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ABSTRACT

Datasets obtained by large-scale, high-throughput methods for detect-

ing protein–protein interactions typically suffer from a relatively high

level of noise. We describe a novel method for improving the quality

of these datasets by predicting missed protein–protein interactions,

using only the topology of the protein interaction network observed

by the large-scale experiment. The central idea of the method is to

search the protein interaction network for defective cliques (nearly

complete complexes of pairwise interacting proteins), and predict

the interactions that complete them. We formulate an algorithm for

applying this method to large-scale networks, and show that in practice

it is efficient and has good predictive performance. More information

can be found on our website http://topnet.gersteinlab.org/clique/

Contact: Mark.Gerstein@yale.edu

Supplementary information: Supplementary Materials are available

at Bioinformatics online.

1 INTRODUCTION

A fundamental problem in modern biology is the identification of

the complete set of interactions among the proteins in a cell (Jansen

et al., 2003; Marcotte et al., 1999; Goldberg and Roth, 2003).

Different experimental methods are available to identify such inter-

actions, and they can be roughly divided into two main categories:

small-scale (low-throughput) and large-scale (high-throughput)

techniques. Given a set of proteins, small-scale techniques such

as co-IP determine the interaction between one pair of proteins

at a time (Bader et al., 2003; Mewes et al., 2002; Xenarios et al.,
2002; Xia et al., 2004). On the other hand, large-scale techniques,

e.g. yeast two-hybrid and TAP-tagging, allow identifying a large

number of interacting pairs in a single experiment (Gavin et al.,
2002; Ho et al., 2002; Ito et al., 2000; Uetz et al., 2000).
With the advent of genome-wide analysis, we are interested in the

identification of the interaction among a great number of proteins

(even of all the proteins in a genome). When the number of proteins

is in the thousands, the number of possible interacting pairs is in the

millions (Kumar and Snyder, 2002). To discover all these interac-

tions using small-scale experiments becomes very labor-intensive

and time-consuming, and in this situation large-scale experiments

are preferred.

However, low-throughput experiments allow much more precise

identification of the interacting pairs than high-throughput

experiments—the latter are known to be more error-prone

(Jansen et al., 2002; von Mering et al., 2002).
Two types of errors are possible: the large-scale experiment can

wrongly indicate that an interaction exists, i.e. yield a false positive

(FP); or it can fail to detect an interaction that actually exists, thus

producing a false negative (FN). However, experimentalists would

agree that these two types of errors occur with different frequency

in large-scale experiments. While FPs have ‘higher visibility’ owing

to the relatively small number of true interactions, it is generally

observed that experiments allow a higher absolute degree of con-

fidence when an interaction is observed, but a much lower degree

when no interaction is detected. In other words, most of the errors

(as an absolute count, not relative to the numbers of actual inter-

acting or non-interacting protein pairs) are FNs: it is believed that

when no interaction is detected, it is not unlikely that the interaction

actually exists, but the experiment has failed to detect it. In support

of this observation, Figure 1 shows the differences between the low-

throughput and high-throughput experimental data on protein–

protein interactions in a subset of 56 proteins of Saccharomyces
cerevisiae, for which we were able to obtain complete matrices of

experimental results.

The results of the two types of experiments were the same for

1033 of the 1596 pairs of proteins (including possible self-

interactions); of the 563 cases when the results were different,

521 (92.5%) were FNs and 42 (7.5%) were FPs. Ideally, we

would like to have a computational method which would be able

to correct many of the errors made by large-scale interaction experi-

ments. In this paper we propose a new method, based purely on

topological properties of graphs representing protein interaction

networks, that attempts to detect those interactions that have

been missed by large-scale experiments. Our algorithm searches

for defective cliques in these graphs and predicts the interactions

which complete them to full cliques.
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The basic idea of the algorithm derives from the way in which

large-scale experiments are carried out, and particularly from

the matrix model interpretation of their results (Bader and

Hogue, 2002; Gavin et al., 2002; Ho et al., 2002; Rigaut et al.,
1999). In these experiments one protein, the bait, is used to pull out

the set of proteins interacting with it, i.e. its protein complex, in

the form of a list. When such lists differ only in a few elements, it

is reasonable to assume that this is because of experimental

errors, and the missing elements should therefore be added. Each

list can be represented as a fully connected graph in which

proteins occupy the nodes. Then the problem of identifying lists

that differ in only a few elements is equivalent to finding a

clique with a few missing edges, which we shall call defective

clique.

The rest of this paper is organized as follows. In Section 2 we

shall introduce some basic notions and give an overview of our

method. In Section 2.2 we present a more efficient and practically

useful algorithm implementing the method, and in Section 3 we

present the results of applying the method to several datasets

obtained from experimental observations of the protein interaction

network of yeast.

2 METHODS

Before describing our approach, let us introduce some basic terms. A graph

is a pair (V, E) of a set of vertices V and a set of edges E�V · V where

each edge is a pair of the vertices it connects; if <v1, v2> is in E , then the

vertices v1 and v2 are adjacent. In a graph representing a protein interaction

network, the vertices are proteins, and the edges are the pairs of interacting

proteins.

A clique in a graph is a set K of vertices such that K · K� E i.e. each pair

of vertices in K is connected by an edge in E. The size of this clique is the

number of vertices in it.

As discussed in Section 1, under the matrix model interpretation of the

results of large-scale experiments, two proteins interacting with the same

protein clusters are likely to interact with each other. Thus in graph-theoretic

terms our approach is based on the following observation about protein

interaction networks:

(�) If vertices P and Q are both adjacent to each vertex in a clique K, then

it is likely that P and Q are adjacent to each other, if they are not adjacent

already.

This observation can be depicted as shown in Figure 2A; in this example

the size of the clique K is 5. The dashed edge between P and Q corresponds

to an interaction which is missing from the experimental data, but

which [according to observation (�)] is very likely to occur. We say that

P, Q and K form a defective clique KPQ with a missing edge PQ. (Note

that a defective clique could in theory have more than one missing edge.)

Clearly the size of K plays an important role in determining how

likely it is that P and Q interact. For example, if the size of K is 1

(i.e. P and Q both interact with one or more proteins, but those proteins

do not interact among themselves), the likelihood of an interaction

between P and Q is much smaller than in the case when the size of K is,

say, 42. Thus a natural parameter of a prediction algorithm based on

observation (�) is the minimal size k of K for which the interaction PQ

is predicted.

Another parameter with which we can extend observation (�) is the

number of edges missing from the clique when its size is sufficiently

large. We will discuss the effects of this parameter in Section 2.2, when

we describe our algorithm in detail.

2.1 An algorithm for finding defective cliques

Our definition of a defective clique does not immediately suggest a method

for finding such patterns in a protein interaction network. For this purpose it

is useful to find an alternative characterization of a defective clique in

standard graph-theoretic terms, which will allow us to use some off-the-shelf

algorithms.

The main idea of our algorithm is based on the realization that a defective

clique KPQ of size n with one missing edge is the union of two (complete)

cliques of size n � 1, namely K [ {P} and K [ {Q}, as shown in Figure 2B.

Thus we can reduce the algorithm for finding defective cliques to the fol-

lowing two main steps (which may be repeated until no new edges are

added):

Step 1: Find all cliques in the network.

Step 2:

� Find pairs of cliques overlapping on all but one node each.

� In each of these pairs predict the edges between the non-overlapping

nodes.

� Add the new edges to the network.

Interactions observed:

in small-scale but not in large-scale (FN)

in large-scale but not in small-scale (FP)

the same in both types

Fig. 1. Agraphical representation of the symmetricmatrix of the differences between complete protein–protein interaction data obtained in small-scale and large-

scale experiments on 56 proteins of S.cerevisiae (only the upper triangle is shown). There is a colored box for each cell in the matrix indicating the type of the

interaction between proteins i and j. White boxes indicate interactions observed in small-scale but not in large-scale experiments (FNs); black boxes stand for

interactions observed in large-scale but not in small-scale experiments (FPs); gray boxes show protein pairs for which both the small- and the large-scale

experiments produced the same result. The number of FNs exceeds the number of FPs by an order of magnitude.
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(Note that defective cliques with more than one missing edge could also

be determined by applying this recipe.)

However, directly applying this naı̈ve recipe to typical protein interaction

networks is unrealistic for the following reason: Since every subset of nodes

in a given clique is itself a clique, the number of all cliques in a graph is at

least 2q, where q is the size of the largest clique in the graph. For example,

the large-scale experimental data for the protein interaction network of

S.cerevisiae we used to test our algorithm (see Section 3) contains four

cliques of size 38; this yields >1012 cliques (even if we do not consider

cliques of size <5, whose number is negligible), hence >1023 pairs of cliques

to check in Step 2 of the algorithm. Since this number is prohibitively large,

we need a more effective formulation of the algorithm. For this purpose in

the next section we design an equivalent algorithm which only considers the

maximal cliques in the graph.

2.2 Improving efficiency using maximal cliques

A maximal clique in a graph G is one which is not contained in any other

clique in G. In the worst case the problem of finding all maximal cliques still

takes time exponential in the size of the graph11; however, if Step 1 is

modified to only produce the maximal cliques in the graph, for the reasons

discussed in the previous section the output of Step 1 would be reduced by

a factor exponential in the size of the largest clique. This would lead to a

corresponding reduction (by the square of that factor) of the running time of

Step 2 of the algorithm.

In practice, the protein interaction networks are rather sparse

[e.g. <15 000 interactions are observed with high confidence in the network

of S.cerevisiae, out of over 18 million possible pairs of about 6000 proteins

(von Mering et al., 2002)]. Our results show that existing algorithms for

finding maximal cliques (Tsukiyama et al., 1977) are very efficient on graphs

with this structure. However, if we only compare maximal cliques for over-

lap on all but one node each, as we did with all cliques in the naı̈ve version,

the output of this algorithm will not be the same as that of the naı̈ve version.

The reason is that if a defective clique consists of a core clique K and two

nodes P and Q, Step 2 of the algorithm will not, in general, attempt to match

the cliques K [ {P} and K [ {Q}, but two maximal cliques they are con-

tained in, say K [ KP and K [ KQ (note that KP and KQ always exist, but are

not necessarily unique). However, KP will in general contain other nodes in

addition to P, and these nodes might not all appear in KQ. As a result, the

non-overlapping partsKP andKQ of the maximal cliques will consist of more

than one node each, and Step 2 of the naı̈ve algorithm will fail to predict the

edge PQ.

Hence, to obtain the same results as with our original algorithm, we have

to modify Step 2 of the algorithm to look for partial overlaps of maximal

cliques which differ in more than one node. This leads us to a generalization

of the notion of a defective clique, shown in Figure 2C. To obtain the same

result as in the original approach, any pair of nodes Pi and Qi, belonging to

the two non-overlapping components KP and KQ respectively, must be

predicted as interacting, because the original algorithm would have pre-

dicted it (since it completes the defective non-maximal clique KPiQi).

The maximal size l of non-overlapping subcliques KP and KQ is a parameter

of the algorithm.

Thus one round of the algorithm we use in our experiments becomes

Step 1: Find all maximal cliques in the network.

Step 2:

� For each pair ofmaximal cliques, overlapping on at least k nodes andwith

non-overlapping components of at most l nodes each, predict the edges

betweenall pairs of nodes between the twonon-overlapping components.

� Add the new edges to the network.

Since even the number of maximal cliques can be significant (in the

hundreds of thousands for some of our experimental datasets), and their

sizes can be in the hundreds of nodes, the number of comparisons between

nodes in pairs of cliques in Step 2 can still be formidable in practice. We

further reduce the time complexity of Step 2 by organizing the cliques

(represented as strings sorted by node index) in a suffix tree. This structure

allows us to reuse some comparison results among cliques sharing a common

prefix of nodes.

Step 1 of the algorithm has an upper bound of O(nmm) for its time

complexity (Tsukiyama et al., 1977), where n is the number of nodes, m,

the number of edges, and m, the number of maximal cliques in the graph.

This implies an upper bound of O(nmm +m2) for the time complexity of one

K

P Q

K

P Q

K

P Q

K

P1

P3

P2

cliq  KP

Q1

Q3

clique KQ

Q2

A

B

C

Fig. 2. Schematic illustrations of a defective clique and how the concept

evolved. (A) A defective clique in a protein interaction network. KP and

KQ are both (k + 1)-cliques, with k overlapping vertices (i.e. clique K). The

dashed edge between proteinsP andQ corresponds to a predicted interaction.

KPQ is a defective clique with a missing edge PQ. (B) The decomposition of

the defective clique (KPQ) into the union of two overlapping cliques (KP and

KQ). (C) Generalized defective cliques. In general, a defective clique consists

of two cliques: K [ KP and K [ KQ. There are two parameters to determine a

defective clique: k, the size of the overlapping subclique (i.e. K); l, the size of
the non-overlapping subcliques (i.e.KP[KQ). In the defective cliqueK[KP

[ KQ, the dashed edges between subcliques KP and KQ correspond to pre-

dicted interactions.

1More precisely, the problem is NP-complete, i.e. only exponential-time

algorithms for solving it are known.
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round of the algorithm (Step 1 followed by Step 2). In our tests the running

time was indeed dominated by the time spent in Step 2.

3 RESULTS

We tested our method on two datasets of protein–protein interac-

tions in S.cerevisiae, obtained from large-scale experiments (Bader

and Hogue, 2002; Yu et al., 2004). In both cases we compared its

predictions with a ‘gold standard’ set of protein pairs, known with

high degree of confidence to be ‘positive’ [interacting—protein

pairs in the same protein complex determined by the MIPS complex

catalog (Mewes et al., 2002)] or ‘negative’ [non-interacting—

protein pairs with different sub-cellular localizations (Kumar

et al., 2002)], as published in Jansen et al. (2003). Here, the

gold standard positives are a collection of small-scale experiment

results (Mewes et al., 2002).
Since neither the large-scale experimental datasets nor the gold

standard set are complete (i.e. there are protein pairs for which no

Fig. 3. Subset of the gold standard set without missing information and the corresponding large-scale interaction sub-network. (A) The gold standard. There are

fourmaximal cliques in the gold standard set. Please see Supplementary Figure 1 for the network viewof these four cliques. (B) The large-scale experimental data.

There are six maximal cliques and 15 singleton nodes in the large-scale experimental data. (C) Network view of the experimental data in (B), excluding the

singletons.
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experiment has been performed), the question of how to treat miss-

ing information arises. We took a conservative approach, assuming

that no information indicates no interaction. Since the set of new

interactions, predicted by the algorithm, does not decrease with the

addition of edges to the input data, our results represent a lower

bound on the predictions that would be made with less missing

information.

3.1 Performance on a complete dataset

To illustrate the method on a small example, in which we can

accurately assess its performance, we considered a sub-graph of

the protein interaction network of S.cerevisiae for a set of 43

proteins, for which the gold standard is complete (for each pair

of proteins it is known if they interact or not, i.e. there is no missing

information). Here, we used the large-scale protein interaction net-

work obtained by Yu et al. (2004). The graph of the gold standard on
this subset of proteins consists of four components, all of them

cliques; we will refer to them as to G1 through G4, as defined in

Figure 3A. The graph of the large-scale experimental dataset con-

sists of 6 maximal cliques named E1 through E6, of size at least 2,

plus 15 singleton nodes (cliques of size 1), shown in Figure 3B and

C, where the data is presented in the form obtained after running

Step 1 of the algorithm. Note that all elements of clique E2 except

for MRPL38 appear also in clique E1 (protein names in bold;

Figure 3B), and that the pairs of cliques E3–E4 and E4–E5 each

share a node.

Applying Step 2 of the algorithm with parameters k¼ 6 and

l¼ 17 to the experimental data finds the partial overlap between

cliques E1 and E2, and predicts the interactions between MRPL38

and all nodes in E1 which are not in E2. After these edges are added,

the cliques E1 and E2 are merged into one clique of size 24, which is

a subset of the gold standard clique G1, missing only the protein

MRPL49 (in the experimental dataset this node is a singleton, so the

clique completion is unable to recover its interactions). These are

the only new interactions the algorithm predicts. All of them are

positive in the gold standard for this set of proteins, therefore all of

the predictions in this case are correct. G1, E1 and E2 consist of

Mitochondrial ribosomal proteins.

3.2 Performance on the available S.cerevisiae dataset

We applied the clique completion method to a large-scale experi-

mental dataset of the protein interaction network of S.cerevisiae
obtained by Bader and Hogue, (2002). Unlike the smaller set ana-

lyzed in the previous section, the gold standard for the proteins in

this dataset is incomplete (as is the dataset itself).

The initial graph contains 6645 edges between 2283 nodes.

In this graph Step 1 of the algorithm found 4934 maximal cliques.

Step 2 of the algorithm, configured to search for partial overlaps

of size at least k¼ 4 and non-overlapping parts of size at most l¼ 3,

predicted 437 new interactions. Adding these interactions reduces

the number of maximal cliques by 276, showing consolidation of

smaller complexes into larger ones, as expected.

As a criterion of the effectiveness of the algorithm we used

the likelihood ratio of the predicted interactions, defined in

Jansen et al. (2003) as

L ¼ ðPþ=GþÞ
ðP�=G�Þ

‚

where P+ is the number of true positives—predicted interactions

which are positive in the gold standard; P� is the number of FPs—

predicted interactions which are negative in the gold standard; G+
is the total number of positive pairs in the gold standard and G� is

the total number of negative pairs in the gold standard.

Higher values of L correspond to sets of predictions having higher

overlap with the positive and/or lower overlap with the negative

gold standard, and generally indicate better predictors. One

of the advantages of calculating L is that it naturally takes into

account the biased sampling between positives and negative,

which is often the case for biological data (see Supplementary

Materials).

The gold standard set contained G+ ¼ 8250 positive and G� ¼
2 708 622 negative pairs when restricted to the proteins in this

experimental dataset. Of the 437 interactions predicted by the

method in this test, 94 were in the gold standard set; of them

73 were positive (P-values < 10�10; see Supplementary Materials)

and 21 negative, which yields a likelihood ratio of 1141.3, sig-

nificantly higher than the likelihood ratios of other single

features reported in Jansen et al. (2003) (essentiality, expression
correlation, MIPS function and GO biological process), which are

below 400.

The values of the parameters chosen in our test are in a ‘plateau’

of relative stability of the results. In a wider spectrum of parameter

values, the likelihood ratio of the predicted set was between 59.13

and 3720.94 when varying the parameters of the algorithm as fol-

lows: k (the minimal overlap size) between 4 and 7, and l (the
maximal size of the non-overlapping parts) between 1 and 20;

the number of predicted interactions was between 12 and 8993.

The average running time was <4 s on a desktop machine. We

also calculated the receiver operating characteristic (ROC) curve,

and compared our method with the four available large-scale yeast

interaction experiments. Our method out-performs all of them

(Fig. 4).

Another parameter indicating the quality of the prediction is the

functional enrichment in the predicted interactions, i.e. the ratio of
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Fig. 4. The trade-off between detection rate and error rate for different values

of k and l to evaluate the performance of our defective clique method. The

curve is also known as the ROC curve (Egan, 1975). The inset highlights the

lower left corner of the ROC curve to show the comparison between our

method and the four large-scale experimental datasets.
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the frequency of functionally similar pairs among the predictions to

the expected frequency in the yeast genome (see Supplementary

Materials). (Note that functional similarity is not a feature taken

into account when constructing the input set or predicting the new

interactions.)

The distribution of the likelihood ratio and functional enrichment

of the predicted edges as a function of the maximal size of a defect-

ive clique they complete is shown in Figure 5A. They show that

even for small sizes of the overlap the predicted edges are much

more likely to be in the positive than in the negative gold standard,

and are significantly more likely to be functionally similar than the

average interacting pair.

Taking into account the size of the predicted set and the fact

that the predictions were made only on the basis of the topology

of the input set, we believe the high value of these measures is a

strong argument for the usefulness of this method as a predictor of

new interactions.

3.3 Biological examples

With the addition of the 437 predicted interactions, we were able to

discover many protein complexes that are not present in the initial

network. For example, Casein kinase II complex is composed of

two catalytically active subunits (CKA1 and CKA2) and two regu-

latory subunits (CKB1 and CKB2). It is involved in regulating cell

growth and proliferation (Ackermann et al., 2001). However, based
on the original large-scale interaction experiments, the interaction

between CKA2 and CKB1 is missing. Therefore, the whole com-

plex could not be determined as a fully connected clique. We were

only able to discover two three-cliques: {CKA1, CKA2, CKB2} and

{CKA1, CKB1, CKB2}. Only after our defective clique procedure,

CKA2 and CKB1 was predicted to be connected and the whole

complex became a four-clique (Fig. 6A).

Another good example is the exosome complex, consisting of

seven proteins (Fig. 6B). It is involved in RNA processing

(Mewes et al., 2002; Mitchell et al., 1997). In the original large-

scale interaction network, RRP43, RRP4 and RRP42 are

disconnected. Therefore, the whole complex is divided into three

five-cliques: {RRP42, RRP46, SKI6, DIS3, RRP45}, {RRP43,

RRP46, SKI6, DIS3, RRP45} and {RRP4, RRP46, SKI6, DIS3,

RRP45}. Our defective clique procedure successfully predicted

the interactions among RRP43, RRP4 and RRP42. The complex,

thus, became a seven-clique as described in the MIPS complex

catalog (Mewes et al., 2002).

3.4 Comparison with related work

King et al. have designed the Restricted Neighborhood Search

Clustering (RNSC) algorithm, which partitions proteins into

clusters depending on their interactions (King et al., 2004). The
RNSC algorithm can also be viewed as a method for predicting new

overlap size total new edges positive negative L functional enrichment

4 259 31 5 2035.57 7.922

5 108 22 7 1031.86 9.784

6 52 18 7 844.25 11.173

7 14 2 2 328.32 8.69

8 4 0 0 N/A 11.173

number of
proteins

number of
observed

interactions

new interactions
predicted by

RNSC

new interactions
predicted by

clique completion

overlap of
predictions

probability of
overlap of this
size at random

988 2000 59 461 24 <10-56

2401 11000 337 2710 101 <10-120

5321 78000 1581 28180 112 <10-120

A

B

Fig. 5. (A) Distribution of the likelihood ratio L of predicted edges as a function of themaximal size of a defective clique they complete. (B) Comparisonwith the

predictions of the RNSC algorithm on three of the datasets published in King et al. (2004).

CKA1

CKB2CKB1

CKA2

RRP43

DIS3
SKI6

RRP46
RRP45

RRP42 RRP4

A

B

Fig. 6. Two biological examples of protein complexes that can only be dis-

covered by our defective clique method. (A) Casein Kinase II complex con-

sisting of fours proteins. (B) Exosome complex consisting of seven proteins.
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interactions, if we consider all pairs of proteins in a predicted cluster

to be interacting. We compared the predictions of RNSC with those

of our algorithm on the datasets published in King et al. (2004),
which are based on the data of von Mering et al. (2002); the results
are shown in Figure 5B. Since the two algorithms represent very

different approaches to discover clusters, the overlap of their

predictions is noteworthy.

Bader and Hogue also proposed the Molecular Complex Detec-

tion (MCODE) algorithm to discover protein complexes, which can

be viewed as another way to predict new interactions (Bader and

Hogue, 2003). The method essentially looks for k-cores in the net-

work. A k-core is a sub-graph G of n (n � k) vertices with minimal

degree k [in G, degree (v) � k for every v � G]. By definition, all

defective cliques determined with the parameters k and l are at

least (k + 1)-cores, i.e. results from our method will be a subset

of the MCODE method. Therefore, our predictions are much

more stringent than theirs, whereas the MCODE method could

potentially discover more interactions.

4 CONCLUSION

We presented a method for predicting new protein–protein inter-

actions, based purely on topological properties of networks of

observed interactions. Comparing the results with the gold standard

set and functional annotations confirmed that it is a very good

predictor. While computationally expensive, we believe the

method has the advantage of being more robust by virtue of its

independence of non-topological features such as functional

classification.
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