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Abstract. We review recent computational advances in the study of membrane proteins,
focusing on those that have at least one transmembrane helix. Transmembrane protein regions
are, in many respects, easier to investigate computationally than experimentally, due to the
uniformity of their structure and interactions (e.g. consisting predominately of nearly parallel
helices packed together) on one hand and presenting the challenges of solubility on the other.
We present the progress made on identifying and classifying membrane proteins into families,
predicting their structure from amino-acid sequence patterns (using many different methods),
and analyzing their interactions and packing. The total result of this work allows us for the first
time to begin to think about the membrane protein interactome, the set of all interactions
between distinct transmembrane helices in the lipid bilayer.
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1. Introduction

Helical membrane proteins represent approximately 20–30% of all open reading frames (ORFs)

in sequenced genomes. To obtain the total number of membrane-associated proteins, one would

add b-barrel proteins, proteins anchored by lipidic groups, and non-hydrophobic proteins that

are bound in membrane complexes to this percentage as well. Thus, a large portion, perhaps even

a majority of genes is related to membrane functions. In this review, we focus on the proteins

having at least one putative transmembrane (TM) helix. In general, the TM regions comprise

18 or more amino acids with a largely hydrophobic character. These sequence features can be

identified in primary sequences using hydrophobicity scales (Kyte & Doolittle, 1982 ; Steitz et al.

1982 ; Engelman et al. 1986 ; von Heijne, 1992 ; Wimley & White, 1996). Recent advances in

the field of membrane protein assembly and structure have been reviewed (von Heijne, 1999).

In the following, we discuss current advances in genomic, structural and functional aspects

within the field of membrane proteins, largely from a computational point of view.

Membrane proteins are often found in oligomeric complexes, where they enable functions

such as active transport, ion flows, energy transduction, and signal transduction. Many funda-

mental cellular processes involve protein–protein interactions, and membrane proteins are

no exception. Comprehensively identifying complexes is important to systematically defining

protein function (Eisenberg et al. 2000 ; Lan et al. 2003), and hints about the function of an

unknown protein can be obtained by investigating its interaction with other proteins of known

function. Moreover, protein–protein interactions have obvious medical importance. Some forms

of cancer, for instance, are associated with integral membrane protein–protein interactions,

which lead to aberrant downstream signal transductions important for cell growth regulation

(Surti et al. 1998 ; DiMaio & Mattoon, 2001). Special attention has been drawn to G-protein

coupled receptors (GPCR), because of their importance in therapeutic applications (see e.g.

Horn et al. 2003). In the human genome approximately 2% (800) of the genes are GPCRs in

which olfactory receptors (ORs) constitute the largest gene family (Crasto et al. 2002).

Membrane proteins, nonetheless, pose something of a paradox. On the one hand, studying

them is difficult experimentally. For instance, high-resolution structures of only approximately

70 membrane proteins exist compared with thousands of water-soluble proteins (http://blanco.

biomol.uci.edu/Membrane_Proteins_xtal.html ; Berman et al. 2002). These structures are highly

dominated by a-helical proteins and relatively fewer b-sheet structures. Also, high throughput

techniques like the yeast two-hybrid method, which identifies protein–protein interactions,

cannot be easily applied to membrane proteins. On the other hand, from a computational

standpoint, membrane proteins are actually easier to study than soluble ones. This is because

their TM regions have a much more limited diversity of potential structures, i.e. helical mem-

brane proteins being mostly confined to parallel or anti-parallel orientations in relation to the
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membrane plane. In fact, accurate structural predictions of membrane helical proteins have been

made in many cases (Adams et al. 1996 ; Pappu et al. 1999 ; Kim et al. 2003). Similarly, it may

be easier to predict membrane protein interactions than soluble protein interactions. This is

because membrane proteins interact in more restricted ways (i.e. cylinder to cylinder packing)

than soluble ones, which can project a wide variety of different interfaces. The relation between

the interacting sequence of membrane proteins and the type of interaction present may be

more direct because of the more restricted interface structures than for soluble proteins. Finally,

there are fewer potential interactions for membrane proteins than for soluble proteins, since

soluble proteins are relatively free to move within the cell and, therefore, have the ability to

interact with many proteins at different times, angles, and locations. In contrast, a membrane

protein’s mobility is largely limited by the two-dimensional (2D) constraint of the membrane and

the number of nearest neighbors it can have is more limited.

2. Genomic classification and analysis of TM sequences

2.1 Advances in prediction of helical membrane protein topologies

While the need to solubilize them makes membrane proteins notoriously difficult experimental

subjects for structural and biophysical studies, computational studies have been much more

successful at predicting helical membrane protein topologies, i.e. identifying helical TM domains

and predicting their in/out orientation relative to the membrane. The idea that it should be

possible to estimate whether a polypeptide chain codes for a TM segment or not was formulated

in the early 1980s (Kyte & Doolittle, 1982 ; Steitz et al. 1982). It was based on the hypothesis that

hydrophobic protein portions could form stable structures across the bilayer using hydrophobic

helices (Engelman & Steitz, 1981). This structural arrangement would be stable if the gain in free

energy arising from burying hydrophobic residues into the bilayer exceeds the cost of burying

charged and hydrogen-bonding groups. Although some aspects of the proposed insertion events

have not been verified, notable results arose from the study. First free-energy calculations of

the insertion of a-helices with a defined length of 21 amino acids were performed on bacterio-

rhodopsin and glycophorin A and accurately predicted the seven and one TM helices respectively

(Steitz et al. 1982 ; Engelman & Steitz, 1984).

In general, topology prediction algorithms make use of the observations that membrane helical

proteins follow a special topology where TM helical segments are connected by alternating

cytoplasmic (inside) and periplasmic (outside) loop segments, and that different amino-acid

distributions are associated with different segments. Such sequence patterns can be characterized

by analyzing membrane protein sequences with experimentally determined topology, and they

can in turn be used to predict TM regions and topologies for other proteins where only the

primary sequence information is known. In particular, two general observations have been useful

for predicting TM regions and their topologies.

(1) Hydrophobic residues are enriched in TM helical segments where they traverse the hydro-

phobic region of a membrane. This observation forms the basis of hydrophobicity-scanning

algorithms for predicting TM regions. These algorithms use a sliding window scheme

and calculate the mean residue hydrophobicity for each window (Kyte & Doolittle, 1982).

Windows with the mean residue hydrophobicity above a certain threshold are candidates for

TM regions. The window size is chosen to be consistent with the observed size of TM helical

segments. Many different hydrophobicity scales have been proposed (Kyte & Doolittle, 1982 ;
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Engelman et al. 1986 ; Wimley & White, 1996 ; Jayasinghe et al. 2001). In addition to com-

puting the mean hydrophobicity of a window, a directional coefficient can be introduced to

the averaging procedure, and this can be used to quantify the amphiphilic nature of helices

(Eisenberg et al. 1984). Amino-acid preferences in TM helical segments can also be inferred

from scales that measure amino-acid properties other than hydrophobicity (Deber et al.

2001 ; Zhou & Zhou, 2003), or estimated directly from a set of TM sequences with known

topologies (Hofmann & Stoffel, 1993). These scales can be subsequently processed (Klein

et al. 1985) and combined (Hirokawa et al. 1998 ; Juretic et al. 2002) to improve prediction

results. Methods more sophisticated than simple window averaging have been proposed,

such as neural networks (Rost et al. 1995) and wavelets (Lio & Vannucci, 2000). Prediction

results can be improved by using a sequence profile instead of a single sequence as input.

The sequence profile can be computed from multiple sequence alignments (Rost et al. 1995 ;

Persson & Argos, 1996). Alternatively, a global profile can be constructed from pairwise

alignments between the query sequence and all membrane protein sequences with known

topology (Cserzo et al. 1997), which can in turn be used for predicting TM regions.

(2) Cytoplasmic segments often contain significantly more positive charges than periplasmic

segments. This observation, termed the positive-inside rule, can be used to improve predic-

tions (von Heijne, 1992). The cellular localization of N- and C-termini can be predicted

and it gives an indication if the number of TM segments is even or odd. Further, the

positive-inside rule can help to decide whether an uncertain TM segment can be considered

as ‘ real ’. Statistical analysis showed that the positive-inside rule is very likely to apply to

most organisms from all three kingdoms (Wallin & von Heijne, 1998).

Improved prediction results can be achieved by simultaneously making use of the above two

observations. This can be done in a straightforward way by first identifying putative TM helical

regions using the sliding-window approach, followed by quality checking using the positive-

inside rule (Nakai & Kanehisa, 1992 ; von Heijne, 1992 ; Rost et al. 1996). Several prediction

methods have been developed that fit membrane protein topological models to the entire query

sequence and search for a grammatically correct topological model that best explains the given

sequence. This can be done, for example, by using expectation maximization with dynamic

programming ( Jones et al. 1994) or with a hidden Markov model (HMM) (Tusnady & Simon,

1998 ; Krogh et al. 2001). One advantage of HMM is that length constraints on TM helical

regions can be modeled in a consistent way together with hydrophobicity and charge bias.

Many of these prediction algorithms have been implemented as Web servers. A subset of

these Web servers is listed in Table 1. This list is by no means complete ; for a detailed survey

of membrane protein topology prediction methods, see Chen & Rost (2002). Recently, several

studies have been carried out to assess the accuracy of membrane protein topology prediction

methods. In an analysis by Moller et al. (2001), HMM-based methods such as TMHMM and

HMMTOP performed the best. When tested on a dataset not used in training, the accuracy of

the best algorithm was 85% for predicting individual TM helical regions, and 59% for identifying

all TM helical regions of a membrane protein correctly. However, the sidedness of TM helices is

not well predicted : just 63% of these predictions predicted the sidedness of TM helices correctly.

TMHMM is particularly good at distinguishing between membrane and soluble proteins. On the

contrary, many hydrophobicity-scanning algorithms cannot effectively discriminate TM helices

from buried helices in soluble proteins. Many topology prediction algorithms tend to confuse

signal peptides and transit peptides with TM helices, and it is recommended that these algorithms
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be used together with signal-sequence prediction algorithms (Nielsen et al. 1999). In another

analysis done by Ikeda et al. (2002), model-based algorithms performed best. In a third analysis

by Chen et al. (2002), no method performed consistently as the best, but three methods stood

out more often as being better than worse : HMMTOP, PHDpsihtm (a version of PHDhtm

based on PSI-BLAST profiles), and PHDhtm. The accuracy of the best method for identifying

all TM helical regions of a membrane protein correctly is 84% for a high-resolution membrane

protein dataset with known three-dimensional (3D) structures, and 72% for a low-resolution

membrane protein dataset. In addition, 66–85% of these predictions gave the sidedness of

TM helices correctly. However, since the dataset used in training is not excluded from the test

set, these numbers are likely to be an overestimation. Finally, in an analysis by Melen et al. (2003),

reliability scores were derived for five widely used membrane-protein topology prediction

methods, and TMHMM and MEMSAT were shown to have the best prediction characteristics

in terms of prediction accuracy versus cumulative coverage of the test set. Furthermore, it was

estimated that only 53–59% of all genome-wide membrane-protein topology predictions are

correct in predicting both the number and the sidedness of TM segments. However, this number

can be improved to y70% if the in/out location of a protein’s C-terminus is known from

experiments.

It is apparent from the above analysis that further efforts are needed to improve current

topology prediction methods. In addition, since different methods have different strengths

and weaknesses, combining them and looking for a consensus prediction can often improve

Table 1. A representative list of Web servers for predicting membrane helical protein topology

Name (reference) URL Method

ALOM (Nakai & Kanehisa, 1992) http://psort.nibb.ac.jp/ Sliding-window+
positive-inside rule

DAS (Cserzo et al. 1997) http://www.sbc.su.se/ymiklos/DAS/ Dense alignment
surface

HMMTOP (Tusnady & Simon, 1998) http://www.enzim.hu/hmmtop/ Model-based, HMM
MEMSAT ( Jones et al. 1994) http://www.psipred.net/ Model-based, dynamic

programming
PHDhtm (Rost et al. 1996) http://www.predictprotein.org/ Neural network
PRED-TMR (Pasquier et al. 1999) http://biophysics.biol.uoa.gr/

PRED-TMR2/
Sliding-window+
edge detection

SOSUI (Hirokawa et al. 1998) http://sosui.proteome.bio.tuat.ac.jp/
sosuiframe0.html

Sliding-window+
positive-inside rule

SPLIT ( Juretic et al. 2002) http://pref.etfos.hr/ Sliding-window+
positive-inside rule

THUMBUP (Zhou & Zhou, 2003) http://theory.med.buffalo.edu/
Softwares-Services_files/thumbup.htm

Sliding-window+
positive-inside rule

TMAP (Persson & Argos, 1996) http://www.mbb.ki.se/tmap/ Multiple sequence
alignments

TMFinder (Deber et al. 2001) http://www.bioinformatics-
canada.org/TM/

Sliding-window

TMHMM (Krogh et al. 2001) http://www.cbs.dtu.dk/services/
TMHMM/

Model-based, HMM

Tmpred (Hofmann & Stoffel, 1993) http://www.ch.embnet.org/software/
TMPRED_form.html

Sliding-window+
positive-inside rule

TopPred (Claros & von Heijne, 1994) http://bioweb.pasteur.fr/seqanal/
interfaces/toppred.html

Sliding-window+
positive-inside rule
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prediction results (Nilsson et al. 2000). TM helices of membrane proteins have been predicted

with an accuracy greater than 99% based on the Wimley & White whole-residue hydropathy

scale (Jayasinghe et al. 2001). The strength of this approach is that it also takes into account the

cost of dehydrating the helix backbone and the energy for salt-bridge formation.

Using these computational methods, thousands of putative TM helical domains have been

annotated in the SwissProt database. Further statistical analysis of these putative TM domain

sequences has been very valuable for the identification of motifs that are important for the

folding and function of membrane helical proteins.

2.1.1 Advances in 3D structure prediction of membrane helical proteins

Significant progress has been made over the last several years on all fronts of protein structure

prediction. The most dramatic example is the performance of ab initio structure prediction at

CASP, a double-blind community-wide experiment on assessing structure prediction methods.

In 1996, no group had sustained success in predicting generally correct structures over a range

of targets (Lesk, 1997). Today, it is possible to construct crude (y5 Å) models for diverse

single domain proteins (Bonneau & Baker, 2001; Lesk et al. 2001 ; Keasar & Levitt, 2003).

Progress is also evident at CAPRI, a community-wide experiment on assessing protein-docking

methods (Mendez et al. 2003). Methods tested at CASP and CAPRI are generally optimized

for soluble proteins. However, they can also be modified for membrane protein 3D structure

predictions.

3D structure prediction of membrane helical proteins may be simpler than that of soluble

proteins for two reasons. First, helices are more stable in membrane environments than in

aqueous solution, and the folding of membrane helical proteins can be approximated as the

assembly of preformed TM helices. Second, the lipid bilayer environment imposes restrictions

on the possible geometry of TM helix–helix packing. Since the location of TM helices in the

primary sequence can be predicted reasonably well using topology prediction methods, recent

efforts in membrane helical protein-structure prediction have been focused on predicting the

3D assembly of TM helices.

The first step in membrane helical protein-structure prediction is the development of

an accurate energy function. Early methods model TM helix–helix association in vacuo using

molecular mechanics force fields (Kerr et al. 1994; Adams et al. 1995, 1996). Predictions made

by these methods are in good agreement with experiments despite the fact that protein–lipid

interaction is not modeled. Furthermore, in some cases reasonable structural models can

be generated by optimizing interhelical van der Waals interactions only (Pappu et al. 1999 ; Kim

et al. 2003). These studies highlight the importance of TM helix packing in membrane helical

protein folding. Recently, implicit solvent models have been introduced for efficient treat-

ment of the membrane environment (Im et al. 2003; Lazaridis, 2003). In addition to physical

potentials, other forms of energy functions have also been developed, including a simple scoring

function based on qualitative insights into TM helix interaction (Fleishman & Ben-Tal, 2002),

and knowledge-based energy functions based on statistical analyses of membrane proteins’

sequences and structures (Pilpel et al. 1999 ; Adamian & Liang, 2001; Dobbs et al. 2002).

The second step in membrane protein-structure prediction is the development of effective

sampling methods that can generate low energy, native-like conformations of TM helix–helix

interactions. In some methods, the interaction energy of preformed helices is optimized by

restrained molecular dynamics and simulated annealing (Adams et al. 1995, 1996), potential
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smoothing (Pappu et al. 1999), or Monte Carlo minimization (Kim et al. 2003). In addition,

membrane protein structures can be assembled from structural fragments using a simulated

annealing protocol (Pellegrini-Calace et al. 2003). In other methods, solved structures for mem-

brane proteins can serve as homology-modeling templates for close homologs (Capener et al.

2000), and as fold-recognition templates for detecting and aligning remote homologs (Bowie et al.

1991 ; Jones et al. 1992 ; Dastmalchi et al. 2001). The power of fold recognition can be augmented

by computationally generating a representative set of plausible membrane helical protein folds

(Bowie, 1999). This set of new folds can then be added to the fold library, and fold-recognition

methods can be used to predict if a protein sequence adopts a fold in the library.

These predictions can be improved in several ways. First, experimental or phylogenetic

information can be incorporated (Adams et al. 1996 ; Pinto et al. 1997). Second, low-energy

conformations can be clustered and the representative conformation from the largest

cluster tends to be more native-like (Kim et al. 2003). Third, prediction results can be improved

by looking for consensus predictions for homologous proteins (Briggs et al. 2001) or by

combining different constraints derived from homologous proteins (Pogozheva et al. 1997).

Impressive 3D structure prediction results have been reported for individual cases of

membrane helical proteins. For example, using a simple physical energy function, Pappu

and colleagues constructed an ab initio model for the glycophorin A TM dimer that is very close

to the experimental NMR structure (root-mean-square deviation for superposition over all

Ca atoms is 0�59 Å for 36 residues) (Pappu et al. 1999). Unfortunately, current 3D structure

prediction methods are complex and time consuming, and a quantitative comparison of different

methods has not been carried out at this time. Despite the recent progress in membrane helical

protein 3D structure prediction, it is clear that major efforts are needed to make these methods

reliable and fast before they can be applied on a genomic scale.

2.2 Genome-wide classification of membrane proteins

Genome-wide analysis of protein structures provides a powerful method for understanding

functional and evolutionary relationships in proteins. However, this kind of analysis has mostly

been applied to soluble proteins, in part due to the paucity of structures of membrane proteins

(Gerstein, 1997, 1998 ; Paulsen et al. 1998, 2000). However, a number of efforts have been made

to use computational tools despite the absence of a large structural database, taking advantage of

the relatively simple architecture found in the TM region. Therefore, it seems timely to consider

computational methods as alternatives for the analysis of TM helical regions in membrane

proteins.

The occurrence of helical membrane proteins in genome sequences has been surveyed

in several organisms (Goffeau et al. 1993 ; Rost, 1996 ; Arkin et al. 1997 ; Gerstein, 1997 ; Boyd et al.

1998 ; Gerstein, 1998; Jones, 1998 ; Wallin & von Heijne, 1998 ; Krogh et al. 2001). In general, the

overall number of membrane proteins found depends on the prediction method used, but most

studies report values in a range of 20–30% of the ORFs in microbial genomes, with yeast having

a slightly larger fraction. There is a progression in the number of occurrences from single helix

proteins, which are most abundant, in a generally monotone, decreasing fashion with number

of TMs. However, there are some notable departures from the trend. An analysis of the worm

genome (Gerstein et al. 2000) showed a much greater relative prevalence of 7-TM proteins

in comparison to the other completely sequenced genomes, which are not of metazoans. In

contrast, E. coli has a preference for 6- and 12-TM proteins.
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Polytopic membrane proteins have multiple membrane-spanning TM segments. Based on

Pfam classification of protein domain families, TM prediction and sequence similarity these

polytopic membrane protein domains have been classified further (Liu et al. 2002, 2004). Some

interesting trends have been identified, such as :

(1) That there is an approximately linear relationship between the number of classified mem-

brane protein domains and the number of ORFs.

(2) That the majority of integral membrane proteins have only a single polytopic membrane

domain. Approximately 78% of integral membrane proteins in archaea and prokarya and

67% in eukarya contain only a single classified membrane domain (Liu et al. 2004), suggesting

recombination of domains is not common inside membranes. Distinct from soluble proteins,

which gain new functions by recombination of different domains in the course of evolution

(approximately 65% domains in prokarya and 80% in eukarya are combined with other

domains), membrane proteins might achieve the same goal by more frequent use of non-

covalent oligomeric associations within the membrane.

(3) That the number of families of polytopic membrane proteins is small compared with the

number of soluble protein families, i.e. 526 membrane protein families have been charac-

terized (Liu et al. 2002, 2004) which corresponds to approximately 9% of the existing Pfam

families (Bateman et al. 2002).

2.3 Integrative database systems

Data arising from the above-mentioned studies are partly available through two interlinked and

integrated database systems, PartList.org (Qian et al. 2001) and GeneCensus.org (Lin et al. 2002).

GeneCensus.org also contains an integrated viewer of TM helix motifs and the expression levels

of all membrane proteins in sequenced genomes. In general, GeneCensus takes a more sequence

and less structural view of genome comparisons than PartsList, focusing on expression data,

pathway activities, and protein interactions.

These integrated database systems have been used to discover a number of interesting

correlations related to membrane proteins. The prediction of TM helices in yeast has been

connected with a number of datasets giving measurements of whole-genome expression

levels ( Jansen & Gerstein, 2000). ORFs coding for membrane proteins were identified using the

standard hydropathy scale and sliding-window approach. This produced the notable result that

membrane proteins are expressed at a considerably lower level than soluble proteins, by y22%.

Moreover, certain broad groups of membrane proteins are expressed more highly than others,

e.g. 4 TMs are expressed at a higher level than 1 or 2 TMs. In a second step this analysis has

been extended to fully relate subcellular localization (i.e. ER, cytoplasm, membrane, etc.) with

gene expression level. A relationship between gene expression levels and subcellular localiz-

ation was found, indicating that cytoplasmic proteins have high expression levels (absolute

expression=14�4) whereas nuclear (1�7) and membrane proteins (2�4) have relatively low ones

(Drawid et al. 2000). In a new strategy, the localization of proteins in yeast has been greatly

enhanced (Huh et al. 2003). Proteins are fused to the green fluorescent protein and their

localization is determined by fluorescence microscopy. Although the detection of the subcellular

localization is limited by the resolution of the microscopy, the advantage of this method is that

protein expression is minimally perturbed. Thus, 70% of previously unlocalized proteins have

been assigned to compartments.
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2.4 Co-evolutionary analysis of membrane proteins

Using current concepts of protein evolution helps in understanding both the structural and the

functional aspects of protein families. Divergent evolution relates to the evolution of organisms,

which are linked to a common ancestor, into new species (Ohno, 1970 ; Zuckerkandl, 1975 ;

Hood et al. 1977 ; Doolittle & Feng, 1990 ; Graur & Li, 1991). Many studies have incorporated

evolutionary information in order to identify functionally important residues that confer binding

specificity (Casari et al. 1995 ; Lichtarge et al. 1996a, b, 1997 ; Pazos et al. 1997 ; Landgraf et al.

2001). Additionally, other studies show that correlated mutation information can be used to

predict proximal pairs of residues (Gobel et al. 1994 ; Olmea & Valencia, 1997) and to aid in

structure prediction (Olmea et al. 1999 ; Ortiz et al. 1999). Co-evolutionary analysis of protein

families has also been useful in identifying protein interaction partners.

It is generally believed that the functional diversification of genes within a gene family

should be reflected in their interacting partners in another gene family (Fryxell, 1996 ; Pazos

et al. 1997 ; Goh et al. 2000 ; Pazos & Valencia, 2001, 2002 ; Goh & Cohen, 2002). Studies of

the co-evolution of binding specificity between homologous ligands and receptors (Moyle

et al. 1994 ; Atwell et al. 1997 ; Jespers et al. 1999) show that protein–protein interfaces can

adapt to mutations as they co-evolve and new interactions can be formed. Based on this

hypothesis, co-evolution has been quantified between gene families that are known to interact

(Goh et al. 2000). The co-evolutionary score is quantified by calculating the linear correlation

coefficient between the sequence similarity matrices constructed from the multiple alignments

of the two gene families. This method is described in further detail by Goh et al. (2000). Using

this co-evolutionary algorithm, binding partners were identified for proteins with previously

unknown interaction partners (Goh & Cohen, 2002). Pazos & Valencia (2001, 2002) extended

this idea by applying it to large sets of proteins and protein domains to identify pairs of inter-

acting proteins.

We have chosen one example of a membrane protein, the photosynthetic reaction center

(RC), to illustrate the usefulness of the co-evolutionary method. Since co-evolutionary analysis

does not require structural information, it can be readily applied to study the structure and

function of membrane proteins. The photosynthetic RC complex in purple bacteria is composed

of subunits L, M, H, and in some species, a cytochrome subunit (Thornber et al. 1980 ; Michel

et al. 1985, 1986 ; Weyer et al. 1987; Nagashima et al. 1994). The RC from Rhodopseudomonas

viridis was the first integral membrane protein complex where well ordered 3D crystals were

obtained for X-ray structure analysis (Michel, 1982, 1983). Since then, only one other photo-

synthetic RC has been structurally determined (Allen et al. 1987 ; Chang et al. 1991), which is

found in Rhodobacter sphaeroides. The L and M subunits form the central part of the RC. The L–M

complex forms a flat surface parallel to the membrane surface where the cytochrome subunit

binds at the periplasmic side and the H subunit at the cytoplasmic side of the membrane.

Figure 1 shows how surfaces that have a greater interfacial contact area have a corre-

spondingly higher co-evolution correlation score. For example, the L and M subunits have a

large interfacial area and co-evolve with a correlation score of 0�94, whereas the much smaller

interface between the H and other cytochrome subunits (C) results in a correlation score of

0�43. Figure 1 shows that there is a general correlation between inter-subunit surface area and

the score obtained from the co-evolutionary analysis. These results demonstrate the utility of

applying co-evolutionary analyses to characterize the domain–domain interactions in mem-

brane proteins.
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2.5 Membrane proteins and pseudogenes

Pseudogenes are disabled copies of functional genes in the genome; these sequences have

close similarities to one or more paralogous functional genes, but in general are unable to be

transcribed (Vanin, 1985 ; Mighell et al. 2000). There are three major groups of pseudogenes,

having different origins :

(1) duplicated pseudogenes, created by gene duplications ;

(2) processed pseudogenes, created by reverse-transcription of mRNA transcripts ;

(3) disabled genes, created by spontaneous loss of function.

Complete genome sequences have recently become available for many prokaryotes and

eukaryotes including two mammals (International Human Genome Sequencing Consortium,

2001 ; Waterston et al. 2002), large-scale computational surveys have been performed on these

genomes to identify and characterize potential pseudogenes, which also revealed many pseudo-

genes that used to code for membrane proteins (Cole et al. 2001 ; Glusman et al. 2001 ; Harrison

et al. 2001, 2002, 2003; Homma et al. 2002 ; Zhang et al. 2002). The largest protein family in the

nematode worm C. elegans is the 7-TM receptor, which hasy800 members (C. elegans Sequencing

Consortium, 1998). The C. elegans genome has y2100 pseudogenes, approximately one for

every eight functional genes (Harrison et al. 2001). A substantial proportion (22%) of these

pseudogenes initially coded for membrane proteins, especially 7-TM receptors. Substantial

numbers of membrane protein pseudogenes are also present in the genomes of some other

eukaryotes such as the fruit fly (Harrison et al. 2003) and yeast (Harrison et al. 2002).

The human genome has about 30 000 functional genes and ORs constitute one of the largest

gene superfamilies (International Human Genome Sequencing Consortium, 2001). Among the

y700 full-length OR genes identified in the genome, more than half of the sequences (359)
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Fig. 1. The relationship between co-evolution correlation score and interfacial surface area. The correlation

scores are shown for different complexes : m, L–M; %, C–L; 1, H–M; $, C–M; &, H–L; 2, H–C.
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contain frame disruptions (stop codons, frame shifts), indicating that these are pseudogenes

(Glusman et al. 2001). Most of these OR genes and pseudogenes are located in gene clusters

that range from 100 kb to 1 Mb. The majority of the OR pseudogenes became disabled follow-

ing a random and spontaneous process (Glusman et al. 2001).

A recent whole-genome survey has identified more than 10 000 pseudogenes in the human

genome and about 5000 pseudogenes in the mouse genome (Zhang et al. 2004). Many membrane

protein pseudogenes are also present in the mammalian genomes. A good example is cyto-

chrome b (cytb), which is a ubiquitous 8-TM protein that catalyzes a crucial step in the

mitochondrial oxidative phosphorylation process (Zhang et al. 1998, 2000). The functional gene

of this protein is in the mitochondrial genome, but more than 70 copies of its cytb pseudogenes

are present in the nuclear genome due to a DNA-mediated process (Tourmen et al. 2002 ;

Woischnik & Moraes, 2002). Cytochrome c (cytc), another important protein in the mitochon-

drial electron-transfer chain that interacts with cytb, also has 49 pseudogenes in the human

genome (Zhang & Gerstein, 2003).

The omnipresence of these pseudogenes has allowed a tracing of the evolution and phylogeny

of membrane proteins. However, because of their close sequence similarities to the functional

genes, they also pose potential problems in the experimental studies of the functional membrane

protein genes (Ruud et al. 1999).

3. Structural characteristics of membrane proteins

The thermodynamics of membrane protein stability suggest that a division can be made between

those factors that stabilize helices in a lipid environment and those that cause them to interact

to form higher order structures (for review see Popot & Engelman, 2000). A proposal was

made more than a decade ago that TMs might be independently stable across a bilayer, in

response to a net hydrophobicity of the side-chains and the influence of backbone hydrogen

bonding in a low dielectric milieu (Engelman & Steitz, 1981 ; Popot & Engelman, 1990). Helices

could then interact with each other to form higher order structures. These two thermodynamic

stages might be a pathway for folding and oligomerization in vivo. Recently, this two-stage model

has been extended to a three-stage model (Engelman et al. 2003), where ligand binding, and

the re-entry of extramembranous loops would follow the assembling of TMs. The formation of

oligomeric quaternary structures could take place at the transitions between the first and second

stage, between the second and third, or between later stages.

3.1 Amino-acid composition of membrane proteins

Polytopic membrane protein domains have been classified on the basis of sequence similarities

and topology using existing families assigned by a combination of a HMM and sequence analysis

of Pfam (Liu et al. 2002, 2004). Some amino acids, such as Gly and Pro are found to be more

frequent in conserved positions in TM regions than it is expected from their composition,

whereas Ile, Val and Met are less conserved (Fig. 2).

Based on the SwissProt database, the TM distributions of single types of amino acids and

pairwise-correlated amino acids in TM domains have been investigated further. A tendency for

Cys, Tyr and Trp residues to appear close to one another has been pointed out (Arkin & Brunger,

1998).

Particular interest has been drawn to the occurrence of Gly pairs in a-helical membrane

proteins. The GxxxG motif, 2 glycines at position i and i+4, is known to be a key structural
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element in the dimeric association interface of glycophorin TMs (MacKenzie et al. 1997), to date

the best characterized example of TM helix interaction. A separation of four residues places

a pair on the same face of an a-helix. The GxxxG motif led to the structural notion that small

residues presented on the same face of the helix, and next to larger side-chains, can increase

the relatively small packing area that two helices can present to each other. The same motif was

found to be a strong determinant for association in genetic screens that selected for strong helix

association (Russ & Engelman, 1999, 2000).

An independent study using statistical analysis has shown the abundance of the GxxxG

motif in the domain of membrane proteins. Using the large number of TM domains annotated

in SwissProt, Arkin & Brunger (1998) found a sharp peak of Gly pairs at a distance of 4 residues

(GxxxG). This study was extended further on a later SwissProt version (v.37) (Senes et al. 2000),

where the occurrence of residue pairs and triplets in TM helices has been surveyed using

the TMSTAT method. This method gives a parent distribution, and permits an evaluation of the

significance of observed pair frequencies with respect to the distribution ranking over- and

under-represented pairs by the significance difference from their expectations. The GxxxG motif

was the most significant over-represented pair, with 32% more occurrences observed in the

sequence than their random expectation [ p=10x33 (Senes et al. 2000)]. Moreover, all other

combinations of two small residues (Gly, Ala, Ser) at i, i+4 resulted as significantly over-

represented. Pairs of two large residues (Ile, Val, Leu) tend also to be spaced four residues

apart while large and small residues are more frequent at i+1 and i+2, with a strong correlation

for GxxxG motifs and a neighboring b-branched Ile and Val residues made apparent from the

triplet data. Further, it has been pointed out that these motifs are well conserved in families

annotated as transporter, symporter and channels (Liu et al. 2002).

The combination of experimental and statistical analysis studies clearly establishes that there

is a high selectivity in the use of particular relationships between amino acids along a TM helix,

and suggests that further studies of motifs are likely to be both informative and predictive.
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Fig. 2. Amino-acid compositions of TM helices (i) for all helical membrane protein sequences (&) and

(ii) for conserved positions of 168 Pfam-A families of polytopic membrane domains that contain more

than 20 members (%). Only the most frequent amino acids are shown. (Data are taken from Liu et al. 2002.)
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3.2 Helix packing and characterization of helical interfaces

Much attention has been drawn to structural characteristics of a-helical membrane proteins.

Characteristics such as protein packing, packing density and residue volumes are important

criteria in the context of helix–helix interactions, protein stability and function.

Protein-packing calculations that measure the volume occupied by protein constituents

(packing efficiency) were developed for soluble proteins a long time ago (Richards, 1974, 1985),

but have only recently been applied to helix interfaces (Eilers et al. 2002). An example of cal-

culations of the packing in membrane proteins (Gerstein & Chothia, 1999) is shown in Table 2

and further information is available at http://bioinfo.mbb.yale.edu/geometry/membrane.

Table 2 shows examples of volumes of buried atoms in various membrane protein structures

and compares it to a standard reference volume of the same atoms in a soluble protein structure.

A clear tendency toward tighter packing in membrane proteins compared to soluble ones can

be deduced from this study. In this study, the protein volume is calculated by surrounding

each atom with a Voronoi polyhedron. The faces of the Voronoi polyhedron are perpendicular

to vectors connecting the centers of different atoms, and the edges of the polyhedron result

from the intersection of these planes (for detailed description, see Gerstein & Richards, 2001).

This method relies on several parameters such as the set of used van der Waals radii and the

criteria for selecting buried atoms in the calculation. Therefore, the sensitivity of the method-

ology of packing calculations has been investigated further and led to the development of a

new set of parameters concerning the van der Waals radii and standard volumes (Tsai et al. 2001).

The results are available at http://www.molmovdb.org/geometry/ (Tsai & Gerstein, 2002).

A comparison of packing of helical segments in membrane proteins and soluble proteins

confirmed that on average membrane proteins pack more tightly (packing value of 0�431)
compared to their soluble counterparts (0�405) despite the fact that TM proteins cannot make

use of hydrophobic effects in folding within the bilayer (Eilers et al. 2000). An interesting finding

in these studies is that, on average, smaller residues pack tighter and occur more often in TM

proteins whereas larger residues tend to pack more tightly and occur more frequently in soluble

proteins (Eilers et al. 2000). This is consistent with the finding that small side-chains participate

in packing motifs, as noted above. An additional distinction is that proline occurs frequently in

TMs, and is found preferentially in the center of the membrane, whereas prolines are quite

rare within helices of soluble proteins (Cordes et al. 2002).

3.3 Analysis of helix–helix interfaces in TM proteins

Helix–helix interfaces are described by characteristics, such as helical packing angles and inter-

facial motifs. Inter-helical packing angles are typically defined as the dihedral angle measured

Table 2. Volumes of different membrane proteins and their packing efficiency

Membrane protein PDB Vol. buried (Å3) Ref. vol. buried RPE (%)

Bacteriorhodopsin 2brd 7889 8030 98�3
Cytochrome bc1 complex 1bgy 130 467 132 866 98�2
Glycophorin A 1afo 1087 1221 89�0

The relative packing efficiency (RPE) is defined asV (ref )/V – 100% withV being the observed volume
of the buried atoms in the structure and V(ref) is the standard reference volume of the atoms in soluble
proteins (Gerstein & Chothia, 1999).
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around the helices’ mutually perpendicular vector of closest approach (Bowie, 1997a ; Walther

et al. 1998). A major aim in studying packing angles is to define categories in which to bin

helical interactions. Early studies with this purpose predicted three preferred packing angles

(x52x to x37x, 75x–83x, and 22x–23x) (Chothia et al. 1981 ; Walther et al. 1996) and a com-

panion survey reported a preference for the x37x angle (Walther et al. 1996), although this has

been challenged on statistical grounds (Bowie, 1997a). If TM helix pairs are studied separately,

angle preferences become more prevalent. A survey of 88 TM interfaces identified packing

angles as low asx56x and as high as 67x with a strong preference for left-handed crossing angles

in the 15x–25x range (Bowie, 1997b). In contrast, 30% of the 2145 soluble helix-packing angles

studied at the time fall outside of this range and have a much broader distribution (Bowie,

1997b). In a study separating parallel and anti-parallel interactions it was observed that the bias

for left-handed crossing interactions was mostly due to the anti-parallel component (Senes et al.

2001). Such packing-angle constraints in TM helix packing can potentially aid in the development

of membrane protein-folding algorithms, as this greatly reduces potential search spaces. Tools

for calculating helix–helix packing angles are described in Bansal et al. (2000) and in Dalton

et al. (2003).

Differences have been studied between residues that participate in inter-helical contacts and

those that do not, inter-helical residues in helices having right- or left-handed packing angles,

and in inter-helical residues within parallel and anti-parallel orientations (Eilers et al. 2002).

Analysis of the available structures indicates that Gly residues tend to be found at packing

interfaces ( Javadpour et al. 1999 ; Eilers et al. 2002), permitting close approaches of the back-

bones, and formation of inter-helical networks of weak hydrogen bonds between Ca–H donors

and oxygen acceptors, an interaction that has been hypothesized to be quite favorable in an

apolar membrane environment (Senes et al. 2001). Since Gly residues are strong helix breakers

in solution, it was somewhat surprising to find that the GxxxG motif can mediate interactions

at the interface of soluble dimers, with a similar geometry to the right-handed glycophorin

motifs and formation of Ca hydrogen bonds (Kleiger et al. 2001, 2002). Moreover, helices with

left-handed crossing angles are often more tightly packed (packing value 0�518) than helices with

right-handed crossing angles (0�508) (Eilers et al. 2002). It has also been pointed out that larger

residues such as Phe, Trp and His have a higher propensity for appearing in TM voids and

pockets while smaller residues (Ser, Gly, Ala) do not. Theses studies have been extended to

amino-acid triplet motifs, which could be involved in the formation of inter-helical interactions

(Adamian et al. 2003) and it has been pointed out that the pair motifs such GG4 can be a part

of these triplets.

4. Membrane protein interactions

Protein–protein interactions play a role in nearly all events that take place in a cell. The set of all

such interactions carried out by proteins encoded in a genome has been dubbed the interactome.

An important idea emerging in post-genomic biology is that the cell can be understood as a

complex network of interacting proteins (Hartwell et al. 1999; Eisenberg et al. 2000). Complex

networks have also been used elsewhere to describe such diverse systems as the internet, power

grids, the ecological food web and scientific collaborations. Despite the seemingly huge differ-

ences among these systems, it has been shown that they all share similar network topology (Watts

& Strogatz, 1998 ; Albert et al. 1999, 2000 ; Barabasi & Albert, 1999 ; Huberman & Adamic, 1999 ;

Amaral et al. 2000 ; Albert & Barabasi, 2001 ; Jeong et al. 2001 ; Girvan & Newman, 2002).
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However, defining protein interactions, which involve membrane proteins, presents many

challenges, such as the low abundance of membrane proteins and the difficulty of detecting

interacting partners.

4.1 The current excitement about protein networks

A great variety of genome-wide information related to protein networks has been accumulated

in recent work, especially in the yeast Saccharomyces cerevisiae. There are datasets of explicit

protein–protein interactions (Ito et al. 2000; Uetz et al. 2000 ; Gavin et al. 2002 ; Ho et al. 2002)

and also of experimentally derived regulatory relationships (Lee et al. 2002). Furthermore, there

are databases collecting a wide variety of manually annotated interactions from individual experi-

ments [i.e. MIPS, BIND and DIP (Mewes et al. 2002 ; Xenarios et al. 2002 ; Bader et al. 2003)]

and systems for automatically finding interactions in the literature (Friedman et al. 2001). In

addition to the experimentally derived interaction networks, there are also predicted interactions

( Jansen et al. 2002, 2003 ; Valencia & Pazos, 2002).

Protein–protein interaction networks are often globally characterized by a number of par-

ameters from graph theory, such as degree distribution, clustering coefficient, characteristic

path length and diameter (Watts & Strogatz, 1998 ; Albert & Barabasi, 2001 ; Jeong et al. 2001).

Furthermore, these networks are undirected networks. Within undirected networks, the state-

ment ‘node A is connected to node B’ is the same as ‘node B is connected to node A’. Protein

networks are quite complex and can often be divided into many quite substantial sub-networks.

The most common methods are based on ‘guilt-by-association ’. Two proteins are more

likely to interact if they share several correlated genomic features. Examples of these genomic

features are gene expression profiles (DeRisi et al. 1997), phylogenetic profiles (Pellegrini et al.

1999), essentiality (Winzeler et al. 1999), localization (Kumar et al. 2002), and gene neighbor-

hood (Tamames et al. 1997), among others. In addition, comparative genomics provides an

efficient way to map genome-wide interaction datasets between different organisms (Walhout

et al. 2000).

This body of work has resulted in the identification of many types of possible networks and

sub-networks. For example, it has been known that interaction data produced by different

methods are of different qualities. The topology of the interaction network determined by

yeast two-hybrid experiments is quite different from that determined by in vivo pull-down

experiments ( Jansen et al. 2002 ; von Mering et al. 2002), probably reflecting the different selec-

tion principles involved. Proteins can be divided into different classes based on their biological

properties, such as expression level, amino-acid composition, subcellular localization, solubility,

and so on. Therefore, different sub-networks can be generated by selecting different classes

or groups of protein nodes. For instance, membrane proteins can be subdivided by the number

of TM helices. A challenging research question is to compare the topologies of these sub-

networks, looking for global differences in the networks associated with different types of

proteins. TopNet ( Yu et al. In Press) is an automated web tool designed to calculate and compare

topological parameters for different sub-networks derived from any given protein network.

The number of interaction partners for soluble proteins and membrane proteins within the

interaction network has been examined. In general, soluble proteins have many more interaction

partners than membrane proteins. Interestingly, the number of interaction partners for mem-

brane proteins does not seem to have any correlation with the number of TM helices that they

have.
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4.2 Identification of protein complexes with experimental techniques

4.2.1 Screening methods

Several approaches to the study of interactomes have emerged recently. Using an adaptation of

a ‘ two-hybrid ’ assay (Ito et al. 2000 ; Uetz et al. 2000) pairwise interactions were mapped on a

large scale in yeast. Microarray technology has also been used to study interactions (Zhu et al.

2001) and the idea of using proteins carrying a tag that can be separated on an affinity column

has been developed as a screen (Gavin et al. 2002 ; Ho et al. 2002). Tagged proteins, bound to a

column or bead and bringing with them associated proteins, are analyzed by electrophoresis,

mass spectrometry, and bioinformatics to give the identity of proteins in the complex.

Many soluble protein complexes have been identified using these approaches, although

problems with false positives and negatives persist. These are likely to arise from failures to

control the biochemistry, for example two-hybrid screens require artificially elevated concen-

trations and exploit binding events that promote interactions, and column separations are at

high effective dilution.

Membrane proteins remain to be explored in any systematic way, and many of the exper-

imental techniques for directly assaying protein–protein interactions that have been applied on

a genomic scale are thought to be biased against membrane proteins. For instance, the yeast

two-hybrid system (Fields & Song, 1989) is difficult for integral membrane proteins, because the

interaction must take place in the cell nucleus, as the reassembled functional transcription factor

becomes bound to its target promoter for the activation of the corresponding reporter gene in

a consecutive step. However, integral membrane proteins are anchored in the membrane and

cannot be transported into the nucleus. Related considerations apply for other methodologies

such as the proteome chip (Zhu et al. 2001) and large-scale pull-down experiments (Gavin et al.

2002 ; Ho et al. 2002).

One way to circumvent the problems related to membrane proteins is to express a truncated

form of the membrane protein. The use of only the cytoplasmic or extracellular domain is a

strategy, which has been applied to singly pass TM domains (Ozenberger & Young, 1995 ;

Keegan & Cooper, 1996 ; Borg et al. 2000). However, this strategy is not suitable for multi-pass

TM domains with binding interfaces composed of several cytoplasmic loops, or for the detection

of interactions inside the membrane. The need for the development of new approaches for

detecting membrane protein interactions is necessary.

Several systems, which are mainly variations of the two-hybrid method, have been set up.

The Ras recruitment system (RRS) and the reversed Ras recruitment system are based on the

Ras pathway in yeast (Broder et al. 1998 ; Hubsman et al. 2001). It allows the study of protein

interactions between a membrane and a cytoplasmic protein.

Another approach is based on the characteristics of ubiquitin-specific proteases. Ubiquitin

functions as a tag for protein degradation and the split-ubiquitin system takes advantage of the

specific ubiquitin cleavage ( Johnsson & Varshavsky, 1994). The advantage of the split-ubiquitin

system is that it can detect protein–protein interactions in various cell locations and is appli-

cable to nuclear, cytoplasmic and integral membrane proteins. Different reporters (rURa3 and

trans-activator) have been attached to this system for investigating integral membrane protein

interactions (Dunnwald et al. 1999 ; Laser et al. 2000).

The G protein-based screening system is based on the G protein-signaling process (Ehrhard

et al. 2000). Here, the bait X is an integral membrane protein and its interaction partner Y

(a soluble protein) is expressed as a fusion to the Gc subunit. If X and Y interact, Gc recruits
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to the membrane and binds the Gb subunit. In the following, the G protein signaling is

blocked. Interaction between two known interaction partners syntaxin 1 and neuronal Sec 1 and

the fibroblast-derived growth-factor receptor 3 with SNT-1 have been demonstrated by this

method.

4.2.2 Helix–helix interaction motifs

Several assays have been developed for biophysical and genetic studies of membrane protein

interactions. Characteristics such as the oligomeric state of TM helices, interaction motifs

and energetic considerations about the helix association process have been investigated. Widely

used methods include SDS gels (Lemmon et al. 1992), Förster resonance energy transfer (Fisher

et al. 1999) and analytical ultracentrifugation (Fleming et al. 1997). These biochemical assays

use pure systems and generally exploit detergent-solubilized states. They have the advantage of

permitting detailed analysis of the chemical interactions and energies, as well as defining the

oligomeric state of the proteins.

Genetic assays have the advantage of permitting the observation of interactions in a natural

membrane and can permit genetic screening and selection procedures, however they report less

clearly on stoichiometry and energy. They have been developed for establishing helix–helix

interaction between specific TM sequences (Langosch et al. 1996 ; Russ & Engelman, 1999 ;

Schneider & Engelman, 2003). To date, they are limited to homo- and hetero-oligomerization of

parallel helices, and thus cannot serve adequately to survey all possibilities found in membrane

helix associations. These techniques led to significant results in identifying interaction motifs

as detailed in previous sections. For example a milestone in the application of the TOXCAT

assay for homo-oligomerization is the identification of interaction motifs in the glycophorin

TM segment (Russ & Engelman, 1999).

4.3 How many helix–helix interactions exist in a genome?

With the emergence of whole-genome sequences and the annotation of potential TM segments

in the sequences, we can speculate on the number of potential protein–protein and helix–helix

interactions of membrane proteins in genomes. In the following, we will describe a rough

estimation of the number of potential interactions in membrane proteins.

We compared TM sequences from three different organisms with each other : (i) M. genitalium

(MG; Fraser et al. 1995), (ii) E. coli (EC; Blattner et al. 1996) and (iii) S. cerevisiae (SC; Goffeau et al.

1996). The numbers of membrane proteins, TM helices, and potential helix–helix interaction

pairs are shown in Fig. 3 and Table 3. In this distribution we did not take into account any

mobility and geometrical aspects which have been discussed in the Introduction. The numbers

are given for the individual organisms as well as for orthologous membrane proteins that are

present in all three genomes (i.e. EC–SC–MG) or just in two out of the three (e.g. EC–SC). The

orthologous proteins across the organisms have been assigned to using the database of Clusters

of Orthologous Groups of proteins (COGs; Tatusov et al. 2003).

The distribution of TM helices is shown in Fig. 3 for the different groups of orthologous

proteins. The figure illustrates how all of the possible subsets are fairly consistent in their dis-

tribution of membrane proteins.

Table 3 estimates roughly the possible number of helix–helix interactions involving

only membrane proteins. These numbers ( Table 3, rows E–F) correspond to the upper limit
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for potential helix–helix interaction pairs. In the membrane each helix can only have a

small number of interaction partners, because of the structural arrangement of the protein in

the membrane. If one focuses on orthologs present in the different organisms with a

known function the number of potential helix pairs shrinks down to a quite manageable size

(y10 000 pairs). In particular, the ‘virtual organism EC–SC–MG’ could be used as a starting

point to study helix–helix interaction further, using both computational and experimental

methods.

Table 3. The scale of the membrane protein interactome

MG EC SC MG–EC MG–SC EC–SC MG–EC–SC

A Total no. membrane
proteins

110 1030 1140

B No. of A with COG
assignment

57 875 513 44 24 243 23

C No. of B with
known function
(not R and S)

45 685 425 40 22 221 22

D TM helices in
proteins from C

261 4386 2874 236 138 1805 138

E Potential TM
helix pairs

35 124 9 639 080 4 144 093 28 835 10 120 1 638 466 10 120

F No. inter-molecular
pairs from E

34 191 9 620 691 4 131 375 27 966 9591 1 629 915 9591

G No. intra-molecular
pairs from E

933 18 389 12 718 869 529 8551 529

Orthologous proteins across the organisms have been assigned according to the COG database. In row C
the number of proteins is narrowed down to the ones with a known function excluding poorly characterized
functional groups named R and S in the COG database.
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5. Perspectives

The past few years have produced a steep increase in our knowledge of membrane protein

occurrence, structure and interactions. The number of high-resolution structures of membrane

proteins has increased tremendously from the late 1990s onward. This, in turn has stimulated

discussion about structural characteristics of TM segments and has led to a number of useful

models and the subsequent development of tools dealing with the ‘ look ’ of a typical helix

and its particularities. Currently, projects combining crystallographic and NMR techniques and

innovative bioinformatics, are underway to increase the number of known 3D structures of

integral membrane proteins. Thus, an important task for bioinformatics will be, for example,

to provide tools such as prediction methods for finding the most appropriate crystallization

and structure determination methods.

Although hydrophobicity scales and topology prediction tools for TM sequences go back as

far as the early 1980s, improved tools have been developed and refined subsequently. The

current deluge of available sequence data has added an incentive for method development.

What might be expected next? A systematic study of protein–protein interactions on a

genomic scale needs to be developed. Hopefully, with the current advances in the modifi-

cations of the two-hybrid systems, a method will become available to study membrane protein

interactions. This would open a new area of understanding protein networks and interactions,

stimulating current discussions, for example, about interaction motifs in membrane proteins.
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