
Hughes,T.R.,Marton,M. J., Jones,A.R.,Roberts,C. J., Stoughton,R.,Armour,C.D.,Bennett,

H. A., Coffey, E., Dai, H., He, Y.D., Kidd,M. J., King, A.M.,Meyer,M. R., Slade, D., Lum,

P. Y., Stepaniants, S. B., Shoemaker, D.D., Gachotte, D., Chakraburtty, K., Simon, J., Bard,

M., and Friend, S. H. (2000). Functional discovery via a compendium of expression profiles.

Cell 102, 109–126.
Kim,T.H.,Barrera,L.O.,Zheng,M.,Qu,C., Singer,M.A.,Richmond,T.A.,Wu,Y.,Green,R.D.,

andRen, B. (2005). A high‐resolutionmap of active promoters in the human genome.Nature

436, 876–880.

Li, W., Meyer, C. A., and Liu, X. S. (2005). A hidden Markov model for analyzing ChIP‐chip
experiments on genome tiling arrays and its application to p53 binding sequences.

Bioinformatics 21(Suppl. 1), i274–i282.

Lieb, J. D., Liu, X., Botstein, D., and Brown, P. O. (2001). Promoter‐specific binding of Rap1

revealed by genome‐wide maps of protein‐DNA association. Nature Genet. 28, 327–334.
Odom, D. T., Zizlsperger, N., Gordon, D. B., Bell, G. W., Rinaldi, N. J., Murray, H. L.,

Volkert, T. L., Schreiber, J., Rolfe, P. A., Gifford, D. K., Fraenkel, E., Bell, G. I., and

Young, R. A. (2004). Control of pancreas and liver gene expression by HNF transcription

factors. Science 303, 1378–1381.
Sabo, P. J., Humbert, R., Hawrylycz, M., Wallace, J. C., Dorschner, M. O., McArthur, M., and

Stamatoyannopoulos, J. A. (2004). Genome‐wide identification of DNaseI hypersensitive

sites using active chromatin sequence libraries. Proc. Natl. Acad. Sci. USA 101, 4537–4542.
Scacheri, P.C.,Davis, S.,Odom,D.T.,Crawford,G.E., Perkins, S.,Halawi,M. J.,Agarwal, S.K.,

Marx, S. J., Spiegel, A. M., Metzer, P. S., and Collins, F. S. (2006). Genome‐wide analysis of
menin binding provides insights into MEN1 tumorigenesis. PLoS Genetics 2(4), e51.

Wu, C., Wong, Y. C., and Elgin, S. C. (1979). The chromatin structure of specific genes. II.

Disruption of chromatin structure during gene activity. Cell 16, 807–814.

282 DNA microarrays, part B [15]
[15] Extrapolating Traditional DNA Microarray Statistics
to Tiling and Protein Microarray Technologies

By THOMAS E. ROYCE, JOEL S. ROZOWSKY, NICHOLAS M. LUSCOMBE,
OLOF EMANUELSSON, HAIYUAN YU, XIAOWEI ZHU,

MICHAEL SNYDER, and MARK B. GERSTEIN
Abstract

A credit to microarray technology is its broad application. Two experi-
ments—the tiling microarray experiment and the protein microarray ex-
periment—are exemplars of the versatility of the microarrays. With the
technology’s expanding list of uses, the corresponding bioinformatics must
evolve in step. There currently exists a rich literature developing statistical
techniques for analyzing traditional gene‐centric DNA microarrays, so the
first challenge in analyzing the advanced technologies is to identify which of
the existing statistical protocols are relevant and where and when revised
methods are needed. A second challenge is making these often very tech-
nical ideas accessible to the broader microarray community. The aim of
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this chapter is to present some of the most widely used statistical techni-
ques for normalizing and scoring traditional microarray data and indicate
their potential utility for analyzing the newer protein and tiling microarray
experiments. In so doing, we will assume little or no prior training in statis-
tics of the reader. Areas covered include background correction, intensity
normalization, spatial normalization, and the testing of statistical significance.
Introduction

Microarray technology (Fodor et al., 1991; Schena et al., 1995) allows
for the parallel quantitative assessment of biochemical reactions. On the
order of 106 measurements can be taken simultaneously with current
technology (Cheng et al., 2005). The initial challenge following a micro-
array experiment is to determine which of these potentially millions of
observations are significant and should be studied in more depth. This
challenge has been met by hundreds of practitioners in both biomedical
and mathematical sciences and literally hundreds of papers have been
published on the topic. This chapter aims to illustrate some prevailing ideas
and techniques found in the microarray analysis literature. In addition to
covering statistics used for traditional microarray experiments, we include
those techniques exploited in protein and tiling microarray analyses as
well. These latter experiments share some mechanistic aspects with the
traditional DNA microarrays, but in several respects, are quite different.
Therefore, some of the bioinformatics research done for traditional micro-
arrays is relevant, whereas some of it is not. We will guide our discussion
with this as our theme, and focus on two main areas of study: microarray
normalization and the assessment of statistical significance.

Prior to delving into the heart of our discussion, we will first introduce
some naming conventions, followed by statistical preliminaries. Following
these prerequisites, a brief discourse on how microarray data are obtained
is given. The first major area of study reviewed ismicroarray normalization
or, more concisely, normalization. Normalization deals with the technical
aspects of the microarray technology that can potentially confound and/or
bias the results of the experiment. It does so by correcting measured values
so as to remove these effects. Normalization is discussed later. The second
area focused on is the assessment of statistical significance. Statistical sig-
nificance can mean different things for different microarray experiments,
depending on their respective goals, and is discussed. In a majority of
traditional DNA microarray experiments, significance indicates the pres-
ence of differential mRNA expression between two or more biological
classes for some gene. An experiment might, for example, assess mRNA
concentrations for thousands of genes as cells progress through the cell cycle
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(Cho et al., 1998). In such a scenario, wewould like to knowwithin each stage
those genes that exhibit differential expression (higher or lower concentra-
tions) relative to the other stages. For tiling microarrays, as shown later,
significance pertains more loosely to genomic regions. In these experiments,
we seek chromosomal regions (consisting of multiple probes) that exhibit
higher than expected fluorescent intensities on themicroarray. Proteinmicro-
arrays have two main classes of use: analogous to the DNA microarray,
antibody microarrays can be used to determine protein abundances, whereas
functional protein microarrays can be used to detect protein–protein interac-
tion partners in vitro. For each of these experiments, significance clearly takes
on a different meaning.

Definitions

Some common points of confusion within the microarray literature
are how various entities are defined. This section explicitly defines some
of these entities so as to minimize the potential for confusion. Herein,
we define molecules on the microarray at time of its construction as
probes and those molecules that are subsequently introduced to the micro-
array as targets. We use the words spot and feature interchangeably to
indicate a collection of probes that have the same sequence and are con-
centrated at a known position in the microarray design. A collection of
targets from a single biological source is called a sample. A single event
consisting of introducing one or more samples to a microarray is termed
probing. Finally, a set of probings designed to test certain hypotheses is
simply an experiment.

Statistical Preliminaries

It is impossible to have a discussion on microarray statistics without any
prior knowledge of statistics in general. This section provides some basic
concepts that will aid our presentation of microarray analysis. Anyone who
has taken an introductory statistics course has seen this material already
and can safely skip this section.

Summary Statistics

Assume for the moment that a microarray experiment measures the
expression level of just a single gene and that the experiment consists of
several technically replicate probings from which a measurement is ob-
served. To generalize the measurements for discussion, let each measure-
ment be denoted by the symbol Xi. Here, the subscript i indicates the ith
measurement of the gene. For example, X4 ¼ 162 would indicate that the
measurement coming from the fourth microarray is 162.
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A first natural question to ask of the experiment is ‘‘What is the central
tendency of my measurements or, equivalently, how can I best describe my
measurements with a single number?’’ The most commonly used response
to this question is to calculate the arithmetic mean, or average, of the
measurements. To calculate the arithmetic mean, we first sum all the
measurements and then divide by the total number of measurements
observed. If N is the number of measurements taken, then the mean �X is
calculated as

�X ¼ 1

N

XN
i¼1

Xi ¼ X1 þX2 þ . . .þXN

N
: ð1Þ

We often would like to measure the spread of our measurements in
addition to their central tendency. The most commonly used measure of
spread is the variance �2:

s2 ¼
PN

i¼1ðXi � �X Þ2
ðN � 1Þ : ð2Þ

Note that the numerator consists ofN terms, added together. Each term in
the summation corresponds to the ith measurement and is the difference
between that measurement (Xi) and the mean of all N measurements, �X .
Also note that each term is squared. Doing so ensures that the numerator is
positive and that measurements less than the mean contribute positively
to the variance just as much as those measurements greater than the mean.
This measure of spread is roughly the average squared difference
from the mean. We say ‘‘roughly’’ here because the denominator in Eq. (2)
is (N � 1) rather than the N that we might expect from the definition of
arithmeticmean [Eq. (1)].Why this is so is beyond our scope, but with largeN
this detail makes little difference. Related to the variance is a quantity called
the standard deviation. A standard deviation, symbolized as �, of a group of
measurements is simply the square root of those measurements’ variance.

We often read or hear the phrase ‘‘microarray data are noisy,’’ or some
similar (potentially less polite) variant. This can be taken to mean several
things, but quite often it is the presence of outliers that is being referred
to. An outlier is a measurement in large disagreement with other measure-
ments of the same phenomenon. In a microarray experiment, the difference
could be due to a biological effect, but more likely the outlier is due to some
kind of technical malfunction of the instrument and/or its associated proto-
col(s). Outliers can have large effects on the aforementioned summary
statistics. For an example, consider an experiment where five measurements
are taken for the same gene. If these measurements are X1 ¼ 12, X2 ¼ 9,
X3 ¼ 11, X4 ¼ 507, and X5 ¼ 12, then
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�X ¼ X1 þX2 þX3 þX4 þX5

N
¼ 12þ 9þ 11þ 507þ 12

5
¼ 110:2: ð3Þ

Clearly the quantity 110.2 does not represent the central tendency of
data very well. It is not particularly close to any of the measurements.
Luckily, there are ways around such pitfalls. One technique is called the
trimmed mean. With this approach, some percentage of the most extreme
measurements is thrown away prior to calculating the mean. An extreme
(and quite common) version of this approach is to calculate the measure-
ments’ median as a measure of their central tendency. The median is
defined as the middle quantity occurring in a sorted list of observations.
That is, if N is odd and you first sort your measurements X1, X2, . . ., XN in
either increasing or decreasing order, then the median is the quantity XNþ1

2
.

(If N is even, the middle two measurements, XN
2
and XN

2þ1, are averaged.)
In our noisy example of five measurements where the mean of 110.2 was
obtained, the calculated median is 12. This value intuitively summarizes
these data much better.

An analogous calculation can be performed in place of the variance.
Recall that the variance is essentially an average squared difference of
meas ureme nts from the mean [Eq . (2)] . This comput ation can be made
more robust to outliers by first substituting the median for the mean and
then computing the median of absolute differences between the measure-
ments and the previously calculated median. This quantity is sometimes
referred to as the median absolute difference (MAD).

Statistical Significance

The term p value comes up frequently in texts about microarray experi-
ments and their analyses. A p value is simply the probability of some
null hypothesis being true given a set of assumptions and observations.
A typical experiment utilizing DNA microarrays might have thousands of
such null hypotheses, one for each gene being studied. These null hypoth-
eses would typically claim that the expression level of some gene is not
different between two biological samples. As a result, we declare that any
gene for which we can compute a low p value is significant and potentially
worthy of further study. To call the gene significant, a p value threshold for
significance must, of course, be in place. A common interpretation for this
threshold is the false‐positive rate of the study: the percentage of time
replications of the experiment would reject the null hypothesis when it is
actually true.

Now, we do not typically know the actual probability of observing
something under a given null hypothesis. However, if we know that the
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numbers being studied follow some known form (e.g., we might know or
assume that the gene expression levels are distributed like a bell curve, or a
normal distribution), then we can use this knowledge to either simulate or
directly calculate how likely an average difference between two such
groups of measurements would be if there were in fact no difference, for
example.

A final note on significance worth noting is that, generally speaking, the
more observations we are able to make of some phenomenon, the better is
our ability to compute a low p value. To illustrate this point, consider an
experiment where we ask, ‘‘Is gene A expressed at a higher level in tumors
than in healthy tissue?’’ Let us assume that the answer to this question is,
‘‘Yes.’’ If we have one measurement of A from a tumor and one measure-
ment of A from a healthy tissue and the measurement from the tumor is
twice as high as its healthy counterpart, we have some limited confidence
that the gene is more highly expressed in tumors. This occurrence could be
an anomaly, so we still would assign some fairly high probability to the null
hypothesis of no difference being. If instead we measure the abundance of
gene A in 20 tumors and they are all higher than 20 measurements taken
from healthy tissues, we would assign a much lower probability to the null
hypothesis because the chance of 20 anomalies is very small.
Multiple Testing

Another issue that comes up frequently in the microarray literature is
that ofmultiple testing. Multiple testing simply indicates that more than one
statistical test (which generates a p value) is part of the study. For micro-
array experiments there are thousands and potentially millions of statistical
tests being conducted, so clearly we are dealing with multiple testing, but
what is our concern when we engage in multiple testing?

In biology, the threshold for considering a p value significant is typically
p < 0.05 or p < 0.01. These criteria arise from a balance between our
willingness to accept a 5% or even a 1% false‐positive rate and the number
of replicate measurements we are able to take. Multiple testing becomes a
problem, for example, if we conduct 100 statistical tests and identify that one
of them yields a significant p value (p¼ 0.04< 0.05). It would be tempting to
report this seemingly significant finding. The problem here is that within a set
of 100 tests, we expect to find 4 of these to yield p¼ 0.04 simply due to random
chance (100 tests multiplied by the false‐positive rate 0.04 yields 4 tests). This
toy example becomes a staggering problem ifwe are testing, say, 20,000 genes.
In this case, at a significance threshold of p < 0.05, we will identify roughly
1000 false positives. This number of false positives is potentiallymore than the
actual number of differentially expressed genes that we seek to identify.
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The most simple method for dealing with multiple comparisons is to
require sufficiently low p values such that the total number of expected
false positives is small. The Bonferroni correction (Bonferroni, 1935) does
this by controlling the so‐called family‐wise error rate (FWER). The
FWER is defined as the probability of detecting a false positive anywhere
among the multiple tests. As a result if we want the probability of detecting
a false positive among our tests to be less than a, we require that any
individual test achieve p < a

N where N is the number of tests. Such correc-
tions pose a problem for microarrays where thousands of genes are being
tested for significance and the number of available replicate experiments
is small. The problem is more acute for high‐density tiling microarrays
where the number of tests performed can reach into the millions (see later)
and the number of experimental replications is often fewer than five.

Microarray Data

This section reviews briefly how microarray data are obtained.

Data for Traditional, Gene‐Centric DNA Microarrays

Each spot on a gene‐centric DNA microarray corresponds to a DNA
sequence derived from a known or putative gene. That sequence could
be the whole spliced form of a gene (such as a cDNA clone) or a tethered
25‐bp oligonucleotide sequence, as is the case for Affymetrix GeneChip
brand microarrays. Such a microarray typically probes a sample that is
derived from a mRNA source.

Subsequent to probing a labeled sample with a microarray, an image
representing its surface is generated by subjecting the microarray to a
digital‐scanning device. Depending on the type of labels used, different
scanning technologies are employed. Typically, the samples have been
labeled with a fluorescent dye or, alternatively, with radioactive isotopes.
For fluorescently labeled samples, the probed microarray is scanned with a
laser scanner. There is a wide selection of laser scanners available, includ-
ing but not limited to ScanArray GX from Perkin‐Elmer, GenePix 4200
from Molecular Devices, and DNA microarray scanner from Agilent
Technologies. A laser wave length near the absorption maximum of the
fluorophor dye used (that was attached to the hybridizing sample) is
scanned across the microarray surface from top to bottom and from left
to right so that all areas of the microarray are accessed by the laser. The
light emitted at each location when laser‐excited fluorophors transition to
their unexcited state is captured by a detector and translated into a pixel
intensity at that location. Microarrays that probe multiple‐labeled samples
simultaneously must be scanned with a scanner having at least as many
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unique laser wavelengths as labeled samples. Current scanning resolutions
are as high as 1 �m2 per pixel.

The result of scanning a single probed sample is a monochromatic
digital image (usually stored as a TIFF file) of the microarray surface.
Bright regions in the image correspond to regions of the microarray with
high levels of fluorescence and dim regions likewise correspond to regions
devoid of fluorescence. Presumably, the bright regions correspond to spots
to which labeled nucleic acid hybridized. If two different samples were
labeled with two different dyes and were probed with the same microarray,
then the result of scanning is two digital images. There would be one image
for each wavelength used.

The microarray images generated by the laser scanner must be further
processed with image analysis software. First, the spots of the microarray
have to be identified within the image. To do this, rules have to be obtained
or assumed that can distinguish between pixels that constitute spots and
pixels that belong to background regions. Separating spots from the back-
ground is called segmentation. Following segmentation, grid alignment
must be performed. Grid alignment is the process of identifying which spots
correspond towhich annotation. Basic versions of grid alignment software are
usually included with the purchase of a scanner, but there are alternatives,
such as TIGR Spotfinder (Saeed et al., 2003), which is freely available under
an open‐source license, or ScanAlyze (http://rana.lbl.gov/EisenSoftware.
htm), which is free for academic and noncommercial use. For most spotted
arrays, the grid has to be defined by the user, either manually or semima-
nually, whereas for many higher density microarrays, such as Affymetrix
GeneChip brand microarrays and NimbleGen System’s NimbleChips, the
alignment of the microarray image to the grid is done automatically by
software. This automation is made possible by reserving some spots on the
microarray exclusively for grid alignment. Certain labeled cDNA/cRNA
molecules that are complementary to the grid alignment probes are spiked
into the sample(s), ensuring that the grid alignment probes will appear as
bright regions in the scanned image, enabling automatic grid alignment.

After aligning the grid the image analysis software reports back a
certain number of key statistics for each of the identified spots. These
statistics may include the mean and median pixel intensities within each
spot, the standard deviation of those pixels, and sometimes also other
information, such as mean intensity ratios in the case of a two‐channel
experiment. The area of each spot (number of pixels) is also frequently
reported. Importantly, if the software considers a particular spot aberrant,
for example, irregular in its shape, or if its measured intensity is lower than
the surrounding background intensity, the spot may be flagged as irregular.
Such flagged spots are often excluded from further statistical analyses.

http://rana.lbl.gov/EisenSoftware.htm
http://rana.lbl.gov/EisenSoftware.htm
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The end result is a tab‐delimited plain text file containing all raw data for
each microarray feature within a single row. The tab‐delimited, text‐based
format is easily amenable to further analysis by importing it into a micro-
array analysis software package such as ExpressYourself (Luscombe et al.,
2003) orMIDAS (Saeed et al., 2003) or, of course, into your ownmicroarray
analysis pipeline. For simple calculations, a spreadsheet program (e.g.,
Gnumeric, OpenOffice or Microsoft Excel) could also be used.

For spottedDNAmicroarrays, it is common that each gene under study is
represented by a single spot. An important difference exists for Affymetrix
GeneChip brand microarrays. For this technology, each gene is represented
by a probe set, typically consisting of 10–20 features on the microarray.
Within the probe set, each feature contains probes of different sequence. To
assess the differential expression of a single gene, multiple spots from each
microarray need to be considered.
Data for Tiling Microarrays

The two most widely utilized high‐density oligonucleotide platforms are
those produced by Affymetrix, using masks to synthesize the oligonucleo-
tides on the microarray (Lipshutz et al., 1999), and those manufactured by
NimbleGen Systems, which use a system of mirrors controlled by a digital
light processor for synthesis (Nuwaysir et al., 2002). Affymetrix microar-
rays currently utilize 25‐bp oligonucleotide probes for each spot. For every
spot corresponding to some 25‐bp stretch of genomic DNA (perfect
match), there is a corresponding spot (mismatch) where the middle nucle-
otide of the probe has been substituted with its reverse complement. This
perfect match/mismatch setup is also the standard for the Affymetrix
GeneChip system as well. The purpose of the mismatch probe in both
traditional and tiling applications is to measure the nonspecific binding
of the probes within a spot [there is some debate about the usefulness of
mismatch probes, however (Irizarry et al., 2003)]. Currently, Affymetrix
microarrays are capable of including on the order of 106 spots.

Maskless microarrays manufactured by NimbleGen Systems are synthe-
sized such that each microarray can be completely customized with unique
probe sequences. These microarrays allow for oligonucleotide lengths of up
to 70–80 nucleotides (in fact, isothermal arrays exist where each feature
corresponds to a oligonucleotide probe of a different length). Current
maskless microarray designs have approximately 390,000 spots per micro-
array. One important difference between these two high spot density plat-
forms is that Affymetrix brand microarrays can only be hybridized with a
single target nucleic acid population, whereas maskless arrays allow the
hybridization of two samples simultaneously using different labels, typically
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Cy5 (red) and Cy3 (green). This is potentially beneficial when looking
for differential expression between samples or for ChIP‐chip (Horak and
Snyder, 2002; Iyer et al., 2001), where chromatin‐immunoprecipitated DNA
is labeled differently from some reference DNA.

Tiling microarrays (Bertone et al., 2004; Cawley et al., 2004; Cheng et al.,
2005; Kapranov et al., 2002) use high‐density capabilities to tile the nonrepe-
titive sequence of a genome. The word tile indicates that probes are selected
for inclusion on the microarray at some roughly uniform interval over a
potentially large genomic space. In the context ofmRNA transcript mapping,
this high resolution enables the unbiased detection of individual exons of a
spliced transcript. This experiment is not practical on a whole‐genome scale
in a mammalian species with lower resolution polymerase chain reaction
amplicon microarrays due to cost (Bertone et al., 2005).

Tiling microarrays are an evolving medium, and data format standards
have not yet materialized. However, several summary statistics about each
spot are typically included in a tab‐delimited text file. These statistics
usually include the mean and/or median pixel intensity of each spot, the
number of pixels within each spot, and a standard deviation of the pixel
intensities of the spot. It is worth including a cautionary note about tiling
microarray data here. Tiling microarrays generate very large data sets. As
such, they are difficult or impossible to import into desktop spreadsheets
such as Microsoft Excel. Therefore, more robust tools are often needed.

There is one more major difference between traditional DNA micro-
arrays and tiling microarrays to consider. The signal intensity measured at a
spot containing short oligonucleotide probes is arguably too unpredictable
to score each probe separately. This variability is due to a number of
factors, including cross‐hybridization and differential binding affinity due
to probe sequence and other sequence‐based artifacts. In addition, higher
standards of statistical significance are typically required for tiling arrays
because of the much larger number of spots being queried and therefore
require more evidence than that given by a single spot. Thus the methodol-
ogies that have been adopted for the analysis of tiling microarrays is to
incorporate the intensities of a number of spots that lie within a contiguous
genomic region. This methodology is often referred to as a genomic sliding
window approach.
Data for Protein Microarrays

There are two types of protein, microarrays as defined by their goals
(Zhu and Snyder, 2003). One type is protein detection microarrays, or
antibody microarrays (Lueking et al., 1999), which use antibodies for its
probes and are used to detect and quantify proteins in solution. This design
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is very similar to its DNA‐based counterparts, which quantify mRNA con-
centrations. The other major class of protein microarrays is functional
protein microarrays (Zhu et al., 2001), which aim to identify protein binding
or modification capabilities. In such a design, each spot consists of some
known protein or protein domain. The target that is introduced will typically
consist of a single macromolecule. This target may be labeled so as to detect
molecular interaction partners or, as is the case for kinase activity assays,
may be probed in the presence of hotATP to detect phosphorylation events.

An aspect of protein microarrays of note is that the spots therein will
usually not contain equal amounts of protein from spot to spot. This discord
can cause differences in measured intensity between spots that are not due
to molecular activity, but rather to an aspect of the microarray construction.

Regarding software and generated data, protein microarrays utilize the
same scanners and scanning software as their DNA‐based counterparts and
therefore the raw data files they produce are technically very similar. This
is an advantage, as some existing computational protocols and interfaces
developed for DNA microarrays may be integrated easily with protein
microarray analysis.
Microarray Normalization

Once data have been obtained, a usual next step is to performmicroarray
normalization.

Motivation

Technical aspects of the microarray experiment can cause systematic
biases and artifacts to be present in their data. In a two‐sample DNA
microarray experiment, the probed biological samplesmay contain different
concentrations of RNA, leading to an overall bias in favor of greater mea-
surements in one channel. In addition, the fluorescent dye molecules Cy3
and Cy5 are known to have slightly different properties, leading to a similar
problem. Complicating these troubles is that they may be more or less
present depending on the intensity of the spot being measured and/or its
physical location on the microarray. The following section illustrates an
example of how such biases can affect biological conclusions made from
microarray data when proper data normalizations are not carried out. We
include this example as a cautionary tale and as a motivation for microarray
normalization, in general.

Most spotted microarrays are built by depositing solutions of cDNA
clones at known locations on a microarray surface. This deposition process
is controlled robotically with little human intervention and is therefore
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completely regular and predictable. Furthermore, the printing process is
such that spots close to each other on the microarray surface are printed
closely in time as well. Given that a microarray hybridization can be
uneven across the surface of the microarray, this leads one to speculate
that neighboring spots on the microarray surface might be coordinately
affected. An example situation would be if labeled sample were more
abundant in one region of the microarray than in others. Spots in that region
would have systematically higher observed intensities than those spotted
elsewhere.

Indeed, it does appear that such a spatial effect exists. For printed
cDNA microarrays, the effect was first reported by examining the relation-
ships between observed spot intensities and the locations of spots in the
design of a microarray (Kluger et al., 2003; Qian et al., 2003). Similarities
were examined between gene expression profiles (across a large number of
probings) for genes that are printed on the microarrays at varying dis-
tances. It was found that genes that are close in the microarray design
(on average) have higher similarities between their expression profiles than
those further away. That is, it might appear that genes that are close on the
microarray surface seem more likely to be coexpressed. Note that without
knowledge of the microarray design, the genes would be identified as
exhibiting coordinated mRNA expression.

It turns out that for the microarray design used in the aforementioned
study, genes were printed in an order related to their chromosomal arrange-
ment for organizational convenience. This printing strategy yielded a micro-
array such that genes located 22 open reading frames (ORFs) away in
genomic space are printed as immediate neighbors on the constructed micro-
arrays more often than would occur if they were printed in a random order.
Interestingly, by examining the relationships between gene expression and
chromosomal localization, a striking similar frequency was found: genes that
are approximately 22ORFs away on the same chromosome aremore likely to
be coexpressed, whereas genes that are about 11 ORFs away are less likely
to be coexpressed (Qian et al., 2003). Furthermore, it was determined that
genes on microarrays with a different layout have a different frequency. This
last piece of evidence suggests the existence of an artifactual effect related
to microarray architecture. One of the aims of microarray normalization is to
reduce the effect of such artifactual components of observed data.

Most microarray studies examine the relationship between two biological
samples by comparing their relative mRNA expression levels. The idea
behind such two‐channel experiments is straightforward: labeled (typically
red with Cy5 and green with Cy3) nucleic acids in the samples are probed
simultaneously with a microarray slide, and relative abundances are derived
from comparative fluorescence of the nucleic acid molecules hybridized at
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each microarray feature. For a given spot i, the relative concentration
between the two samples is commonly represented as the log ratio, li, of the
measured fluorescence intensities between the two dyes. We summarize the
log ratio as

li ¼ log
Ri

Gi

� �
ð4Þ

where Ri and Gi denote the observed intensities (mean or median of spot
pixels’ intensities) for probe i when scanned with red and green lasers,
respectively. Note that a log ratio of zero indicates that Ri and Gi are equal.
Further, a set of observed log ratios (with measurement error) should center
about zero for probes representing genes of equal expression in the two
samples. Measurements deviate from this situation proportionately to their
degree of up‐ or downregulation relative to the two samples.

The log ratio measured between a gene in two samples is in itself a
normalization technique.Microarraymanufacture is not errorfree.Any given
spot may be printed poorly on one microarray and printed perfectly on the
next. If these two microarrays were used to measure the concentration of
the gene corresponding to that spot, the poorly printed spot would likely lead
to an artificially low measurement for one sample relative to the sample
hybridized to the higher quality spot. If instead both samples were hybridized
to both microarrays, then the hybridization of one sample to the poor spot
is directly comparable to the hybridization of the other sample to the poor
spot and likewise for the higher quality spot. This self‐normalization is partic-
ularly useful when the two samples hybridized to the microarray are paired in
other respects beyond the fact that they were measured with the same instru-
ment. A good example of paired samples is an mRNA sample taken from
a tumor biopsy before treatment and an mRNA sample taken after treat-
ment. Regarding log ratios, it should be noted that the Affymetrix GeneChip
system only allows hybridization of a single sample to a microarray. There-
fore, log ratios are not meaningful as a spot quality normalization. It is
believed, however, that Affymetrix microarray construction is much more
uniform in terms of quality control than its spottedmicroarray counterpart so
such self‐consistency concerns are relatively minor. Log ratios can still be
relevant for Affymetrix microarrays in the case of paired samples, such as in
the cancer experiment mentioned earlier. Most tiling and protein micro-
arrays yield just a single intensity measurement as well so the log ratio is not
always a natural measurement for these experiments either.

Although the log ratio provides an intuitive measure of relative gene
expression, it must often be corrected for inconsistencies resulting from
the experiment (see earlier discussion). Such corrections are collectively
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termed normali zation. Normal ization a djusts the meas ured intensitie s for
each sample and for each spot as correcti ve meas ures. The aim is to com-
pensate for artifac tual effects by ap plying trans formatio ns so that equally
expressed genes ha ve log ratios approachi ng zero. (For single ‐ chann el ex-
periment s, no such baseline generally exis ts.) Measur ements for all sp ots on
the microar ray are scaled relati ve to this basel ine. In pract ice, implem enting
good normal ization has proved chall enging; researchers have de veloped
many competing met hods, whi ch can lead to diver gent results ( Hoffma nn
et al., 2002 ). The follow ing sect ions descri be some of the more widely
implemente d stra tegies.

Backgroun d Corr ection

For many types of microar rays, a measu rement of the local backgro und
of each spot is recorde d in ad dition to the foregr ound inte nsity of the spot.
This meas ureme nt is, in comm on practice , the mean or media n of all pixels
residing in the su rroundi ng regio ns of the sp ots (see earl ier discu ssion). It is
believed that a ny measured inte nsity from this background region is also
measured in the foregro und pixel inte nsities of the spot as well. This back-
ground fluor escenc e is attribut able, in gen eral, to glass fluor escenc e and
unincor porated label mol ecules. The backgrou nd inte nsities ha ve no
biologic al interpret atio n so we would ideal ly like to remov e their contribu-
tion from spot inte nsities before proceedi ng. The easi est way to make this
correction is to subtract the mean (median) of all local background pixels
measured in the red channel (denoted �i) from the red intensity of each spot,
do likewise for the green channel (�i), and then compute the background
adjusted log ratio as

l̂i ¼ log
Ri � ri
Gi � gi

� �
: ð5Þ

Equat ion (5) assumes that �i < Ri and that �i < Gi. Any spot not in
agreement with these assumptions should be flagged as a bad spot and
subsequently ignored, as it does not make sense for a background region to
have a higher intensity than the spot.

We need not rely upon just the background values provided with each
spot in a microarray results file. The values of �i and �i could actually be
computed as the mean or median of all spot background measurements in
a localized region before applying Eq. (5). An example of this would be to
utilize a spot’s eight nearest‐neighboring spots’ backgrounds to calculate its
local background intensity. Such an approach is advisable so as to avoid
aberrantly high local background values due to scratches or other artifacts
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present in a microarray scan. This is of particular importance when dealing
with protein microarrays, as these devices can yield spots that smear to
bigger sizes due to phosphorylation activity, for example. These smears
will often be measured as part of a spot’s background, causing it to be
erroneously high.

Unfortunately, tiling microarrays will usually seek to maximize feature
density in an effort to reduce cost and as such, features are packed imme-
diately next to one another and background calculations may not be
possible. In these cases, we can only hope that background intensities are
minimal, or at least, constant throughout the microarray.
Normalization via Total Intensity

Following background subtraction, we would like to normalize sample
intensities so that their intensity distributions have desirable properties.
One commonly desired property within two‐sample probings is to have a
distribution of log ratios representing nondifferentially expressed genes to
center about zero. This is usually reasonable, as in most experiments we
do not expect a centering around any other value.

In a differential expression experiment, microarrays should hybridize
similar numbers of labeled molecules from each sample, so the total
hybridization signals summed over all probes should be the same for
both channels. Using these assumptions, we can calculate a scaling factor
Ctotal that can be used to correct any observed deviance from this as-
sumption. If M is the total number of features on the microarray, then we
have

Ctotal ¼ log

PM
i¼1 RiPM
i¼1 Gi

 !
: ð6Þ

We can then compute the normalized log ratios as

l̂i ¼ li � Ctotal: ð7Þ
The result is a distribution of log ratios that are centered some-

where near zero. This method performs well in most standard microarray
experiments with sufficiently large numbers of spots (>20,000), as in these
scenarios, outlier signals make negligible contributions to the total
intensities.

A similar approach to Eq. (6) can be used to normalize intensities from
one single channel microarray to others. In this application, every intensity
in one channel is divided by the summed intensity (e.g.,

PM
i¼1 Ri) of

spots from the same microarray. Then, these normalized intensities can be
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used to compare and contrast different samples hybridized to different
microarrays. This latter calculation may be useful in experiments where just
a single probing is carried out on eachmicroarray. This is always the case for
Affymetrix GeneChip technology and is almost always the situation for
protein microarrays and for tiling microarrays.

Normalization via Gene Set

The previous method performs fairly well in standard microarray experi-
ments where the number of genes studied is large and overall gene expression
differences between the two samples are not excessive. However, the ap-
proach must be applied cautiously, as it may mislead researchers into believ-
ing that similar numbers of genes are always up‐ and downregulated. This
clearly is not true in some circumstances.

In the following method, sometimes called the gene set method, some set
of genes is assumed not to be expressed differentially between the samples
being studied. This set of genes is typically made up of housekeeping genes.
The procedure is analogous to that in Eq. (7), with the only difference being
the numbers that are summed are those from the gene set, not all spots. We
call this value Cgeneset. Captured in this statistic is the overall deviation that
you would expect given no differential expression. Ideally,Cgeneset is equal to
zero, but effects such as unequal RNA concentrations and differences be-
tween the fluorescent dyes can causeCgeneset to be nonzero. OnceCgeneset has
been calculated, all log ratios (not just those in the gene set) are normalized
by Cgeneset using the relationship

l̂i ¼ li � Cgeneset ð8Þ
where l̂i denotes the normalized log ratio for probe i. Using control spots
in this way has an added benefit for sets of microarrays where the spots
present on each microarray are not the same. In such a scenario, a common
set of control spots can be used to normalize the intensity distributions of
themicroarrays so that they are similar frommicroarray tomicroarray. This is
a typical situation for tiling microarrays that require several microarrays
having different designs to probe for large fractions of the sequence of a
genome.

Normalization via Spiked Controls

A way to guide normalization further is to spike known quantities of
external controls into the biological samples prior to fluorescence labeling.
Normalization is then based on balancing the signal intensities for those
probes corresponding to the control RNA molecules as in Eq. (8).
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There are two advantages of this technique. First, the spike‐ins are
completely controlled—we are sure that they should show no differential
expression between two or more samples. Second, different scale factors
can be calculated for genes having different expression levels if several
different spike‐in concentrations are used. A disadvantage, though, is that
control probes must be built into the array at the onset. Further, the scaling
factor is calculated using a comparatively small number of probes that may
be sparsely distributed on the array depending on the design and the
correction techniques for spatial microarray biases (discussed later) cur-
rently cannot be incorporated easily. A final point of concern is that spiked
controls may interact with unintended spots on the microarray in addition
to the control spots. For traditional DNA microarrays and tiling micro-
arrays this is manifest as cross‐hybridization. For protein microarrays,
spiked proteins may interfere with desired protein‐binding interactions.

Normalization via Quantiles

Another popular alternative for intensity normalization is so‐called
quantile normalization (Bolstad et al., 2003). In this approach, the first step
is to construct a synthetic microarray such that the ‘‘measurement of each
spot,’’ Si, is the mean or median of its measurements across all P probings
in the experiment. Mathematically, if we use the mean in constructing this
synthetic microarray and Xi,j is the measurement from the jth probing for
spot i, then we have

Si ¼
PP

j¼1 Xi;j

P

The Si values are then sorted in increasing order, as are the intensities within
each probing. The final step in this normalization is to replace each ob-
served intensity by that intensity Si that occupies the same position within its
sorted list. If X1043,2 ¼ 87 is the third largest observation within probing
number two, it is replaced by the third largest value of S. Amajor advantage
of this approach is that it requires no extra probes or spike‐ins and yet
still can correct for biases that may be present more or less at different
intensity levels. This advantage makes this method broadly applicable to
any microarray experiment with little concern over experimental nuances.

Correcting Signal Intensity Bias

Numerous reports have indicated that log ratios resulting from a two‐
sample probing can have a systematic dependency on signal intensity
because of differences in the fluorescent properties of the red and green
dyes (Quackenbush, 2002; Yang et al., 2002a,b).
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Lowess regression (Cleveland, 1981) analysis allows its users to fit a
nonlinear curve to a ratio vs intensity distribution. We call the logged
product of themeasuredRi andGi intensities �i and plot each li as a function
of its respective �i. The basic idea of Lowess is then to first find a curve that
passes through the ‘‘middle’’ of this ratio versus intensity distribution. The
output of Lowess is a value Li paired with each �i. Once Li is calculated, it
can be used to correct for intensity biases. The corrected log ratio is

l̂i ¼ li � Li: ð9Þ
The question remains as to how Li is calculated. This is somewhat

beyond the scope of this chapter, but we will sketch the calculation here.
For every �i, a neighborhood of � values is found. The size of this neigh-
borhood is a variable that can be adjusted but is typically set to be 10% of
all spots. Once the neighborhood of spots is found, a line is plotted through
the values corresponding to the � values in the window. This line is used as
a function to compute Li from �i. The method can be generalized. In fact, a
commonly used variant of this method called Loess (no ‘‘w’’) performs the
same functionality but replaces the locally fitted line with a locally fitted
quadratic curve.

This technique has no analog for single‐channel experiments as in most
tiling and protein microarray experiments. The technique can be forced if
one microarray is considered a baseline and then all other microarrays are
normalized relative to the baseline. This is potentially problematic for
tiling microarrays where each microarray may contain different probes
and therefore have different expected intensity distributions.

Correcting Array Location Bias

It has become increasingly clear that there are often substantial spatial
biases caused by uneven hybridization conditions across a microarray slide.
Uncorrected, this can have an effect on results. An example of this is
the apparent coexpression of groups of genes, which is actually caused by
the proximity of their corresponding spots on the microarray surface (see
earlier discussion).

For spotted microarrays, the effect is frequently corrected using subgrid
normalization in which local subsets of spots are grouped by their deposit-
ing print tip. These groups are then normalized separately using, for
example, the method outlined earlier. This approach should be used with
caution, as we have observed that most spatial variations do not follow the
boundaries of print‐tip groups (sometimes referred to as blocks).

As an alternative, a variation of the Lowess analysis introduced earlier
can be used to correct spatial biases. In this alternative, a surface is fit to the
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log ratios as a funct ion of their spati al co ordinates a s opposed to fittin g
curve to log rati os as a funct ion of total intensit y. The correc ted intensity is
obtai ned analogous ly. This pr ocedure can be applied to singl e ‐ch annel
inten sities as wel l.

It should be noted here that during the desig n of a microar ray, no
regio ns shou ld be overp opulated with spo ts that mi ght display coordin ated
express ion level chan ges. In this unfort unate scenar io, the correcti ve met h-
ods wi ll eliminate biol ogically meaningful vari ations in the meas ureme nts.
This limitat ion can be overcom e easily by rando mizing sp ot locat ions
during microar ray manu facture.

This procedure may prove difficu lt for mi croarrays wher e a small frac -
tion of spots show meas urable signa l because there are too few inte nsities to
fit the surface to. Tiling microar rays will usually fal l into this categ ory as
much of the geno mic sequence is inactiv e at any given time. Functi onal
protei n microar rays may fal l into this categ ory as wel l, as a given protei n is
likely to have just a hand ful of bindin g partner s.

Normal ization by Spot Conce ntratio n

Concen trations of probes withi n each spot will affe ct meas ured inte n-
sities. For most traditio nal and tiling microar rays, this is not an issue.
Howe ver, for pro tein microar rays, it is difficu lt to control the amount of
protei n present at each spot an d therefore it is advis able to divid e an y
meas ureme nt by the concent ration of the spot. The concent ration meas ure-
ment s can be obtai ned by hybridizi ng a protei n microar ray with a labeled
universal protein marker.

This section briefly described the most common techniques for normal-
izing microarray data. Many of these methods have been implemented in
published software tools that facilitate microarray normalization; examples
include Express Yourself (http://bioinfo.mbb.yale.edu/expressyourself/)
( Luscombe et al., 2003 ) an d SNOMA D (pevsner lab.kennedy kr ieger.org/
snomadi nput.htm l) ( Colantuoni et al., 2002 ).

Future improvements in microarray technology may eliminate the need
to correct for intensity and spatial bias, or even for normalization all
together. However, current technologies still produce substantial artifacts,
even if they are not evident from visual inspection of a scanned image.

Scoring for Significance

Following microarray normalization, the intensities are in a more suit-
able form for statistical testing. This section begins by exploring some of
the more common approaches for testing the significance of differences

http://bioinfo.mbb.yale.edu/expressyourself/
http://pevsnerlab.kennedykrieger.org/snomadinput.html
http://pevsnerlab.kennedykrieger.org/snomadinput.html
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between measured intensities generated from two biological conditions.
The discussion is then generalized to the multiple condition case and to
tiling and protein microarrays.
Fold Change

Assume for simplicity that we are interested in assessing differential
expression for just a single gene between two biological conditions. Call these
conditionsA andB. Further, assume that we havemultiple measurements for
the gene within each condition. Let M > 0 be the number of measurements
obtained for condition A and N > 0 be the number of measurements for
condition B. Note that M need not be equal to N but ideally they would
be equal. To designate the ith measurement from condition A, we will use
the notation Ai. We adopt the same convention for measurements of B.

Perhaps the simplest technique for comparing A and B is to compute an
average fold change between the two. Call this fold change statistic Sfold
and define it as

Sfold ¼ max

PM
i¼1 AiPN
i¼1 Bi

;

PN
i¼1 BiPM
i¼1 Ai

( )
: ð10Þ

In addition to calculating Sfold, we also choose cutoff values to deem the
statistic potentially interesting. A good way to choose this cutoff is to have
control features present on the microarray that are not expected to display
differential expression. With enough unique controls, the 95th percentile of
their Sfold statistics could be a useful cutoff. By the quantity 95th percentile,
we mean that 95% of all Sfold values are below this quantity. Such a cutoff
would suggest that values above this threshold would occur just 5% of the
time for genes not showing differential expression. More commonly, such
controls do not exist and an arbitrary cutoff is selected. Often, this cutoff is
set at two.
t Test

The fold‐change method utilizes just a single summary statistic (the
sum) for each condition. No information about how widely the measure-
ments vary is considered. In addition, there must be negative control spots
in the microarray design to assess how likely an observed fold change
would be if the gene was not expressed differentially. Application of the
t test addresses both of these issues.



302 DNA microarrays, part B [15]
The first step in carrying out a t test is to calculate the mean of
measurements from A and the mean of measurements from B. We will
symbolize these quantities �A and �B, respectively. We will also need to
calculate the conditions’ variances, �A

2 and �B
2. The next value calculated is

the standard error, SE

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2AðM � 1Þ þ s2BðN � 1Þ

ðM þN � 2Þ �M þN

MN

s
: ð11Þ

The details of what this quantity represents are beyond our scope. For
our purposes, it is worthwhile to note, however, that as �A and/or �B get
larger, so does the standard error. SE is large when data are highly variable.

The next calculation we must make is the t statistic. This value is simply
the difference between the two cell type means, divided by the standard
error calculated in Eq. (11):

St ¼
�A � �B

SE
: ð12Þ

We note that as the difference between �A and �B becomes large, so too
does the absolute value of St. In addition, as the uncertainty of these means
grows (manifest as the variances, �A

2 and �B
2), the statistic gets smaller.

Another way to view this statistic is that it expresses the differences
between two means in units of (roughly) standard deviations. This is an
advantage over the simpler Sfold statistic where variances are not consid-
ered. Another nice property about the t statistic is that it is very well
studied by statisticians. In fact, we know how likely a given value of St is
givenM, N, and the null hypothesis that there is no real difference between
the two means. Therefore, we can assign a p value for any value of St
without the requirement of negative control spots.

The corresponding p values of the t statistic should be interpreted
carefully, however. The knowledge we have about these probabilities
assumes that the observations from each cell type are distributed normally
(bell curve shaped). Unfortunately, replicate measurements coming from a
microarray experiment do not always behave this way (Thomas et al., 2001)
and should be considered when utilizing the t test.

Another potentially troublesome aspect of the t test is that two quan-
tities can lead to large values of St. The first is the value we are chiefly
interested in, the difference between two conditions. The second quan-
tity that can lead to large St is a small SE term. A problem with most
microarray experiments is that there are few replicates available from
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which to calculate the standard error. This leads to the situation where SE
can be quite small just by chance, resulting in high St values regardless of
differences between the two groups of measurements. This is a situation we
may not want to deem significant and worthy of further study. A useful
guard against this situation is to require low p values computed with the
t test and some fold‐change criterion to consider genes for further study
(Rinn et al., 2004).

Significance Analysis of Microarrays (SAM)

The statistic used in SAM (Tusher et al., 2001) is a slight variant of the
one given in Eq. (12). The only difference is the so‐called ‘‘fudge factor’’ f:

Ssam ¼
�A � �B

SEþ f
: ð13Þ

The purpose of f is to disallow inflated test statistics solely due to
standard errors close to zero. Effectively, it sets a lower bound on the
denominator of Eq. (13). This factor gives an advantage over the
t statistic but it is arguably not the greatest contribution of SAM.

In SAM, the concept of permutation testing was introduced as a means
to calculate a false discovery rate (FDR). To perform this technique, we
first fix a p value threshold T. Next, we identify those genes that have
p values less than T. These are our positives. Then, for each gene, the class
associations are randomized, that is, we randomly assign measurements for
that gene to one of the two classes being compared. Using Eq. (13), Ssam
is computed for each of these randomized genes. Once the Ssam statistics
are computed along with their associated p values, the number of these
p values less than T is counted. The randomization procedure is repeated a
number (100 or 1000) of times and a count is made for each repetition. The
median of these counts divided by the total number of genes in the study is
then the reported FDR. The intuition of this is that the randomized genes
represent genes that do not experience differential expression; therefore,
any time one of their p values falls below T, this event can be considered a
false discovery.

The notion of a FDR is an important one for microarray experiments
having thousands of genes that need to be tested. It helps interpret results
of an experiment in light of the multiple testing problem.

Cyber T

Equat ion (13) introdu ced the fudge factor f. The pur pose of adding this
factor was to guard against selecting genes that have a low mean difference
and unusually low variances. Another way to protect against such situations
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is to apply another variation of the t test, called Cyber T (Baldi and Long,
2001). In this test, standard error is replaced by an expression that is a
function of both the standard error of the gene and the standard error
computed over all genes. The assumption here is that most genes should
have similar standard errors; by utilizing this assumption, we can lessen the
degree to which unexpectedly low or high gene‐specific standard errors
affect the t statistic. This method has been demonstrated to be quite power-
ful for detecting differences between two samples in experiments using
Affymetrix GeneChip brand microarrays (Choe et al., 2005).
Wilcoxon Rank Sum Test

An alternative method for computing significance levels when t test
assumptions do not hold is the Wilcoxon rank sum test. This test, like many
other so‐called nonparametric tests, transforms measurements to their
magnitude ranks and calculates probabilities based on rank‐based statistics.
This test was introduced in the microarray literature in Troyanskaya et al.
(2002). (As an aside, it should be noted that when the assumptions of the
t test hold, that test should be used, as it is more likely to detect a difference
if it exists.)

The basic idea of the Wilcoxon rank sum test is to count the number of
times a measurement from one group is greater than a measurement from a
second group. The properties of how this value behaves under the null
hypothesis of no difference between the groups’ medians are well known so
we can directly calculate a p value from this number. The actual computa-
tions of the procedure are not straightforward and lie beyond the scope of
this chapter.
Wilcoxon Signed Rank Test

The previously described Wilcoxon rank sum test is generally applica-
ble for comparing two sets of numbers. When the two sets of numbers are
paired in some way (such as gene expression levels before and after a
treatment), a more powerful nonparametric test is available. This test is
called the Wilcoxon signed rank test. To begin, the differenceDi for the ith
spot is calculated for each pair in a set of N measurements:

Di ¼ Xi � Yi ð14Þ
where Xi and Yi are the paired measurements. Next, each Di is assigned a
rank value Ri of its absolute value
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Ri ¼
X

Rank of jDij ð15Þ

Next, we sum the ranks of those Di values that are positive

Rþ ¼
X

Ri with Di > 0 ð16Þ
and do the same summation for ranks that have negative Di values

R� ¼
X

Ri with Di < 0: ð17Þ
Now if we sum all ranks regardless of whetherDi is negative or positive, we
will obtain the quantity 1þ 2þ . . .þN ¼ NðNþ1Þ

2 . If there is no difference
between the paired values being compared, then both Rþ and R� should
be roughly half of this previous quantity: NðNþ1Þ

4 Therefore, if we take one of
the R values as in

S ¼ min ðRþ, R�Þ; ð18Þ
we known that under the null hypothesis of zero difference between the two
groups, S is expected to be NðNþ1Þ

4 . We then determine how far away S is
from this expected value. Again, the statistic is well studied, and given S and
the number of measurements N, we can compute a corresponding p value.

The Wilcoxon signed rank test has utility in experimental designs
having perfect match and mismatch probes. In fact, this a commonly used
statistic for Affymetrix tiling microarray analysis.

Analysis of Variance (ANOVA)

Previous sections showed how to test for the differential spot intensities
measured between two conditions. Frequently, however, a study consists of
three or more conditions and the researcher would still like to deduce
which genes differ in expression levels between the conditions under study.
The standard statistical tool for solving such problems is the ANOVA.

To begin, we need a null hypothesis. For ANOVA, our null hypothesis
will be that for all conditions, the gene under study has the same expression
level. It may seem strange that a model for assessing equality of means is
called analysis of variance. However, the basic idea of ANOVA is to
compare the variance of within‐condition means to the variance calculated
within each condition. (The variance of within‐condition means will here-
after be called the between condition variance, and the variance within the
samples as the within condition variance.)

Consider measurements Xi,j for a single gene where subscript i indicates
that the measurement is from the ith biological condition being studied and
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j denotes the jth measurement from this condition. If we symbolize the
average intensitywithin condition i as �Xi and the average of all measurements
as �X , we can compute the between condition variance as

s2between ¼
PK

i¼1 Nið �Xi � �X Þ2
K � 1

ð19Þ

where K is the number of conditions being studied, N is the total number of
measurements, and Ni is the number of measurements taken for condition i.
Note that if there are no differences among the conditions, then the variance
of their means is small. Likewise, if there are differences the terms ( �Xi � �X )2

become larger. We would like to compare this number to the amount of
variation we expect if there are no differences. We can estimate this level
of variation by calculating the within condition variance:

s2within ¼
P

i;jðXi;j � �XiÞ2
N �K

: ð20Þ

We can then compare these two variances [Eqs. (19) and (20)] via a
ratio:

Sanova ¼ s2between
s2within

: ð21Þ

Like previous statistics, we know how this statistic behaves under the
null hypothesis of no differential expression and we use this information to
calculate its corresponding p value.

The aforementioned discussion on ANOVA is intended to provide a
basic feel of the technique and is useful in the case where just one factor
(such as biological condition) is expected to affect the measured intensities.
Clearly, it can easily be the case that several factors affect microarray
measurements. As an example, let us assume that our microarray measure-
ments are expected to vary due to two independent factors in a cancer study.
First, we might expect to see differences based on which of several tissue
types the measured mRNA came from. Example tissues might include
‘‘healthy tissue,’’ ‘‘localized cancer,’’ and ‘‘metastatic cancer.’’ Second, we
could also expect that expression measurements are affected by the race of
the individual from which the tissue was obtained. The goal of the study is to
identify whether the expression level of some gene changes among the
healthy, localized, and metastatic samples.

Given the stated goal of the study, it is tempting to simply apply
Eqs. (19), (20), and (21) to elucidate an answer. The problem with doing
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so is that �2within is large when there are unaccounted sources of variation.
This translates into lower values of Sanova and higher p values.

Why would this higher �2within be the case? Recall that the two factors
are independent. Therefore, when we bin data by a single factor (e.g.,
tissue), each bin contains a number of measurements from each class of
the other factor (race). Now if there are differences among the classes of
the second factor, this will lead to some spread within each tissue bin. This
spread leads to higher values of �2within. To give us the best chance of
detecting a difference among the factor we care about, we need to do some
additional work.

First, accounting for two sources of variation requires a little more
notation. Previously, we used Xi,j to indicate the jth measurement of the
ith condition. Now because we have an additional source of variation
we wish to model, we must extend this to the term Xi,j,k, which symbolizes
the kth measurement of those belonging to both the ith class of one factor
and the jth class of the second. For example, X3,1,7 could symbolize the
seventh measurement taken of those of the third tissue type (e.g., meta-
static tissue) and the first race (e.g., African). In addition, we previously
used the variable K to indicate the number of classes we were testing
between. Now in addition to K, we also need a variable that denotes the
number of classes of the other factor we are studying. Let this variable
be B. In our example we might have K ¼ 3 (‘‘healthy,’’ ‘‘localized,’’
and ‘‘metastatic’’) and B ¼ 4 (‘‘African,’’ ‘‘Asian,’’ ‘‘Caucasian,’’ and
‘‘Latino’’).

In studying the differences between the different stages of cancer, we
calculate �2between as before using Eq. (19), where we use tissue labels as the
different classes. The main difference in our analysis lies in how �2within
is calculated. If we let �Xi;j be the mean of all measurements where factor 1
(e.g., tissue type) is i and factor 2 (e.g., race) is j, then �2within is calculated as

s2within ¼
Pi;j;kðXi;j;k � �Xi;jÞ2

N � BK
: ð22Þ

We can then use Eq. (21) as before and use knowledge of its distribution
under the null hypothesis to obtain a corresponding p value. Intuitively, all
we have done in moving from one factor to two is to adjust the within
condition variance so that it does not include potential variation fromknown
sources such as age, race, or gender. Accounting for these sources of varia-
tion gives us an enhanced ability to detect differences between some condi-
tions of interest. This increase in sensitivity comes at a cost, however. To
calculate �2within accurately, there must be a number of measurements
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available for each combination of the factors we wish to model. As the
number of factors in our model increases, so too does the number of
replicate experiments needed to estimate �2within.

Given that ANOVA can account for different sources of variability, it is
also capable of merging microarray normalization with differential expres-
sion detection. To do this, sources of variation within the model are not
only those of biological interest (such as cancerous vs healthy tissue), but
also those of technical concern (such as microarray used and dye used for
labeling) (Kerr et al., 2000). The application of ANOVA to microarray
data in this context is reviewed nicely in Kerr (2003).

Extensions to Tiling Microarrays

The tests described earlier can be applied to tiling microarrays as well.
Recall that in a tiling microarray, we are looking for regions of consecutive
probes (in genomic space) that exhibit intensities higher than some back-
ground level. To assess this, a windowing approach is often taken where we
do not simply assess a single feature by itself, but rather we assess that feature
along with a window of neighboring features. To apply the t statistic, for
example, we may test the intensities of each window to a random sampling
of intensities from any genomic region, to intensities from within putative
promoters (which are not expected to be transcribed), or to a control set of
features. For Affymetrix tiling microarrays that contain a mismatch probe
for every perfect match probe on the microarray, the mismatch probes can
serve as this control set to which the comparison can be made. The extension
of this approach to fold change, SAM, etc. is straightforward.

Following scoring each window in this manner, the resulting statistics
are thresholded by some criteria (set by negative and positive control
probes or theoretical considerations). The result is a set of putatively
‘‘on’’ and ‘‘off’’ probes. Spots that meet the threshold criterion and that
are within a short distance of each other in genomic space are combined
(the spacing between probes above threshold must be less than maxgap bp
apart) to form larger continuous regions. These combined fragments are
then filtered to remove short fragments (require a length longer than
minrun bp) that are likely to be spurious results.

Extensions to Protein Microarrays

For antibody microarrays that assess concentrations of proteins in
solution, the methods described in this section can be applied directly to
testing abundance differences between two or more biological conditions.
For functional protein microarrays, however, the question is usually one of
event detection. In these cases, control experiments must be designed so
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that they represent the activities of proteins in some baseline state. Once a
suitable control is identified, then the methods described here are suitable
as well.
Summary

The microarray platform is emerging as a standard tool in biological
and biomedical research. This is partly because of its ever‐expanding
utility, as evidenced by both tiling and protein microarray applications.
As is true for any standard tool, it is important that the microarray tech-
nology be well understood by its practitioners. For microarrays, part of this
technological understanding is resident in the understanding of microarray
statistics. Here, in this chapter, widely used methods for microarray nor-
malization and significance testing are presented with the aim of providing
this understanding in at least a broad sense. We have indicated where and
when gene‐based microarray statistics can be useful for tiling and protein
microarrays in our discussion. The information conveyed was intended to
provide at least a motivation and intuition for what happens to microarray
data after it leaves the bench.
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