated in Figure 1, neigh-
boring genes on the chromosome are printed by two different
tips and are far-away on the chip; whereas genes that are
second neighbors on the chromosome are actually printed
by the same tip and become immediate neighbors on the
chip. Due to the carry-over chip artifact, neighboring spots
on the chip have much higher average correlation coefficient
than the far-away ones, producing the shorter periodicity of
2 ORFs. Second, we constructed a chip distance map
(Figure 7C) and an expression correlation coefficient map
(Figure 7D). The horizontal and vertical axes of these two
maps represent the position of the genes along the same chro-
mosome (chromosome four in this case). The colors of the
distance and correlation maps represent the chip distance
and expression correlation coefficient between gene pairs,
respectively. Surprisingly, the patterns in both maps are
very similar—the distance map also has a characteristic peri-
odicity of 22 ORFs. Therefore, genes that are 22 ORFs away
on the chromosome tend to be very close on the chip as well.
Because of the carry-over chip artifact, these genes tend to
have higher correlation coefficients, producing the longer
periodicity of 22 ORFs. Similar results have also been
observed by Balázsi et al. (16).

COP—detection of positional artifacts in
microarray experiments

Because of the generality and severity of the positional
artifacts, it is of great importance for biologists to control
these artifacts in their experiments. Towards this end, we
developed an automatic web tool to detect these positional
artifacts in microarray data—COP. It is of course desirable
to correct the artifacts upon detection. Therefore, we inte-
grated COP with ExpressYourself, a normalization tool for
microarray data previously published by Luscombe et al.
(25). ExpressYourself assumes that the majority of the
genes printed on a microarray chip do not change in the
test and control samples (i.e. the Cy3 and Cy5 channels);
thus, the overall mean intensity ratio between the two chan-
nels should be one, which is a common assumption in nor-
malizing microarray data (15,26). It then removes the
positional artifacts and other types of noise (systematic and
random) in the microarray data by subtracting the best-fit
local average LIR from the raw LIR of each local spots. In
this way, the average LIR of all spots will be zero and thus
the average intensity ratio is one. ExpressYourself estimates
the best-fit local average LIR using the lowess regression
method. Because it is known that intensity ratios may change

at different intensity levels (as two dyes have different
fluorescent properties) and they could also be different at
different positions on the same microarray slide, Express-
Yourself estimates best-fit local average LIR’s at different
intensity levels, as well as at different physical positions on
the slide. This underlying procedure is very similar to the
print-tip normalization discussed below, but, ExpressYourself
does not perform the print-tip normalization.

In order to use COP, one simply uploads the raw microar-
ray data into ExpressYourself. After the normalization is
done, the user selects ‘DATA QUALITY’ (‘perform test’.
The distributions of average correlation coefficients of all
spots in the experiments before and after the normalization
will then be displayed. In Figure 6, we showed the results
for the human colon cancer dataset from Giacomini et al.
(22). It is clear that the normalization performed by
ExpressYourself largely reduced the artifacts, but did not
remove them completely. Therefore, we recommend that
care must be taken if a microarray experiment contains
clear artifacts after the normalization (ideally, the experiment
should be repeated). Even though the threshold to discard an
experiment depends on the specifics of each particular experi-
ment, the estimated upper bound is 0.1. To estimate this
upper bound, we first calculated the standard deviation of
the correlation coefficients between neighboring gene pairs
for each of the microarray experiments that we examined.
During this process, we also noticed that the distribution of
the correlation coefficients approximates a normal distribu-
tion. Assuming the distribution is normal, we found that
if the average correlation is 0.1, it would be significantly
>0 (P < 10�3) using all different standard deviations observed
in the examined experiments. Furthermore, because the posi-
tional artifacts are introduced during the process of manufac-
turing the chips, the experiment should be repeated using a
different batch of chips.

Discussion and conclusions

Here, we showed, both computationally and experimentally,
that two types of artifacts related to the position of the
genes on the microtiter plates and microarray chips exist in
microarray experiments. Genes that are close on the plate
or chips tend to have spurious correlations separated from
their biological functions. We therefore built an automated
web tool—COP, which, together with ExpressYourself, can
detect and, to some degree, correct these positional artifacts
in microarray data (Figure 8). One potential problem with
ExpressYourself’s normalization procedure is that it might
abolish some of the true correlations between the genes, espe-
cially when the chips are printed based on gene’s chromoso-
mal order. Therefore, we strongly suggest that genes on all
microarray chips should be spotted randomly. Even though
this does not reduce any of the artifacts in the experiment,
it is much less likely that these artifacts will interfere with
the subsequent biological analysis from a statistical point
of view.

As discussed above, other chip-related artifacts within
microarray experiments have been analyzed by previous
studies, as well. For example, Yang et al. (15) have found
a so-called ‘print-tip’ artifact, which was also reported by
Balázsi et al. (16). Because of ‘slight differences in the length
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or in the opening of the tips and deformation after many
hours of printing’, there might be systematic difference
between different print tips (15). Thus, the average intensity
ratio of spots printed by a tip might be different from another
one, creating the ‘print-tip’ artifact. Yang et al. (15) have also
developed a print-tip normalization method to remove this
kind of artifact by a lowess-fit procedure similar to that
used in ExpressYourself. This normalization procedure is
available in the ‘marray’ package from the Bioconductor
project (27). Furthermore, Bengtsson (28) has found similar
‘plate effects’—spots from different microtiter plates tend
to have different average intensity ratios. And he suggested
a similar normalization procedure adopted from the print-
tip normalization (28). These two types of artifacts are differ-
ent from the artifacts that we discussed above in that they
caused systematic difference between spots printed by differ-
ent tips or on different plates. More specifically, this means
that spots printed by the same tips or on the same plates
tend to have similar intensity ratios, but their intensity ratios

are systematically different than those printed by another tip
or on another plate. In our analysis, however, we found that
neighboring spots tend to have higher correlations in their
intensity ratios than far-away ones even though they are
printed by the same tip or on the same plate. Interestingly,
despite the differences, in practice the print-tip normalization
procedure is effective in removing the positional artifacts in
most microarray experiments.

Moreover, Smyth and Speed (26) have discovered that
spots printed by the same tip on the same chip may have
systematic differences in their intensity ratios resulting from
the fact that different wells on a microtiter plate may contain
‘different effective quantities of DNA’, which they called the
‘print-order’ artifact. This artifact can also be removed by a
similar procedure as the print-tip normalization (26). More
recently, Uchida et al. have also detected this ‘print-order’
artifact in one of the microarray experiments they analyzed
(29). The origin of this ‘print-order’ artifact is clearly differ-
ent from the carry-over nature of the chip artifact we

Figure 8. Screen shot of COP within ExpressYourself. The dataset used here is the human colon cancer dataset.
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discussed above. More importantly, even though the analysis
of this ‘print-order’ artifact has some similarity to our anal-
ysis, it is focused on the average intensity ratio of spots
printed on the same chip, which does not necessarily lead
to higher correlations between nearby spots across all chips
in the experiment.

In spite of their differences, these different kinds of
artifacts are often entangled with each other in most microar-
ray experiments, creating a huge challenge for microarray
practitioners to carefully normalize the data to remove all
of these artifacts. In order to do this successfully, the
causes of these artifacts have to be understood well, further
highlighting the importance of our analysis.

More interestingly, even though the design and production
procedure are totally different, some Affymetrix arrays show
a similar artifact, as well (see Supplementary Figure 5) (30).
The specific source of this artifact is still unclear. It might
be related to the Y-direction correlations that we discussed
in Figure 2B. The result of the Affymetrix arrays further
confirms the prevalence of these positional artifacts and the
importance of our analysis.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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