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A fundamental question in biology is how the cell uses transcrip-
tion factors (TFs) to coordinate the expression of thousands of
genes in response to various stimuli. The relationships between TFs
and their target genes can be modeled in terms of directed
regulatory networks. These relationships, in turn, can be readily
compared with commonplace ‘‘chain-of-command’’ structures in
social networks, which have characteristic hierarchical layouts.
Here, we develop algorithms for identifying generalized hierar-
chies (allowing for various loop structures) and use these ap-
proaches to illuminate extensive pyramid-shaped hierarchical
structures existing in the regulatory networks of representative
prokaryotes (Escherichia coli) and eukaryotes (Saccharomyces cer-
evisiae), with most TFs at the bottom levels and only a few master
TFs on top. These masters are situated near the center of the
protein–protein interaction network, a different type of network
from the regulatory one, and they receive most of the input for the
whole regulatory hierarchy through protein interactions. More-
over, they have maximal influence over other genes, in terms of
affecting expression-level changes. Surprisingly, however, TFs at
the bottom of the regulatory hierarchy are more essential to the
viability of the cell. Finally, one might think master TFs achieve
their wide influence through directly regulating many targets, but
TFs with most direct targets are in the middle of the hierarchy. We
find, in fact, that these midlevel TFs are “control bottlenecks” in the
hierarchy, and this great degree of control for “middle managers”
has parallels in efficient social structures in various corporate and
governmental settings.
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Many biological processes can be modeled as networks, such as
protein interaction, gene expression, and transcriptional reg-

ulatory networks (1–4). Networks have been used as a universal
framework to model many complex systems, such as social inter-
actions, the Internet, and ecological food webs (5–7). Individual
networks have been globally characterized by a variety of graph-
theoretic statistics, such as degree distribution, clustering coeffi-
cient (C), characteristic path length (L), and diameter (D) (3, 5–12).
Recently, Barabasi and colleagues (7, 8) proposed a ‘‘scale-free’’
model in which most of the nodes have very few links, with only a
few of them (hubs) being highly connected. Concurrently, Watts
and Strogatz (12) found that many networks can also be described
as having a ‘‘small-world’’ property, i.e., they are highly clustered
and have small characteristic path lengths. Complex networks can
be further divided into two broad categories: directed and undi-
rected. The edges of the directed networks have a defined direction.

Previously, researchers have compared protein–protein interac-
tion networks with social communication networks and found that
protein networks share some common characteristics with them,
such as scale-free and small-world properties (3, 9). However,
researchers have yet to do this comparison with regulatory net-
works. Of all biological networks, regulatory networks are of
particular interest, because to some degree they act as the master
control system for the cell, tightly coordinating the expression of all
genes (13–15). From a graph-theoretical point of view, regulatory
networks are different from interaction networks in that they are

directed. Both of these facts suggest that regulatory networks
should be compared with a different type of social network, such as
governmental and corporate organizations that are more oriented
toward control than communication. These organizations are
known to have hierarchical layouts with different levels: The
stereotypical example would be a corporation with managers who
supervise workers (16) (see Fig. 1).

Social hierarchical networks are often very complicated, con-
taining many network motifs. Motifs are defined as overrepre-
sented local network patterns (1). Four common ones in social
hierarchies are shown in Fig. 1 and described below.

1. Single-input motifs (SIM), where a group of nodes (i.e.,
workers) are only regulated by a single node (i.e., manager).

2. Multi-input motifs (MIM), where a group of nodes together
regulate another group of nodes.

3. Feed-forward loop (FFL), where a node regulates another;
then, the two together regulate a third one.

4. Feed-back loop (also known as multicomponent loop; MCL),
where an upstream node is regulated by a downstream one.

What makes a hierarchical structure special is that there are central
control points at the top. Whether such a hierarchical structure
exists in biological regulatory networks is not currently obvious.
Here, we examine regulatory networks in both eukaryotes (Sac-
charomyces cerevisiae) and prokaryotes (Escherichia coli). We show
that regulatory networks do indeed have a pyramid-shaped hier-
archical structure that relates to their social counterparts. By doing
so, we also identify central transcription factors (TFs) in both
organisms that are on the top of the hierarchies.

Results
Building Generalized Hierarchies by Using Breadth-First Search (BFS).
A simple hierarchy in a strict mathematical sense requires that the
network contain no loops (i.e., it is ‘‘tree-like’’) (17). However, even
though the concept of a simple hierarchy originally came from
social studies, it is rather difficult to apply this notion to real social
and biological networks, because both types of networks do indeed
have prominent loops (Fig. 1A). In a more general sense, a
hierarchy just refers to a pyramidal layered or ranked structure
organized as those in social networks with few people at the top
(managers) and most people at the bottom (workers). Conse-
quently, for this study we want to create a precise construction of
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‘‘generalized hierarchies’’ that matches our social intuition and
allows for loops. In essence, we assign a level number to each TF
in the regulatory network to determine which TFs are at the top and
which are at the bottom.

We call this construction method BFS to define level (‘‘BFS-
level’’). As shown in Fig. 1B, it is based on a straightforward
application of BFS: We first identified all TFs at the bottom level
(i.e., level 1). A TF is at the bottom level if and only if it does not
regulate other TFs. TFs that only regulate themselves (i.e., auto-
regulation) are also placed at the bottom. Starting from each
bottom TF, we then performed a BFS to convert the whole network
into a ‘‘breadth-first tree’’ (18) (see Fig. 2A and Table 1). In other
words, we define the level of a nonbottom TF in the hierarchy as its
shortest distance from a bottom one. Here, the construction
procedure is only focused on interregulation between TFs (or

officials in social networks). A top TF could directly regulate
non-TF target genes (or a higher-ranked official could have an
assistant with no managerial responsibility), but this structure will
not affect the constructed hierarchy. If the resulted layered struc-
ture has a pyramidal shape (i.e., few nodes at the top and most
nodes at the bottom), we then considered it as a generalized
hierarchy.

Note a few features about this construction.

1. It is mathematically precise. There is only one unique solution
for a given network, and a node is unambiguously placed at
a single level.

2. It subsumes simple hierarchies. If a network does not contain
loops, the BFS-level method would assign levels to nodes
according to the perfect simple hierarchy of the network.

3. It does not change the network topology or connections (i.e.,
it does not ‘‘amputate’’ the network). In particular, it pre-
serves all loops and takes into account all connections in
assigning level.

4. It makes biological and social sense in that it builds from the
ground up. One could imagine doing a similar BFS from the
top down (see Supporting Text and Figs. 7–14, which are
published as supporting information on the PNAS web site).
However, we believe that this approach does not match our
social intuition (e.g., putting the owner of a small business at
the same level of hierarchy as the president of a country).

5. It is not trivial to construct a hierarchy for any given directed
network. There are a number of possible variations as dis-
cussed below and in Supporting Text.

Pyramidal Regulatory Hierarchies and Their Nonmonotonic Out-
Degree Distributions. Fig. 2 A and Table 1 clearly show that the
yeast regulatory network has a four-layer pyramid-shaped hier-
archical structure; i.e., the number of TFs on each level is smaller
than that of the previous level. A similar pyramidal hierarchy was
also observed in E. coli (see Fig. 2C and Table 2, which is
published as supporting information on the PNAS web site).

This hierarchical structure is actually very similar to that in
social networks. Fig. 2B shows a representative social hierarchy:
the Macao government. (This example was chosen because,
although it is realistic, it is sufficiently simple to represent on a
single page.) In Fig. 2B, there is only one chief executive (i.e., the
president). Five secretaries are at the level immediately below
the chief executive. There is a clear inverse relationship between
the level in the hierarchy and the number of people at each level.

Intuitively, one might expect that the out-degree distribution at
each level should parallel the pyramidal structure of hierarchy. For
instance, it could increase uniformly as one goes from the bottom
to the top, because, as one goes up, there is more to regulate.
However, this possibility is not the case for social hierarchies. It has
been shown that a typical organization scheme for companies is that
middle managers supervise the most people, not those at the
bottom or top of the hierarchies (16), as illustrated by Fig. 2B.

We then examined the average number of targets for TFs at
different levels of the regulatory hierarchies for both S. cerevisiae
and E. coli. We found the same relationship, i.e., TFs at the second
level have the most targets, whereas those at the bottom and higher
levels all have fewer targets by and large (see Fig. 2 A and C).

We also tested the robustness of our results by adding, deleting,
or rearranging 20% of the regulatory interactions at random. All
results remained the same, suggesting that the global conclusions
from our calculations would be largely unaffected by noise in the
data sets (see Supporting Text). It is also noteworthy that there might
be hidden organizational structures because there are many within-
level regulations, which is a possible direction for future analysis.

Bottlenecks of the Hierarchies Lie in the Middle. Fig. 2 A and C clearly
shows that the regulatory information in the hierarchies is passed
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Fig. 1. Illustration of network motifs and the BFS-level method. (A) Four
common network motifs in social networks. Different colors represent differ-
ent motifs. All four schematics came from real social networks shown in Fig. 17,
which is published as supporting information on the PNAS web site. (I)
Single-input motifs (SIM). For example, node 1 is a professor or a director, and
nodes 2 and 3 are his�her students or assistants, respectively. In the yeast
regulatory network, node 1 is NDD1, and nodes 2 and 3 are STB5 and MCM21,
whose only regulator is NDD1. (II) Multi-input motifs (MIM). Nodes 1 and 2 can
be professors, and nodes 3 and 4 can be two students that they coadvise. In Fig.
17B, nodes 1 and 2 are Senior Director and Executive Director, and nodes 3 and
4 are different departments that they cosupervise. In the yeast regulatory
network, nodes 1 and 2 are FKH1 and FKH2. Together, they regulate node 3
(DBF2) and node 4 (HDR1). (III) Feed-forward loop (FFL). For example, node 1
is the chairman of a department, node 2 is a professor in the department, and
node 3 is a shared secretary. In yeast regulatory network, node 1 (MBP1)
regulates node 2 (SWI4). Then, they collectively regulate node 3 (SPT21). (IV)
Multicomponent loops (MCL). In Fig. 17D, node 1 is a chairman, node 2 is a
director, node 3 is a coordinator, and node 4 is a scientist. Then some of the
scientists form an advisory committee that oversees the chairman. In yeast
regulatory network, node 1 is REB1, node 2 is SIN3, node 3 is UME6, and node
4 is HSF1. (B) Illustration on how to determine a generalized hierarchy using
our BFS-level method. (I) A toy example with all four motifs mentioned in A.
Each color represents a motif (color coding is the same as in A). (II) Finding all
of the bottom (terminal) nodes in the network. A TF is a bottom node if and
only if it does not regulate other TFs. TFs that only regulate themselves (i.e.,
autoregulation) are also considered as bottom nodes. All bottom nodes in the
network are colored red. (III) Finding midlevel nodes. One performs a one-
level deep BFS search starting at each of the bottom nodes to find what
regulates them. Direct regulators of all bottom nodes are considered as level-2
nodes, which are in green. (IV) Finding topmost nodes. The procedure in the
previous step (III) is repeated until all levels are determined. We call this overall
process BFS-level. In this toy example, there are only three levels, and the node
at the top level is in blue. However, in the yeast regulatory network, there are
four levels.
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Fig. 2. Common characteristics of the hierar-
chical structures between regulatory networks
and the Macao governmental organization. (A)
Illustration of the yeast regulatory hierarchy in
S. cerevisiae. The light blue arc arrows indicate
the regulations between TFs at the same level.
Many of these regulations are involved in loop
structures (feed-forward and multicomponent
loops). (B) Illustration of the Macao govern-
mental hierarchy. The bottom layer consists of
people who do not manage anyone based on
the available information, which are similar to
the non-TFs in yeast. Therefore, level 1 of the
hierarchy consists of people managing those at
the bottom. (C) Illustration of the regulatory
hierarchy in E. coli. Average out-degree and
total number of nodes at different levels are
shown parallel to the hierarchies. P values in A
and C were calculated by using the Student t
tests to compare the average out-degree of
level-1 TFs with that of the TFs at other levels.
(D) Average betweenness at each level of the
year hierarchy. P values were calculated by us-
ing the Student t tests to compare the average
betweenness of the top and bottom TFs with
that of the middle-level TFs. (E) Comparison
between yeast regulatory and randomized
networks.
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from the top to the bottom. A path in the regulatory network
represents a specific regulation (activation or inhibition) of a
downstream TF by an upstream one. If any intermediate TF along
this path is disabled, the regulation is broken. If we consider each
path as a unique flow of regulatory information, the number of
paths through each node is thus how much flow it controls. In graph
theory, ‘‘betweenness’’ is an important topological parameter that
describes precisely this concept. The betweenness of a node is
defined as the number of shortest paths going through this node. If
there is more than one shortest path between a pair of nodes, each
path is given equal weight so that the overall weight of all paths is
unity (10, 19). We call nodes with the highest betweenness ‘‘bot-
tlenecks,’’ in analogy to heavily used intersections leading to major
highways or bridges in social transportation systems. Because TFs
in the middle of the hierarchy not only pass information directly to
their targets but also carry the information flows from the top TFs
to the bottom ones, it is quite intuitive to see that these TFs should
be the bottlenecks that control the most information flows.

We calculated the average betweenness of all TFs at each level
in the hierarchy. Our results agree well with our expectation (see
Fig. 2D): The TFs in levels 2 and 3 have significantly higher
betweenness than those at the top or bottom of the hierarchy.
Similar results were also observed in the E. coli hierarchy (see Figs.
15 and 16, which are published as supporting information on the
PNAS web site). To some degree, these results also validate the way
we constructed hierarchies by using our BFS-level method. Because
the calculation of betweenness is only based on the connectivity of
the network, completely independent of how we placed the nodes
into layers within the hierarchy, the fact that the calculated results
agree with our expectation confirms the plausibility of our method.
Please note that one should not take the betweenness calculation

as a definitive measure of the information flow, because it does not
take into account some other possible contributing factors (e.g.,
gene expression and protein abundance).

Regulatory Hierarchies Are Well Organized. Next, we investigated
random networks to see whether a similar hierarchical organization
could be achieved by chance. We randomly rewired the edges
between TFs and their targets within the whole yeast regulatory
network (see Materials and Methods). Fig. 2E clearly shows that the
pyramid-shaped hierarchical structure does not exist in random
networks, whose layered structures consist of many more levels (on
average 7.2 levels) than real hierarchies (P � 0.001). Furthermore,
the average out-degree is almost constant between different levels
of random networks. Similar results were also found for randomly
rewiring the E. coli hierarchy (see Fig. 15).

In a social context, it has been shown that flatter hierarchies give
managers at each level more freedom (20). Moreover, the number
of levels in a hierarchy is determined by the degree of standard-
ization of the work processes. In a corporation where workers
perform similar tasks (e.g., in an auto-assembly plant), hierarchies
tend to be flatter (21). In a similar fashion, different types of genes
are known to cooperate to carry out a certain function. Therefore,
it is quite reasonable for the regulatory hierarchies to be flatter than
random expectation.

It has also been found that the number of people supervised by
each manager is determined by the nature of the job (21). In a
situation where workers under the same manager perform different
tasks and need more mutual accommodation (e.g., in a law firm),
the average number of people supervised by a single manager is
very small (22–24). A similar situation exists in the cell. At the top
of the regulatory hierarchies, interplay between top-level and

Table 1. Hierarchy of S. cerevisiae regulatory network

Level Genes

4 SPT23 HIR3 ADA2 GAT1 NGG1 DAT1 MOT3 GZF3

3 MIG2 ZMS1 SWI3 SET2 IMP2� MIG1 HFI1 XBP1 RTG3 ZAP1
SIR2 SIR4 HAP1 DAL80 CYC8 ARO80 PHO80 SUI2 PHO2 SPT20
GAT3 BDF1 NOT5 RIM101 SIN3 OPI1 CDC47 MSN4 HPR1 HMRA2

2 SMP1 INO2 CLN3 SIR3 SUT1 HAC1 SNF5 IME1 SKN7 RGT1
CUP9 RFX1 YOX1 TUP1 YAP6 CIN5 HIR2 YFL044C YML081W
HSF1 HAP3 HCM1 PHO4 NDD1 FKH1 CLN1 UME6 CAD1 REB1
MET4 ASK10 FAR1 TOS4 CRZ1 SPT16 STP2 SUM1 DOT6 LEU3
GAL4 MATA1 HAP4 GCN4 RAP1 RLM1 KTI11 FKH2 IXR1 YHP1
YAP1 MBP1 TYE7 FZF1 POG1 NRG1 MET32 HMLALPHA1 STE12
ASH1 HMLALPHA2 SPT5 NHP6A GAL11 OAF1 HAP5 SWI5 DIG1
HMS2 SET1 SOK2 BCK2 SNT2 PDR3 PDR1 PHD1 ACE2 ADR1
CBF1 RTG1 CAT8 CSE2 MCM1 ROX1 SWI6 PAF1 KSS1 SWI1
RME1 ABF1 ATS1 TEC1 SFP1 MAC1 ALPHA1 GLN3 AZF1 FHL1
SW14 MET31 HAL9 STB1 TOS8 NAB3 YAP5

1 HAA1 ARG81 RSC3 UPC2 THI3 SSN2 RDR1 DST1 MED8 PDC2
DAL82 CHA4 EAF3 RGA1 CDC36 SNF1 YAP3 PPR1 ARG80 NOT3
MAF1 ARR1 YJL206C IWS1 YDR520C GCR2 RCO1 FLO8 TOA1 NDT80
AFT2 SDS3 SNF6 CT16 CDC73 GIS1 PGD1 SRB7 MED2 MGA2
CAF4 SPT3 THI2 SPT4 SKO1 SSU72 SPT7 RSF1 LYS14 YPL230W

CAF16 HAP2 TPO1 WAR1 SSN8 STB4 ITC1 ROX3 NUT2
MBF1 MSS11 NUT1 RAD9 STE5 MIG3 RFA1 ACA1 RSC2 RDS3
MET28 MAL13 STB5 SMK1 CDC39 CAF130 YRR1 TFA2 MSN1 PIP2
HST1 BAS1 CAF40 PUT3 YKU70 NRD1 RDS1 CDC50 MGA1 CST6
KAR4 RFA2 RAD50 MF(ALPHA)2 GTS1 RPH1 GCR1 CLN2 RAD18
STP1 NRG2 MSN2 RCS1 YDR026C SFL1 HIR1 RPI1 TOA2 RLR1
NHP6B RIM4 WHI2 HMS1 PHO23 MF(ALPHA)1 IME4 PLM2 SIP4
MAL33 RPN4 WTM1 RDS2 STP4 STO1 MET18 RSC1 TFA1 TIS11
CUP2 ECM22 STB2 UME1 RGM1 MOT2 SPT8 SRB4 SRD1 SPT21
CUP2 ECM22 STB2 UME1 RGM1 MOT2 SPT8 SRB4 SRD1 SPT21
HOG1 SPT2 UGA3 DAL81 SET3 HTZ1 STD1
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downstream TFs is needed to initiate a process. Furthermore,
top-level TFs tend to regulate TFs associated with many different
pathways and functions (see below). Therefore, it is quite reason-
able that the average out-degree at the topmost level is small. After
commitment, however, middle-level TFs can turn on massive
expression of many genes in response to stimuli, reflecting their
larger average out-degree. At the bottom of the hierarchy, TFs
regulate only few specific target genes.

Decision-Making Schemes in Regulatory Hierarchies. We further an-
alyzed the regulatory hierarchies in S. cerevisiae and E. coli. We
observed two distinct types of regulatory processes in them. These
processes are readily understandable as different decision-making
schemes, given that we know gene expression is regulated in
response to various internal and external stimuli.
‘‘Reflex’’ processes. A nonnegligible number of TFs (52 in S. cerevi-
siae; 30 in E. coli) neither regulate other TFs nor are regulated by
other TFs. They respond to specific stimuli turning on (or shutting
down) the expression of their targets. We call this type of decision-
making a reflex process. Regulation of the trp operon in E. coli is
a perfect example. The trp operon encodes genes for the synthesis
of tryptophan. TrpR is a repressor that, when activated by trypto-
phan binding, represses expression of the trp operon. TrpR is not
regulated by any other TFs (25). In S. cerevisiae, a similar example
is Arg-81, a TF involved in arginine metabolism (26). Upon the
presence of arginine, Arg-81 shuts down the expression of many
enzymes involved in arginine biosynthesis, such as ARG1, ARG3,
and ARG8 (27). (Note that some of the reflex assignments to TFs
may result from incompleteness of the known regulatory data sets.)
‘‘Cogitation’’ processes. The majority of TFs in both regulatory
networks are regulated by other TFs. Most of these regulate other
TFs as well. Thus, TFs at the top become the global modulators for
all downstream ones. The decision is amplified and executed while
being passed down. We call this a cogitation process.

Cogitation processes have some nice parallels to the overall
description of decision making in apoptosis. Apoptosis consists of
three phases: decision, commitment, and execution (28–30). In the
first phase, the cell senses proapoptotic signals and determines
whether it should die. This step is reversible. In the commitment
phase, however, the cell makes an unstoppable decision to die,

which leads to the execution phase, where the actual destructive
process is carried out (28–30). Such a multistep decision-making
scheme has two advantages: (i) it can work as a signal amplifier to
rapidly increase the magnitude of the response just like the cAMP-
cascade in glycogen metabolism (31); and (ii) it can act like a noise
filter to convert continuous inputs into all-or-none switch-like
outputs (32).

We can see clear examples of cogitation processes in the yeast
regulatory hierarchy. In particular, the expression of MOT3, a
top-level TF involved in aerobic growth, is activated by heme and
oxygen (33, 34) (Fig. 3), representing the decision phase. Mot3 in
turn activates the expression of NOT5 and GCN4 (1, 35), which are
both midlevel TF hubs with a large number of targets. Once their
expression is turned on, the cell is committed. Finally, in execution,
Gcn4 activates two specific bottom-level TFs, Put3 and Uga3, which
trigger the expression of enzymes in proline and nitrogen utiliza-
tion, respectively (36, 37).

Note that the distinction between the cogitation and reflex
processes is purely based on the topology of the regulatory network.
It is of course the case that even a reflex process could be very slow
if the nontranscriptional events that underlie it are exceptionally
time-consuming. However, transcriptional processes are normally
much slower than nontranscriptional ones (e.g., phosphorylation).
So it is quite reasonable to believe that our conclusions based on
network topology reflect the actual timing of the processes.

Top-Level TFs Receive Signals Through Protein–Protein Interactions.
In our analyses, we have shown that regulation of gene expression
in the cell normally happens in a multistep fashion starting from the
top TFs. Because of the following, we hypothesized that the TFs at
the top of the hierarchy would receive most of the stimulating
signals and thus should have more interaction partners: (i) the cell
regulates expression of its thousands of genes in response to internal
and external stimuli, and (ii) TFs receive these signals through
interactions with other molecules, mainly other proteins, because
they usually function within the nucleus.

Fig. 4A clearly shows that top-level TFs on average interact
with more proteins than the others, confirming our hypothesis.
Furthermore, we examined another important topological quan-
tity, closeness, defined as the inverse of the sum of the distances

Mot3

Not5

Gcn4

Put3 Uga3

Nucleus

Cytoplasm
O2, Heme Put2Put1 Uga1 Uga4Uga2

Fig. 3. A biological example to illustrate the multistep cogitation processes in the regulatory hierarchy, showing aerobic growth mediated by Mot3. We divided
the image into two parts, nucleus and cytoplasm, because TFs only function in the nucleus, whereas other proteins (such as the enzymes Put1, Put2, Uga1, Uga2,
and Uga3) normally function in the cytoplasm.
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from a certain node to all other nodes (19). Fig. 4B shows that
the top TFs by and large have significantly higher closeness in the
interaction network than all other TFs, indicating that these TFs
are at the center of the interaction network (i.e., close to all
proteins) (19). This result further confirms our hypothesis that
these TFs receive signals through protein–protein interactions.
The signals are then processed and passed onto lower-level TFs
along the hierarchy. Finally, we analyzed the functional compo-
sition of the interaction partners of the TFs at each level of the
hierarchy by using the Munich Information Center for Protein
Sequences (MIPS) functional classification schemes (38). As
shown in Fig. 4C, we found that three functional categories are
significantly enriched within the interaction partners of the top
TFs compared with those of the bottom ones (P � 0.05). They
are as follows.

1. Cellular organization: Most of the proteins in this category
are localized to different organelles within the cell to keep
their integrity.

2. Metabolism: The cell utilizes these proteins to respond to the
nutrition changes in the environment, such as during the

diauxic shift when the yeast cell switches from using glucose
to ethanol as a carbon source (39).

3. Cell defense and rescue: Obviously, most proteins in this
category carry out defenses against various types of stress that
the cell may sustain.

A good example is the protein Ire1 (see Fig. 5), which belongs to
all three categories. It is a transmembrane protein on the endo-
plasmic reticulum (ER) membrane, with serine–threonine kinase
and endoribonuclease activities (40, 41). It is one of the main factors
involved in the unfolded protein response and myo-inositol metab-
olism (40, 41). Upon the presence of unfolded proteins, Ire1
activates the SAGA complex (comprising Ada2, Gcn5, Hfi1, Ngg1,
Spt20, Spt3, and Spt7) through directly interacting with Ada2 to
enhance transcriptional induction of ER stress-responsive genes
(42). In the available regulatory network, one possible path is that
Ada2 successively turns on the expression of three TFs: Rtg3,
Hmra1, and Ime4. Ime4 then induces the expression of 18 other
genes. For example, Egd2 is a subunit of the heteromeric nascent
polypeptide-associated complex that binds unfolded proteins in the
ER to help them form secondary structures (43); Vik1 is involved

0

A B C
Fig. 4. Correlations between levels in the
hierarchy and other topological and func-
tional properties. (A and B) Average num-
ber of interaction partners (A) and average
closeness (B) for TFs at each level. P values
were calculated with Student’s t tests to
compare the top bar with the sum of the
test bars. (C) Enrichment of functional cat-
egories relative to level 1. For each func-
tional category in the Munich Information
Center for Protein Sequences (MIPS) func-
tional classification schemes, we calculated
the percentage of interaction partners of
TFs that have this function. The percentage
of a certain category was then normalized
against the corresponding one at level 1.
Thus, all bars at level 1 have a value of 1.
Because we were analyzing the transcriptional regulatory networks, we ignored the functional category ‘‘transcription.’’ P values were calculated with
cumulative binomial distributions to compare the statistical significance of enrichment at level 4 to that of the sum of the other levels (see Supporting Text).

Fig. 5. A biological example to illustrate that the top-level TFs receive internal and external signals through protein–protein interaction, showing unfolded
protein response mediated by Ire1.
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in ER organization and biogenesis (44); and Zwf1 is required for
oxidative stress response and fatty acid metabolism (45, 46).

One might think that most top-level TFs are involved in chro-
matin-remodeling complexes, because these complexes affect a
large number of transcriptional events and their components have
high degrees in the interaction network. However, this assumption
is, in fact, not the case (for detailed descriptions of functions of
top-level TFs, see Table 3, which is published as supporting
information on the PNAS web site). Even though there is no strong
functional pattern for the top-level TFs, most of them seem to be
global modulators that respond to various cellular stresses (e.g.,
anomalous levels of nitrogen or glucose).

Paradox of Influence and Essentiality. Higher-level TFs are more influen-
tial. We next examined the influence of each TF by using the
Rosetta knockout experiments (47). Fig. 6A shows that deletions of
genes at higher levels of the hierarchy affect more genes than
deletions of those at the bottom; i.e., higher-level TFs are more
influential. (Note that because the Rosetta knockout experiments
were only performed on 276 genes, no genes at level 3 were tested
in the experiments.)

Furthermore, we investigated the influence of TFs in terms of the
ability of their human homologs to initiate disease, especially
cancer. We calculated the fraction of TFs at different layers that
have cancer-related homologs in humans. Our calculations show
that human homologs of TFs at higher levels have a higher tendency
to be cancer related (see Fig. 6B), further confirming the influence
of high-level TFs in the hierarchy.
Lower-level TFs are more essential. Because we have shown that TFs
at higher levels are more influential, it is reasonable to assume that
these TFs should also be more essential (i.e., lethal) (48). However,

based on our calculations in yeast, we found that TFs at the lower
levels of the network have a much higher tendency to be essential
(Fig. 6C). A similar result was also obtained in E. coli (Fig. 6D). One
possible explanation for the separation of the influence from
essentiality may be that TFs at the top of the hierarchy act more like
modulators coordinating gene expression across different pathways
(e.g., Mot3); therefore, all pathways remain functional upon dele-
tion of these TFs, even though the precise expression between most
pathways will not be well organized. On the other hand, TFs at the
bottom are in charge of specific pathways (e.g., Put3 and Uga3).
Upon their deletion, certain pathways will cease operating, causing
the cell to die.

Discussion
In general, our results show that there is a pyramid-shaped hier-
archical structure in regulatory networks, which is well organized in
a clearly nonrandom manner. The major decision-making scheme
in this hierarchy is a cogitation-like multistep process, where the
TFs at the top receive signals from internal and external stimuli
through protein–protein interactions. These TFs strongly influence
those below (in terms of the overall fraction of cellular genes
affected). However, surprisingly, the TFs at the bottom are more
essential to the viability of the cell.

Because bottom TFs are relatively easy to define in regulatory
networks, our BFS-level method is a reasonable way to turn the
network into a tree in graph theory (18). However, as mentioned
above, it is not trivial to construct a hierarchy for any given directed
network; an assortment of possible variations readily comes to
mind. In particular, our method essentially assigns the lowest
possible level of each TF as its level in the hierarchy because it is
shortest-path based. Alternatively, one could calculate the longest
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Fig. 6. Correlations between levels in the hierarchy and
other biological properties. (A) Deletion of TFs at higher
levels disrupts the expression of more genes. A gene is
defined as disrupted if P is �0.05 determined by Rosetta
knockout experiments (47). Because the knockout exper-
iments were only performed on 41 TFs, t tests cannot be
performed to examine the statistical significance of the
differences between the average numbers of affected
genes across different levels. Therefore, we performed a
�2 test and found that deletion of TFs at higher levels
disrupts the expression of more genes, which is statisti-
cally significant when compared with random expecta-
tion (P � 10�45; see Supporting Text). (B) TFs at higher
levels in the hierarchy have a strong tendency to have
human homologs associated with cancer. P values mea-
sure the statistical significance between the fractions of
human cancer gene homologs among TFs at a certain
level with that at level 4. (C) TFs at the bottom of the yeast
hierarchy have a strong tendency to be essential genes. P
values measure the statistical significance between the
fractions of essential genes among TFs at a certain level
with that at level 2 and were calculated by using cumu-
lative binomial distributions (see Supporting Text). (D)
TFs at the bottom of the E. coli hierarchy have a strong
tendency to be essential genes. All calculations are sim-
ilar to those in C.
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path from a TF to a bottom node and assign this number as its level.
For simple hierarchies, both methods will produce exactly the same
results. For networks containing loops, the constructed hierarchies
will be slightly different. Our BFS-level method has problems
solving feed-forward type of situations, whereas the longest-path
method has problems solving feed-back type of situations. It is
difficult to argue which method is better. In Supporting Text, we
describe implementing this variant and other related ones. Our
results show that, in fact, most variations have similar global trends,
confirming the validity of our conclusions.

Furthermore, as shown in Fig. 2E, our BFS-level method could
assign a level number to every node in any directed network, even
one that is randomly generated. However, the key aspect of a
generalized hierarchy is its pyramidal shape. As we showed in Fig.
2, regulatory hierarchies have a similar pyramidal shape to social
ones. We are also able to show that the topological features of the
regulatory hierarchy correspond well to aspects associated with
efficiency in its social counterparts. As discussed in detail above,
these features are completely different from those in random
networks, suggesting their functional implications.

Moreover, previous studies have examined the relationships
between the essentiality of a TF and its number of descendants (i.e.,
out-degree). It has been shown that TFs regulating more targets
tend to be more essential (49).

Materials and Methods
Regulatory Networks. We constructed the S. cerevisiae regulatory
network by combining the results of various genetic, biochemical,

and ChIP-chip experiments in yeast (1, 2, 50–54). To ensure the
quality of the network, we manually examined the network and
removed all questionable ORFs and DNA-binding enzymes (e.g.,
PolIII). The final network contained 8,371 regulatory interactions
involving 286 TFs and 3,369 targets. The E. coli regulatory network
was constructed in a similar manner, which consisted of 2,370
regulatory interactions between 145 TFs and 1,063 genes (55, 56).

Yeast Interaction Network. The interaction network was created by
combining various databases and large-scale experiments (38, 49,
57–63). Because large-scale experiments are known to be error-
prone (64, 65), we only considered protein pairs with multiple
sources of support [using the likelihood ratio of �300 criteria from
Jansen et al. (66)]. The final network contained 23,294 interactions
involving 4,743 proteins.

Generation of Random Networks. We first generated random net-
works by randomly connecting TFs with target genes, while keeping
the total numbers of TFs (286), target genes (3,369), and edges
(8,371) constant. Then, we ran the BFS-level method to build the
layered structure from the randomized network and repeated all
calculations. This procedure was repeated 1,000 times. The results
were averaged and are shown in Fig. 2E. We also performed similar
calculations for the E. coli regulatory network and found similar
results (see Fig. 15).
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