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f Abstract One way to understand cells and circumscribe the function of proteins
is through molecular networks. These networks take a variety of forms including
webs of protein-protein interactions, regulatory circuits linking transcription factors
and targets, and complex pathways of metabolic reactions. We first survey experi-
mental techniques for mapping networks (e.g., the yeast two-hybrid screens). We
then turn our attention to computational approaches for predicting networks from
individual protein features, such as correlating gene expression levels or analyzing
sequence coevolution. All the experimental techniques and individual predictions
suffer from noise and systematic biases. These problems can be overcome to some
degree through statistical integration of different experimental datasets and predictive
features (e.g., within a Bayesian formalism). Next, we discuss approaches for
characterizing the topology of networks, such as finding hubs and analyzing subnet-
works in terms of common motifs. Finally, we close with perspectives on how
network analysis represents a preliminary step toward a systems approach for
modeling cells.
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INTRODUCTION

An important idea emerging in postgenomic biology is that the cell can be
viewed as a complex network of interacting proteins, nucleic acids, and other
biomolecules (1, 2). Similarly complex networks are also used to describe the
structure of a number of wide-ranging systems, including the Internet, power
grids, the ecological food web, and scientific collaborations. Despite the seem-
ingly vast differences among these systems, they all share common features in
terms of network topology (3–11). Therefore, networks may provide a frame-
work for describing biology in a universal language understandable to a broad
audience.

Many fundamental cellular processes involve interactions among proteins and
other biomolecules. Comprehensively identifying these interactions is an impor-
tant step toward systematically defining protein function (2, 12) because clues
about the function of an unknown protein can be obtained by investigating its
interaction with other proteins of known function.

A biomolecular interaction network can be viewed as a collection of nodes
(representing biomolecules), some of which are connected by links (representing
interactions). There are many classes of molecular networks in a cell, each with
different types of nodes and links. We list a representative subset below:
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� Protein-protein physical interaction networks. Here nodes represent pro-
teins, and links represent direct physical contacts between proteins. In
addition to direct interaction, two proteins can interact indirectly through
other proteins when they belong to the same complex.

� Protein-protein genetic interaction networks. In general, two genes are said
to interact genetically if a mutation in one gene either suppresses or
enhances the phenotype of a mutation in its partner gene (13). Some
researchers restrict the term “genetic interaction” to a pair of so-called
synthetic lethal genes, meaning that cell death occurs when this pair of
genes is deleted simultaneously, though neither deletion alone is lethal.
Synthetic lethal relationships may exist between functionally redundant
genes, and therefore can be used to determine the function of unknown
genes.

� Expression networks. Large-scale microarray experiments probing mRNA
expression levels yield vast quantities of data useful for constructing
expression networks. In an expression network, genes that are coexpressed
are considered connected (14–16). Genes linked in an expression network
are not necessarily coregulated because unrelated genes can sometimes
show correlated expression simply by coincidence. The structure of an
expression network can vary greatly across different experiments, and even
within the same experiment, networks produced by different clustering
algorithms are often distinct.

� Regulatory networks. Protein-DNA interactions are an important and com-
mon class of interactions. Most DNA-binding proteins are transcription
factors that regulate the expression of target genes. Combinatorial use of
transcription factors further complicates simple interactions of target genes
for a given transcription factor. A regulatory network consists of transcrip-
tion factors and their targets with a specific directionality to the connection
between a transcription factor and its target (17, 18). Transcription factors
can either up- or downregulate expression of their target genes.

� Metabolic networks. These networks describe the biochemical reactions
within different metabolic pathways in the cell. Nodes represent metabolic
substrates and products, and links represent metabolic reactions (19).

� Signaling networks. These networks represent signal transduction pathways
through protein-protein and protein-small molecule interactions (20).
Nodes represent proteins or small molecules (21), and links represent signal
transduction events.

These biomolecular networks are the focus of this review. We first discuss how
networks can be reconstructed from a combined experimental and computational
perspective. Later, we discuss how networks can be analyzed to yield biological
insight.
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SURVEY OF EXPERIMENTAL TECHNIQUES

There are several experimental methods for uncovering protein-protein and
protein-DNA interactions in biological systems on a large scale. Here we review
the most current, powerful, and common of these.

Yeast Two-Hybrid Screens

The yeast two-hybrid (Y2H) system (22) has been widely used in protein-protein
physical interaction assays. The system uses putative interacting proteins to
broker an in vivo reconstitution of the DNA binding domain (DB) and activation
domain (AD) of the yeast transcription factor Gal4p. Hybrid proteins are created
by fusing the two proteins or domains of interest (generally called “bait” and
“prey”) to the DB and AD regions of Gal4p, respectively. These two-hybrid
proteins are introduced into yeast, and if transcription of Gal4p-regulated reporter
genes is observed, the two proteins of interest are deemed to have formed an
interaction—thereby bringing the DB and AD domains of Gal4p together and
reconstituting the functional transcriptional activator.

Unlike most biochemical analyses of protein-protein interaction, such as
coimmunoprecipitation, cross-linking, and chromatographic cofractionation (22),
the two-hybrid system does not demand any protein purification, isolation, or
manipulation. The proteins to be tested are expressed by the yeast cells, and a
result is easily seen by in vivo reporter gene assays. The two-hybrid technique is
therefore applicable to nearly any pair of putative interacting proteins.

There exist three main approaches for large-scale two-hybrid studies (23). The
matrix approach (one versus one) systematically tests pairs of proteins for an
interaction phenotype; a positive result can indicate that these particular proteins
interact. Array experiments (one versus all) examine the interactions of a single
DB fusion protein against a pool of AD fusions. Depending on the size of the AD
pool, whole-proteome coverage can be achieved against the single DB fusion.
Pooling studies (all versus all) involve yeast strains expressing different DB
fusions mass-mated with strains expressing AD hybrids. With such experiments,
it is conceptually possible to test every protein in the organism against every
other protein.

The first large-scale, systematic search for yeast protein-protein interactions
was conducted in 1997 (24). In 2000, Uetz et al. (25) published the results of two
different large-scale screens on all full-length predicted open reading frames
(ORFs). The first approach involved a protein array of roughly 6000 yeast
transformants, which each expressed one yeast ORF-AD fusion. One hundred
ninety-two yeast proteins were screened against this array. In the second screen,
a library of cells was generated and pooled such that all 6000 AD fusions were
present. Nearly all predicted yeast proteins, expressed as DB fusions, were
screened against this library, and positives were identified by sequencing. Later,
Ito et al. (26, 27) reported another systematic identification of yeast interacting
protein pairs with a whole-genome-level two-hybrid screen. Their comprehensive
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approach involved cloning all yeast ORFs as both bait and prey, and they tested about
4 � 106 mating reactions (roughly 10% of all possible combinations). The research-
ers pooled constructs such that each pool expressed either 96 DB fusions or 96 AD
fusions, and they screened all possible combinations of these pools. False positives
were controlled by requiring a positive interaction result on at least three independent
occasions. Overlap between the Ito and Uetz screens was low, indicating that both
studies, though extensive, sampled only a small subset of yeast protein interactions
(28, 29).

It is also possible to use large-scale two-hybrid screens to explore interactions
relevant to a specific pathway or biological process. Drees et al. (30) screened 68
Gal4p DB fusions of yeast proteins associated with cell polarity against an array
of yeast transformants expressing roughly 90% of predicted yeast ORFs. In
addition, large-scale two-hybrid screens are not confined to yeast proteins:
Working with proteins involved in vulval development, Walhout et al. (31)
conducted large-scale interaction mapping in the nematode Caenorhabditis
elegans, and Boulton et al. (32) combined protein-protein interaction mapping
with phenotypic analysis in C. elegans to explore DNA damage response
interaction networks.

Comprehensive In Vivo Pull-Down Techniques

In vivo pull-down describes a class of techniques that use either a native or
modified bait protein to identify and precipitate interacting partners. Most
experiments concerned with studying protein-protein interactions through pull-
down techniques consist of three parts: bait presentation, affinity purification, and
analysis of the recovered complex (33).

Compared with the two-hybrid system, the main advantages to in vivo
pull-down techniques are the relative ease of analyzing complete complexes, and
the use of native, processed, and posttranslationally modified protein as a reagent
to target potential interactors in their natural environment and at normal abun-
dance levels (34). If a suitable antibody exists to the native protein, endogenous
protein can be used. However, because insufficient antibodies exist to attack most
unmodified proteins with the requisite specificity and affinity, more general
techniques, such as tagging, are typically used for large-scale assays. Generic
tagging involves the addition of a sequence onto the gene of interest, encoding
a tag recognized by a convenient antibody. HA-tagging is a common epitope-
tagging approach that has been used successfully (35). A recent tagging strategy
facilitating recovery of highly pure protein preparations is a tandem affinity
purification (TAP) system consisting of a calmodulin-binding domain and the
protein-A Ig-binding domain separated by the tobacco etch virus (TEV) protease
target sequence (36). Bait protein is recovered with an immunoglobulin-bound
solid support, and after washing, it is released from this support by protease
cleavage. Following this initial purification, the recovered sample is passed over
a calmodulin column, pending elution with ethylene glycol-bis (�-aminoethyl
ether)-N,N,N’,N’-tetraacetic acid or other Ca2� chelators. This two-stage
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purification ensures low background noise and correspondingly high sample
purity, but risks losing weak interacting partners or complex components due
to the harsh purification procedure.

After the bait/interactor complex is purified, components of this complex can
be identified by mass spectrometry (MS). The many recent advances in MS
technology, such as matrix-assisted laser desorption/ionization time-of-flight
(MALDI-TOF), electrospray ionization (ESI), and tandem MS/MS, among
others, have enabled accuracy to increase while permitting ionization (and
therefore, characterization) of larger biomolecules. In general, MS proteomics
experiments comprise five stages (33): The first three involve purification
(typically culminating in one-dimensional gel electrophoresis), tryptic digestion
to generate short peptides, and high-pressure liquid chromatography separation
of the tryptic digest; the final two stages are tandem mass spectrometry assays.
The high accuracy of MS spectra, combined with knowledge of the genomic
sequence of the organism in question, permits rapid and accurate identification of
the proteins involved in the recovered complex.

Two large-scale projects dealing with the yeast interactome were recently
completed by Gavin et al. (37) and Ho et al. (38). Gavin et al. purified 589 bait
proteins from a library of 1548 tagged strains, and from these identified 1440
distinct participant proteins in 232 complexes. Ho et al. purified 725 bait proteins
from which 1578 interacting proteins were identified. Both studies used extensive
literature comparisons to characterize the complexes they found, and both
reported significant participation by previously unknown or unannotated genes
(35, 37, 38).

Protein Chips

The application of microarray technology to proteomics yielded the protein chip,
an advanced in vitro technique for protein functional assays on a large scale.
Protein chip technology is directly applicable to protein interaction networks
because the large number of immobilized proteins can be probed with labeled
substrate in a single experiment.

Arenkov et al. (39) reported the creation of a polyacrylamide-based protein
microchip, containing 0.2 nanoliter (nl) spots of gel substrate in which proteins
were immobilized; this platform allowed electrophoresis to be used to enhance
mixing of substrate. MacBeath and Schreiber’s protein chip (40) uses microarray
technology and robotics to spot nanoliter volumes of protein onto aldehyde-
coated glass slides. The abundance of lysine residues in most proteins, combined
with a reactive N-terminal amine, permits proteins to become covalently linked
to the slide surface in a number of possible orientations.

Shortly thereafter, Zhu et al. (41) described another type of protein chip, also
mounted on a glass slide but comprising a system of 300 nl silicone elastomer
microwells for physical separation of samples during processing. As with the
MacBeath protein arrays, the target protein was covalently linked to the chip,
though here the chemical cross-linker GPTS was used. The following year, the
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same group announced the creation of the first whole-proteome chip (42), a glass
slide similar to MacBeath & Schreiber’s initial protein chip, but it contained over
80% of known yeast ORF gene products attached to nickel-coated slides via
6-His tags. Zhu et al. demonstrated the effectiveness of the proteome chip for
protein-protein interaction studies by probing with biotinylated calmodulin in the
presence of calcium; calmodulin binding partners were visualized by probing
with Cy3-labeled streptavidin. This demonstrated that biotinylated constructs of
virtually any protein could be used to probe the proteome chip, thereby visual-
izing protein-protein interactions. In addition to uncovering several known
calmodulin interactors, the researchers found a significant number of novel
potential interaction partners, many of which share a motif believed to be
important for calmodulin binding.

Structure Determination of Biomolecular Complexes

An atomic view of physical interactions between biomolecules can be achieved
by solving three-dimensional (3D) structures of biomolecular complexes, most
often accomplished with X-ray crystallography and NMR spectroscopy. In
particular, X-ray crystallography is able to produce the most spatially accurate
description of biomolecular interactions. Though technically challenging, signif-
icant advances have been made in recent years, and X-ray crystallography can
now be applied to complexes as large as several megadaltons. For a detailed
review of various structural determination methods for biomolecular complexes,
see Reference 43.

Comparing In Vivo and In Vitro Techniques

The caveats associated with genomic-level datasets stem largely from the
experimental techniques used to generate them, and in particular, care should be
taken to note whether interaction results originate from in vivo or in vitro studies.
A major advantage of in vivo pull-down techniques is that near-native interac-
tions can be probed, provided that tagging and bait expression do not interfere
with the replication of endogenous levels of protein activity—proper folding,
posttranslational modification, and the accessibility of biologically relevant
binding partners are generally assumed. Still, the abundance of proteins and
solutes in the cell means contaminants often copurify and potentially yield
misleading results. In vivo experiments generally offer little or no direct control
over reaction conditions (especially in the case of large-scale studies), whereas in
vitro assays permit exquisite control over ion concentration, temperature, and
other factors. The assumption that in vivo assay conditions are biologically
meaningful is sometimes inapplicable to interactions probed by the yeast two-
hybrid technique, which must occur in the yeast nucleus. In vitro and two-hybrid
approaches are unlikely to recover only significant binding partners, and they risk
false-positive results if interacting proteins localize to different cell compart-
ments, express at different times in the cell cycle, or are otherwise inaccessible
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to binding under normal conditions. Still, in vitro techniques, such as protein chip
assays, are convenient to record because results can be visualized for individual
putative interacting partners. Compare this situation to the grouped results of
many pooling techniques in which over- or underrepresentation in bait/prey pools
can influence results, and positives must be identified by sequencing or bar code
analysis.

Methods for Determining Protein-Protein Genetic
Interactions

Synthetic lethal screens are used to identify genetic interactions between pro-
teins. Small-scale synthetic lethal screens have been used to identify genes
involved in many cellular processes (44–46). Recently, Tong et al. (13) intro-
duced a systematic method to construct large-scale double mutant arrays, termed
synthetic genetic array (SGA) analysis, in which double mutants were created by
crossing a query mutation to an array of roughly 4700 deletion mutants, and
nonviable double-mutant meiotic progeny were identified. SGA analysis has
generated a genetic network of 291 interactions among 204 genes.

Methods for Determining Protein-DNA Interactions

Protein-DNA interactions can be determined by three core methods:

� Gel shift. Compared with protein molecules, DNA molecules are much
smaller and therefore have much higher mobility in a polyacrylamide gel.
Under favorable conditions, unbound DNA can be distinguished from DNA
associated with proteins because of their relative mobility (47, 48).
Recently, several enhanced methods, such as capillary electrophoretic
mobility shift assay (CEMSA) (49), have been proposed to improve the
performance of this approach.

� DNA footprinting. A 5�-end-labeled, double-stranded target DNA segment
is partially degraded by DNase in both the presence and absence of the
putative binding protein. Degraded fragments are visualized by electro-
phoresis and autoradiography. The binding site on the DNA will be
protected by the binding protein from DNAase degradation (48, 50).
Compared with gel shift methods, DNA footprinting not only confirms the
interaction between the DNA and the binding protein, but it can also
elucidate the specific binding site of the protein.

� In vivo cross-linking and immunoprecipitation. The binding protein is first
covalently linked to DNA in situ using any of a variety of common
cross-linking reagents; among these, UV and formaldehyde have been
widely used. After cross-linking, chromosomal DNA is sheared; the protein
is precipitated using a specific antibody, and bound DNA fragments
coprecipitate. Reversal of cross-links releases bound DNA, so fragments
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can be identified by polymerase chain reaction (PCR) and electrophoresis
(51, 52). This method is also called chromatin immunoprecipitation (ChIP).

Recently, with the advent of microarray technology, novel methods have been
introduced to rapidly determine the binding sites of transcription factors on a
genome-wide scale (17, 18, 53, 54).

� Chromatin-immunoprecipitation and microarray/chip technique (ChIP-
chip). This method combines the ChIP technique with DNA microarray
technology. Thousands of DNA fragments purified by the ChIP method are
identified simultaneously by microarray experiments (53). Using ChIP-
chip, Lee et al. (17) were able to create a yeast regulatory network
consisting of 106 transcription factors and 2363 target genes.

� DNA adenine methyltransferase identification (DamID). The use of cross-
linking reagents can produce artifacts in ChIP-chip experiments. To over-
come this problem, van Steensel and Henikoff (55, 56) introduced a new
technique to map protein-DNA interactions, termed DamID. The DNA
binding protein of interest is genetically fused with Escherichia coli DNA
adenine methyltransferase (Dam). Dam methylates the N6-position of
adenine in the sequence GATC, which occurs on average every 200–300
base pairs in the fly genome. Upon in vivo binding of the protein to its
target DNA sites, DNA around the target sites is preferentially methylated
by the tethered Dam enzyme. Subsequently, genomic DNA is digested into
small fragments by DpnI. DNA fragments without methylated GATCs are
removed by DpnII digestion. The remaining methylated fragments are
amplified by selective PCR and quantified by microarray analysis (54–56).
Recently, Sun et al. (54) successfully mapped protein-DNA interactions at
high resolution along large segments of genomic DNA from Drosophila
melanogaster using the DamID technique and genomic DNA tiling path
microarrays.

Conceivably, data generated by these different methods can be used to cross
validate one another, thereby producing more comprehensive information.
Although each method yields only a subset of the total interactions present, a
more complete yeast regulatory network consisting of 180 transcription factors
and 3474 target genes has been produced through the synthesis of all available
datasets (57).

Databases for Biomolecular Interactions

Many databases have been created to store the tremendous amount of data
required for and contained in these networks; some of which are summarized in
Table 1 (58–67). Some databases are more comprehensive than others; for
instance, MIPS contains not only protein-protein physical interaction data but
genetic interaction information as well (60).
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COMPUTATIONAL APPROACHES FOR PREDICTING
INTERACTIONS

In addition to experimentally determined interaction datasets, a vast amount of
biological information is contained in the ever-growing datasets of protein sequences,
structures, functions, and expressions, and in the literature. Here we review compu-
tational methods that extract interaction information from these datasets.

Computational Approaches for Predicting Protein-Protein
Interactions

We first review computational approaches for predicting interactions between
proteins. Protein-protein interactions can be inferred on the basis of comparative
genomics, detailed sequence and structural analysis, correlation of protein func-
tional genomic features, and the existence of conserved interactions in other
organisms. In addition, protein-protein interactions can be extracted from liter-
ature in an automated way.

PREDICTING PROTEIN FUNCTIONAL RELATIONSHIPS ON THE BASIS OF COMPARATIVE

GENOMICS Several methods exist to predict functional relationships between
pairs of proteins on the basis of their patterns of occurrence and their location
across multiple genomes. The first method identifies protein pairs that are
adjacent along the chromosome. Protein pairs are likely to share similar functions
if such chromosomal proximity is conserved across multiple genomes (68–70).
In addition, conserved gene order can also be used as an indicator for functional
interaction (71). These methods are inspired by the experimental observation that
functionally related proteins in bacteria tend to cluster along the chromosome to
form operons; their applicability in eukaryotes is less clear.

The second method predicts protein functional interaction on the basis of patterns
of domain fusion (72, 73). Sometimes two protein domains exist as separate proteins
in one genome, but they are fused together into a single protein in another genome.
In such a case, the domains are likely to be functionally related (74).

The third method analyzes patterns of occurrence of proteins in multiple
genomes. For each protein, a phylogenetic profile is constructed that indicates
whether or not the protein is present in each genome. From an evolutionary
standpoint, protein pairs with similar phylogenetic profiles tend to travel together
and are candidates for functional interaction (75–77).

PREDICTING PROTEIN-PROTEIN INTERACTIONS ON THE BASIS OF DETAILED

SEQUENCE AND STRUCTURAL ANALYSIS Two methods exploit the hypothesis that
interacting proteins tend to coevolve. In the first method, the coevolution of
interacting protein families is measured by the similarity of phylogenetic trees
constructed from multiple sequence alignments of the two protein families (78,
79). When this technique is applied on a genomic scale, phylogenetic trees for all
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proteins can be constructed. Proteins with similar phylogenetic trees are more
likely to interact with one another (80). In the second method, the coevolutionary
signal in multiple sequence alignments is further analyzed in terms of correlated
mutations: A protein pair is likely to interact if there is accumulation of
correlated mutations between the interacting partners (81).

Certain pairs of sequence motifs and structural families preferentially interact. To
identify such pairs, one first classifies known protein interactions in terms of
interactions between sequence motifs and structural families (82, 83). Pairs of
sequence motifs and structural families that are overrepresented in the interaction
dataset can then be identified. A new protein pair is likely to interact if it can be
classified into one of these overrepresented sequence motif or structural family pairs.

It is also possible to predict protein-protein interactions from sequence
information using machine-learning techniques. For example, using a database of
known interactions, a support vector machine learning system can be trained to
predict interactions based on sequence information and associated physicochem-
ical properties, such as charge, hydrophobicity, and surface tension (84).

With progress in structural genomic projects and structure prediction methods,
structural models can be built with varying degrees of accuracy for an increasing
fraction of genomic proteins. For two candidate proteins, each equipped with
accurate structural models, it is possible to assess the likelihood of interaction in
vitro by calculating the lowest free energy for the protein complex. This process,
called docking, has proven increasingly successful in structure prediction of
protein complexes, as indicated in the Critical Assessment of Prediction of
Interactions (CAPRI) meetings (85). However, docking is a time-consuming
procedure, and its accuracy needs further improvement. In its current form, it is
not feasible to predict protein interactions on a genomic scale with this technique.

Databases of solved 3D structures for protein complexes provide additional
information that can be exploited for predicting protein-protein interactions. The
full set of known 3D complexes can be used to search for all complex
homologues in yeast (86). In this method, called multimeric threading, sequences
of every protein pair are aligned (or threaded) to a 3D complex template to
optimize a compatibility scoring function compiled from known 3D complexes.
Top protein pairs with the best compatibility scores are likely to interact in a way
similar to the 3D complex template.

EXTRACTING PROTEIN INTERACTIONS FROM LITERATURE A number of methods
have been developed to extract protein interactions from literature. These
methods can be grouped into two categories. Methods in the first category use
machine learning techniques to screen the literature for articles containing
information about protein interactions (87); selected articles are then curated by
hand. Methods in the second category automatically extract protein interaction
events from biomedical articles. Techniques used range from statistical analysis
of co-occurrence of names of biomolecules (88) to natural language processing
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(89). For detailed reviews of information extraction methods for molecular
biology, see (90, 91).

ANNOTATION TRANSFER OF PROTEIN INTERACTIONS Sequence homology offers
an efficient way to map genome-wide interaction datasets between different
organisms, using the concept of interolog. This will be discussed below in the
section entitled “Cross-referencing Different Networks.”

CORRELATION OF PROTEIN FUNCTIONAL GENOMIC FEATURES AS PREDICTORS FOR

PROTEIN INTERACTIONS In addition to sequence and structural information,
functional genomic datasets are also available for certain organisms. Much of this
functional genomic information is applicable to the study of protein interactions.
Consider each class of functional genomic data as a protein feature; two proteins
are therefore more likely to interact if these genomic features are correlated. A
list of potential functional genomic features for proteins is given below.

� mRNA expression. Interacting proteins tend to have correlated expression
profiles (16, 92). Protein abundance can be indirectly and quite crudely
measured by the presence or absence of the corresponding mRNA tran-
scripts, though large differences can exist between the mRNA and protein
abundance (93). Still, several studies have reported a significant correlation
of mRNA transcript levels among proteins that interact (92, 94, 95). This
correlation is more prominent for proteins in permanent complexes and less
noticeable for those participating in transient complexes (92).

� The phenotype of knockout mutants (96, 97) can serve as another potential
indicator, suggesting whether two proteins are subunits of the same com-
plex. The genetic deletion of different subunits of the same complex may
disturb the function of a complex in the same way, thus producing a similar
phenotype. Synthetic lethal interactions are generally enriched in genes that
encode members of the same complex (13). More generally, if proteins
function in related cellular processes, they have an increased chance of
being in the same complex.

� To form an interaction, proteins must localize to the same subcellular
compartment at the same time. Colocalization thus serves as a useful
predictor for protein interaction. A large amount of protein subcellular
localization data is available for yeast (98).

Circumstantial evidence, such as the indicators given above, is rarely strong
enough to directly predict protein-protein interactions. However, when these
datasets are properly combined, quite reliable predictions can result.

Integration of Protein-Protein Interaction Datasets

We have seen that protein-protein interaction datasets come from a variety of
different experimental and computational sources. To gain a comprehensive
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understanding of the interactome, we must integrate these disparate interaction
datasets. There are two key reasons for integrating multiple protein-protein
interaction datasets. First, different interaction datasets cover different subsets of
the proteome, so it is reasonable to consider their union. Second, the degree of
confidence in a protein-protein interaction depends upon how much evidence
supports it (99–102). Usually, when multiple, distinct data sources all contribute
evidence for a predicted interaction, we gain increased confidence in the validity
of our prediction. It is important to note that different experimental methods carry
with them different systematic errors—errors that cannot be corrected by
repetition.

INTEGRATION OF MULTIPLE DATASETS OF PHYSICAL PROTEIN-PROTEIN INTERAC-

TIONS: RNA POLYMERASE II The value of integrating multiple datasets of
physical protein-protein interactions was demonstrated in a recent study by
Edwards et al. (29), who compared the crystal structure of RNA polymerase II
with protein-protein interaction experiments on the same set of proteins. The
protein-protein interaction experiments, including cross-linking, pull-down and
far western blotting studies, were carried out while this structure was still
unknown (29, 103–107). The subsequent publication of the crystal structure
allowed a retrospective assessment of the success of these experiments.

The comparison showed that the individual protein-protein interaction exper-
iments tended to measure subsets of the potential interactions in the RNA
polymerase II structure. Furthermore, individual experiments missed many
interactions present in the true structure (false negatives) among the protein pairs
that were tested, and they found spurious protein-protein interactions absent from
the true structure (false positives). The best pull-down experiment was inconsis-
tent with the crystal structure for 23% of the protein pairs, whereas some
experiments were incorrect nearly 50% of the time.

To reduce these error rates, different datasets can be combined. The simplest
rules for integration of multiple datasets are the and- and or rules. The “and rule”
predicts a positive interaction only when all datasets agree (intersection); the “or
rule” predicts an interaction when at least one dataset gives a positive result
(union). The and rule tends to give more accurate results, but offers low coverage
because few cases exist where all available datasets agree. The or rule tends to
yield maximum sensitivity (that is, the discovery of the highest number of true
positives), but it simultaneously produces the highest number of false positives.

An intuitive method of combining the datasets is a majority voting procedure
(Figure 1) in which the different experimental results contribute an additive
positive or negative vote toward the final result. If the majority of datasets detect
an interaction between a protein pair, the pair is predicted to interact, whereas the
pair is considered noninteracting if the majority of datasets do not measure an
interaction. A major caveat of this procedure is that each dataset implicitly carries
the same weight, despite the fact that some datasets contain more reliable results,
and other datasets may be redundant. In fact, in the RNA polymerase II example,
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the prediction by the voting procedure offers virtually no improvement in
accuracy compared with the results of the individual interaction experiments
(Figure 1). Altogether, the voting procedure has higher coverage than the
individual experiments, a trivial result of the integration.

Machine-learning methods provide more sophisticated data integration pro-
cedures that take into account data reliability and redundancy, often leading to
better results in both coverage and accuracy. An effective method is the Bayesian
network, in particular the naive Bayesian network in its simplest form. Bayesian
networks have previously been applied successfully in computational biology
research, ranging from the prediction of subcellular localization of proteins (108)
to the combination of different gene prediction algorithms (109, 110).

The Bayesian network combines different interaction datasets in a probabi-
listic manner, assigning a probability to the prediction result rather than just a
binary classification. Each individual dataset is essentially weighted by its
accuracy and redundancy. The naive Bayesian network yields optimal results
when the different datasets contain uncorrelated evidence; but even when this
condition is not met, the results are often useful. In the RNA polymerase II
example, naive Bayesian network integration leads to an increase in accuracy
ranging from 5% to 26% compared to the individual experiments (Figure 1).
Details on using Bayesian networks for integrating interaction datasets can be
found in the Appendix.

INTEGRATION OF GENOME-SCALE PROTEIN-PROTEIN INTERACTION DATA Similar
data integration methods can be used on a genomic scale. This is important
because several studies have demonstrated that a large number of false positives
occurs in the results of individual interaction experiments carried out in a
high-throughput manner and on a large scale, calling into question the general
validity of such experiments. A fair estimate is that the number of false positives
in high-throughput studies is on the same order of magnitude as the actual
number of true positive interactions; this reflects the fact that the number of
interacting proteins in any cell is perhaps several orders of magnitude smaller
than the number of all possible combinations between the proteins in the entire
proteome. Screening for protein-protein interactions in the proteome is therefore
equivalent to using a diagnostic test for screening for people with a rare disease
in the general population: An experiment with a small false positive rate would
still yield a high absolute number of false positives simply because the pool of
tested candidates is so large. Thus, a natural strategy to overcome this problem
is the combination of multiple interaction data sources and other genomic data.

DE NOVO PREDICTION OF PROTEIN COMPLEXES Jansen et al. (111) recently
showed how protein complexes can be predicted de novo with high confidence
when multiple genomic datasets are integrated. In their study, the MIPS com-
plexes catalog was used as a sample of well-characterized protein complexes
(determined from more reliable small-scale interaction studies), and a list of
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negative examples (noninteracting protein pairs) was constructed from proteins
that were observed to have different subcellular localizations (60, 98). Although
such a list of negatives may be imperfect, it is expected to be strongly enriched
in noninteracting protein pairs when compared to randomly chosen proteins.
These datasets (“gold standards”) serve as a reference for observing whether the
prediction results are correct (testing) and for determining the parameters of
possible integration methods (training).

It is possible to quantify how the different values in the individual genomic
features fare in predicting whether two proteins are members of the same
complex (Table 2). More details can be found at http://www.genecensus.org/
intint/. These different genomic features can then be combined using naive
Bayesian networks (analogous to the method employed in the aforementioned
example of RNA polymerase II). Cross validation with the reference datasets
shows that the predictions are highly enriched in positive protein pairs (interact-

4™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™
Figure 1 Comparison of the crystal structure of RNA polymerase II and the protein-
protein interaction experiments. The RNA polymerase II structure consists of 10 protein
subunits, which allows for 45 different pairings between these proteins (shown in the first
two columns). The third column shows which of the protein pairs are in physical contact
(with a contact interface area �800 Å2, shown by the gray squares). The following columns
show the results from three far western, three pull-down and one cross-linking experiment.
The experimental results are indicated as either positive (�), when an interaction was
found, or negative (�) when no interaction was detected. The results are either true (green),
when they agreed with the crystal structure contacts, or false (red), when they disagreed.
Blank fields in the table correspond to protein pairs that were not tested in the experiments.
The two columns on the right show the results of integrating the seven experiments into one
prediction of interactions. The Voting column shows the difference between positive and
negative experimental results for each protein pair. The Bayes column shows the posterior
odds, calculated with a naive Bayesian network, of having a real protein-protein interaction
on the basis of experimental data. The Coverage row shows how many protein pairs were
measured in each experiment or how many protein pairs were covered by the voting and the
Bayesian network procedure. These can be divided into true positive (TP), false negative
(FN), true negative (TN), and false positive (FP). The bottom three rows show the accuracy
of individual experiments, defined as (TP � TN)/Coverage. The Voting and Bayes rows
show the accuracy of the voting procedure and the naive Bayesian network for the same
subset of protein pairs that were measured in the individual experiments. The graph at the
bottom shows the Accuracy increase, the difference between the accuracies of the integra-
tion methods and the individual experiments. Gray bars represent Bayes, and black bars
represent Voting. Note that the results here were obtained without cross validation. It can
be shown, however, that the naive Bayesian network or various other machine-learning
methods achieve higher sensitivity and accuracy than the majority voting in a leave-one-out
prediction—where the protein pair for which a prediction is made is excluded from the
training of the parameters of the machine-learning method (data not shown).
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TABLE 2 Combining genomic features using Bayesian networks to predict yeast protein-
protein interactions

Essentialitya

Number of
protein
pairsb

Gold standard overlap

P
(Ess�
pos)g

P
(Ess�
neg)g Lg,hPosc Negc

Sum
(pos)d

Sum
(neg)e

Sum
(pos)/
sum
(neg)f

Values

EE 384,126 1,114 81,924 1,114 81,924 0.014 5.18E-01 1.43E-01 3.6

NE 2,767,812 624 285,487 1,738 367,411 0.005 2.90E-01 4.98E-01 0.6

NN 4,978,590 412 206,313 2,150 573,724 0.004 1.92E-01 3.60E-01 0.5

Sum 8,130,528 2,150 573,724 — — — 1.00E�00 1.00E�00 1.0

Expression
correla-
tion

Number
of protein
pairs

Gold standard overlap

P
(exp�
pos)

P
(exp�
neg) LPos Neg

Sum
(pos)

Sum
(neg)

Sum
(pos)/
sum
(neg)

Values

0.9 678 16 45 16 45 0.36 2.10E-03 1.68E-05 124.9

0.8 4,827 137 563 153 608 0.25 1.80E-02 2.10E-04 85.5

0.7 17,626 530 2,117 683 2,725 0.25 6.96E-02 7.91E-04 88.0

0.6 42,815 1,073 5,597 1,756 8,322 0.21 1.41E-01 2.09E-03 67.4

0.5 96,650 1,089 14,459 2,845 22,781 0.12 1.43E-01 5.40E-03 26.5

0.4 225,712 993 35,350 3,838 58,131 0.07 1.30E-01 1.32E-02 9.9

0.3 529,268 1,028 83,483 4,866 141,614 0.03 1.35E-01 3.12E-02 4.3

0.2 1,200,331 870 183,356 5,736 324,970 0.02 1.14E-01 6.85E-02 1.7

0.1 2,575,103 739 368,469 6,475 693,439 0.01 9.71E-02 1.38E-01 0.7

0 9,363,627 894 1,244,477 7,369 1,937,916 0.00 1.17E-01 4.65E-01 0.3

�0.1 2,753,735 164 408,562 7,533 2,346,478 0.00 2.15E-02 1.53E-01 0.1

�0.2 1,241,907 63 203,663 7,596 2,550,141 0.00 8.27E-03 7.61E-02 0.1

�0.3 485,524 13 84,957 7,609 2,635,098 0.00 1.71E-03 3.18E-02 0.1

�0.4 160,234 3 28,870 7,612 2,663,968 0.00 3.94E-04 1.08E-02 0.0

�0.5 48,852 2 8,091 7,614 2,672,059 0.00 2.63E-04 3.02E-03 0.1

�0.6 17,423 — 2,134 7,614 2,674,193 0.00 0.00E�00 7.98E-04 0.0

�0.7 7,602 — 807 7,614 2,675,000 0.00 0.00E�00 3.02E-04 0.0

�0.8 2,147 — 261 7,614 2,675,261 0.00 0.00E�00 9.76E-05 0.0

�0.9 67 — 12 7,614 2,675,273 0.00 0.00E�00 4.49E-06 0.0

Sum 18,773,128 7,614 2,675,273 — — — 1.00E�00 1.00E�00 1.0
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TABLE 2 (Continued)

MIPS
function
similarity

Number of
protein
pairs

Gold standard overlap

P
(MIPS�
pos)

P
(MIPS�
neg) LPos Neg

Sum
(pos)

Sum
(neg)

Sum
(pos)/
sum
(neg)

Values

1–9 6,584 171 1,094 171 1,094 0.16 2.12E-02 8.33E-04 25.5

10–99 25,823 584 4,229 755 5,323 0.14 7.25E-02 3.22E-03 22.5

100–1000 88,548 688 13,011 1,443 18,334 0.08 8.55E-02 9.91E-03 8.6

1000–10000 255,096 6,146 47,126 7,589 65,460 0.12 7.63E-01 3.59E-02 21.3

10000–Inf 5,785,754 462 1,248,119 8,051 1,313,579 0.01 5.74E-02 9.50E-01 0.1

Sum 6,161,805 8,051 1,313,579 — — — 1.00E�00 1.00E�00 1.0

GO biological
process
similarity

Number of
protein
pairs

Gold standard overlap

P
(GO�
pos)

P
(GO�
neg) LPos Neg

Sum
(pos)

Sum
(neg)

Sum
(pos)/
sum
(neg)

Values

1–9 4,789 88 819 88 819 0.11 1.17E-02 1.27E-03 9.2

10–99 20,467 555 3,315 643 4,134 0.16 7.38E-02 5.14E-03 14.4

100–1000 58,738 523 10,232 1,166 14,366 0.08 6.95E-02 1.59E-02 4.4

1000–10000 152,850 1,003 28,225 2,169 42,591 0.05 1.33E-01 4.38E-02 3.0

10000–Inf 2,909,442 5,351 602,434 7,520 645,025 0.01 7.12E-01 9.34E-01 0.8

Sum 3,146,286 7,520 645,025 — — — 1.00E�00 1.00E�00 1.0

aThe first column describes the genomic feature. Protein pairs in the essentiality data can take on three discrete values (EE,
both essential; NN, both nonessential; and NE, one essential and one not). The values for mRNA expression correlations
range on a continuous scale between �1.0 and �1.0. Functional similarity counts, calculated based on MIPS and gene
ontology (GO) classification schemes, are integers between 1 and �18 million. We binned the mRNA expression correlation
values into 19 intervals and the functional similarity counts into 5 intervals.
bThe second column gives the number of protein pairs with a particular feature value (e.g., EE) drawn from the whole yeast
interactome (�18 million pairs).
cColumns Pos and Neg give the overlap of these pairs with the gold-standard positives and the gold-standard negatives.
dThe column Sum (pos) shows how many gold-standard positives are among the protein pairs with likelihood ratio greater
than or equal to L, which can be computed by summing up the values in the column Pos to the left.
eThe column Sum (neg) shows the number of gold-standard negatives among the protein pairs with likelihood ratio greater
than or equal to L.
fThe column Sum (pos)/sum (neg) is a measure of how well each feature predicts protein-protein interactions (given a certain
likelihood ratio cutoff).
gThe last three columns on the right give the conditional probabilities of the feature values—P(feature value � pos) and
P(feature value � neg)—and the likelihood ratio L, the ratio of these two conditional probabilities.
hThe likelihood ratios of the individual features can be combined using a naive Bayesian network, as explained in Equation
1 in the Appendix. The prior odds were set to 1/600, which corresponds to a very conservative estimate that there are at most
30,000 pairs of proteins in the same complex among the 18 million protein pairs in yeast.
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ing proteins) rather than negative protein pairs (negatives). Figure 2 shows an
example of the de novo prediction results: A set of rRNA processing proteins
were predicted to be present in the same complex and were subsequently
validated with TAP-tagging experiments. Figure 2 also shows the value of
integrating multiple datasets: The confidence with which proteins can be pre-
dicted to be in the same complex (here measured in terms of the likelihood ratio)
is low in the individual datasets but high in the combined data.

To conclude, the integration of multiple interaction data sources—or data
providing circumstantial evidence about protein-protein interactions—can lead
to reliable predictions of protein-protein interactions, even if the individual
datasets are related to these interactions only in a statistical sense and contain
many false positives. If performed correctly, integration of multiple interaction
datasets should yield an error rate lower than that of the component datasets.
Machine-learning methods, such as Bayesian networks, have advantages over
more simple-minded integration procedures.

We have seen how Bayesian networks can be used as a means to integrate
multiple data sources. But in addition to integrating and correlating sets of data,
Bayesian networks can also be used to model the regulatory relationships
between individual proteins. In the former case, the Bayesian network is used
primarily as a tool for integration and classification, whereas the latter application
aims at modeling the interdependency of gene and protein activities, as we
discuss below.

Reconstructing Biological Pathways and Regulatory
Networks From Quantitative Measurements

A large amount of data has been produced by quantitatively monitoring the
concentrations of biomolecules in a cell, such as mRNA expression levels. Many
computational methods, including correlation metric construction (112), Boolean
networks (113–115), and Bayesian networks (116, 117), have been developed to
reconstruct biological pathways and networks from these quantitative measure-
ments. Here we discuss Boolean networks and Bayesian networks in detail.

4™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™
Figure 2 (top) Graphic representation of a complex around the protein Nsr1 that was
predicted by combining genomic features, such as essentiality, expression, and function. All
proteins shown have posterior odds of being in the same complex greater than 1 (assuming
prior odds of 1/600). Some of the protein pairs were experimentally verified by TAP-
tagging, whereas other protein pairs were shown to be interacting by previous proteomics
studies (25, 27, 37, 38). (bottom) A table of the distribution of likelihood ratios among the
individual experiments and the combined data shows the value of integrating multiple data
sources: The combined data contain a much larger number of protein pairs with high
likelihood ratios.
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A Boolean network is a system of interconnected binary elements, defined by
a set of nodes and a group of Boolean functions. Each node exists in one of two
states; this is applicable to any binary condition, for example on/off or active/
inactive. In general, these two states are assigned numerical values of 1 and 0. A
Boolean operation is a function taking input from a set of binary variables and
producing output to a single binary variable. Boolean networks can be used to
describe the dynamics of a biological system in that all nodes are updated
synchronously, moving the system into its next state. Because the number of all
possible states of the system is limited and the transition rules are defined
deterministically and do not depend on time, the system either reaches a cycle or
converges to an attractor. The attractor can be a steady state or a limit cycle.
Attractors can be regarded as the target area of the organism, for instance, cell
types following differentiation and development. Although Boolean networks
have been considered and developed as an approximation model for biological
networks, they are inherently deterministic, and thus they do not reflect the
inherent randomness that is an integral part of biology. Probabilistic Boolean
networks incorporate stochastic variations (115), but the identification of models
and the estimation of model parameters under these generalized Boolean net-
works can pose both theoretical and computational challenges. Another serious
limitation of the Boolean network is that all possible variables must be assigned
to binary states, whereas most biological activities exhibit continuous measure-
ments. Most recent studies have focused more on the properties of Boolean
networks, so the usefulness of Boolean networks as a general modeling and
computational tool for biological pathways has yet to be demonstrated.

Recently, there has been enormous interest in modeling gene expression data
with Bayesian networks [see for example (118)]. Owing to the stochastic nature
of biological processes and various measurement errors, the Bayesian network
has won support as a suitable technique with which to study gene expression
data. Simply put, a Bayesian network is a graphical representation of a joint
probability distribution. It consists of two parts: Bs and Bp, where Bs is a directed
acyclic graph (DAG), meaning a directed graph where no path starts and ends at
the same node, and Bp is a set of local joint probability distributions describing
statistical associations. Causal inferences can be made from these associations by
statistically testing the associations between variables or by using a certain
measure to score all possible structures and searching for those with high scores.
In general, the scoring method is better and more intuitive, and much research
has focused on this issue (89, 119).

Dynamic Bayesian networks (DBN) represent a generalization of Bayesian
networks. With DBN modeling, we can model the stochastic evolution of a set
of random variables over time (120). Bayesian networks have been used to model
gene expression data at various scales. Some studies have modeled roughly 800
yeast cell-cycle genes (116). Other groups have focused on a more limited
number of genes. For example, the yeast pheromone response pathway (�32
genes) was recently studied (117). A detailed analysis of just three genes
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involved in the yeast galactose pathway was reported (118). Although the
application of both Bayesian networks and DBN to modeling gene expression
has been discussed, their usefulness remains to be shown, and analyses of more
well-understood genetic pathways are needed.

There are some limitations to current Bayesian network and DBN approaches.
From a statistical perspective, expression levels must be discretized, undoubtedly
leading to loss of information. Although we can simplify the computation (as
well as obtain a stable result) through such discretization, we need to explore
alternative ways to discretize data and, more importantly, to find reliable
approaches to analyze continuous data.

Two major limitations exist to using Bayesian networks to model biological
pathways. First, all observations are assumed to stem from the same distribution,
which clearly cannot model the dynamics of biological systems and responses to
environmental perturbations. Second, there is the identifiability problem; many
distinct DAGs may result in the same joint probability distributions. Although the
DBN may partially address these problems, the computational and theoretical
implications of extension to more general models require further investigation. It
has been reported in the literature (117) that the Bayesian network methodology
was able to correctly identify the true biological model from two competing
hypotheses, yet it became clear that this particular analysis was driven by 2
outlying observations from a total of 55 observations (H. Zhao and B. Wu,
unpublished results). The Bayesian networks also failed to detect the galactose
pathway from genomics data reported in (121). Furthermore, when a DBN was
applied to time-course data in Drosophila (122), it failed to identify the correct
transcriptional regulatory network among three genes showing expression pat-
terns clearly consistent with known biology (H. Zhao and B. Wu, unpublished
results). A closer inspection of the cause of DBN failure showed that the
stationarity assumption underlying this approach may be too strong and inap-
propriate. Our experience with Bayesian networks and DBN suggests that a
considerable amount of work needs to be done to improve current methods
before meaningful results can be reliably extracted from genomic data.

Clearly, better statistical methods are needed to reconstruct biological path-
ways from quantitative measurements. In addition, improvements along other
directions are possible. First, additional quantitative measurements performed on
a systematically perturbed network can help define the network architecture with
increasing accuracy (121, 123). Second, cross-species comparison can help
reveal the conserved core network. Evolutionarily conserved coexpression
implies selective advantage and, therefore, a functional relationship (124). Third,
the aforementioned analyses need to be combined with other types of informa-
tion, such as shared functional classification (125), shared promoter motifs (126),
protein-protein interaction data (127), and protein-DNA binding data (128). In
the end, all these diverse genomic datasets need to be integrated in a proper way
for an accurate reconstruction of biomolecular networks.
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APPROACHES FOR ANALYZING LARGE NETWORKS
OF INTERACTIONS

Once molecular networks have been reconstructed, we can then proceed to
compare and contrast them in terms of global and local topology and to relate
structural properties of networks to protein properties, such as function or
essentiality. These topics, generally termed network analysis, are reviewed here.

Network Topology

The classical random network theory, introduced by Erdös and Rényi (10, 129),
has been generally used to model complex networks. This model assumes that
each node in a network is connected to another node randomly with probability
p, and the degrees of the nodes follow a Poisson distribution, which has a strong
peak at the average degree, K. Most random networks are highly homogeneous
in that most nodes have the same number of links (degree), ki � K, where ki is
the degree of the ith node. The chance of having nodes with k links falls off
exponentially [i.e., P(k) � e � k] for large k.

To explain the heterogeneous nature of complex networks, Barabási and
colleagues (5) recently proposed a “scale-free” model in which the degree
distribution in many large networks follows a power-law distribution [P(k) �
k�r]. The most remarkable point about this distribution is that most of the nodes
within these networks have very few links, but a few (the hubs) are exceptionally
highly connected. Concurrently, Watts & Strogatz (3) found that many networks
also have a “small-world” property, meaning they are defined as being both
highly clustered and containing small characteristic path lengths.

The relevance of such structures is apparent in multiple disciplines. A recent
practical example is the North American power grid structure. Although hap-
hazardly constructed, the grid has evolved into a network that is defined by a
power law; most nodes in the grid are linked to few other nodes, yet some hubs
are highly connected to many other nodes. The power law adds a level of
robustness to the network, meaning many individual nodes can fail without
destroying the whole grid. Conversely, when several hubs or too many nodes
(130) fail, the entire network will collapse, and a large regional blackout will
result. This example highlights two important characteristics of networks that are
pertinent to the protein interaction network. First, networks often evolve natu-
rally into power law networks—hubs evolve naturally from nodes because of the
inherent characteristics of the original node, i.e., its importance, fitness, or
relative age within the network (10). Second, power-law networks are robust: A
network defined by a power law has an inherent design that makes it less
susceptible to random destabilizing events. The small-world concept is important
in social networks, connecting multiple and otherwise unassociated cliques,
which cause the networks to have a higher than otherwise logically suspected
degree of clustering (the so-called six degrees of separation). Similarly, protein
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networks are often found to adhere to the small-world property, primarily due to
the interconnectivity of a select group of nodes.

Topological analysis of these networks provides quantitative insight into their
basic organization. Generally, there are four topological parameters in network
analysis (Figure 3) (3–5, 7–11, 19):

� Average degree (K). The degree of a node is the number of links that this
node has with other nodes. The average degree of the whole network is the
average of the degree of all its individual nodes.

� Clustering coefficient (C), defined as the ratio of the number of existing
links between the neighbors of a node and the maximum possible number
of links between them. The clustering coefficient of the network is the
average of the individual coefficients. This statistic can be used to deter-
mine the completeness of the network.

� Characteristic path length (L). The graph theoretical distance between two
nodes is the minimum number of edges that is necessary to traverse from
one node to the other. The characteristic path length of a network is the
average of these minimum distances: It gives a measure of how close nodes
are connected within the network.

� The diameter (D) of a network is the longest graph theoretical distance
between any two nodes in the graph.

Networks can be divided into two broad categories: directed and undirected.
Physical interaction, genetic interaction, and expression networks are “undi-
rected,” meaning no directionality or causality is implied in the interactions.
Stated differently, “node A is linked to node B” is equivalent to “node B is linked
to node A.” These undirected networks should be sharply distinguished from
other biological networks, such as regulatory networks, metabolic networks, and
signaling networks; these “directed” networks do imply directionality in their
linkages. A node in the directed network may have an incoming degree and an
outgoing degree (see Figure 3C), which are completely independent. The incom-
ing degree of a node is the number of edges pointing toward this node, whereas
its outgoing degree is the number of edges pointing out of this node. The
clustering coefficient cannot be calculated for directed networks (10).

Substructures Within Networks

Complex networks, such as protein-protein physical interaction networks (herein
referred to simply as interaction networks) and regulatory networks, usually
contain biologically meaningful substructures. Within interaction networks, pro-
tein complexes will theoretically appear as a clique, a fully connected subgraph.
However, because of the limitation of the interaction identification techniques,
some of the links within the same complex may be missing. Therefore, in reality,
most complexes are quasi cliques within the interaction networks (131).
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Compared with yeast two-hybrid methods, in vivo pull-down methods detect
protein complexes, rather than binary protein-protein interactions. In order to
break down the complexes into binary interaction pairs, Bader & Hogue (132)
proposed two models: spoke and matrix. The “spoke” model assumes that only
the bait proteins directly interact with each component of the complex. The
“matrix” model assumes that each component interacts with all other components
in the same complex. An important assumption in extrapolating gene function is
“guilt by association,” i.e., two interacting proteins should share the same
function. In the paper, the authors were able to show that interacting pairs
produced by the spoke model are more likely to share common functions than
those produced by the matrix model. In addition, Bader & Hogue proposed a new
method to determine protein complexes within interaction networks, termed
“k-core.” A k-core is a graph of minimal degree k. To date, high-throughput
interaction identification methods, such as yeast two-hybrid methods and in vivo
pull-down methods, all have high false-positive rates. However, within a k-core,
links between proteins are strengthened by one another as a joint probability,
which largely increases the accuracy of the predicted interactions. Using k-core
method, Bader & Hogue were able to identify many well-known complexes, as
well as some novel but reasonable ones, within the yeast interaction networks
(132).

As discussed above, regulatory networks are different from interaction net-
works in that regulatory networks are directed networks. There are six basic
network motifs within regulatory networks (Figure 4) (17, 133, 134): (a) single-
input motif, in which a set of targets are regulated by only one transcription
factor; (b) multi-input motif, where a set of targets are regulated by more than
one regulator, and these are the only regulators for these targets; (c) feed-forward
loop, where one transcription factor (TF1) regulates another transcription factor
(TF2), and both factors regulate their targets together; (d) autoregulation, in
which one transcription factor regulates itself; (e) multicomponent loop, where

4™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™
Figure 3 Schematic illustration of different topological parameters within undirected and
directed networks. (A) In an undirected network, the diameter of the essential protein
network (shown as the red line) is the maximum distance between any two essential
proteins. The path can go through nonessential proteins, but it has to start and end at
essential ones. The diameter of the nonessential protein network can be similarly defined.
(B) Protein B has four interaction partners, among which there are only two connections,
whereas there could potentially be six (shown as the dotted lines). Therefore, the clustering
coefficient for B is 1/3. Protein A interacts with five different proteins, which belong to
three different complexes. Therefore, the complex degree of A is 3. In (A) and (B), there are
essential proteins (black circles), nonessential proteins (open circles), and marginally
essential proteins (gray circles). The size of the circle represents the degree of the node. (C)
The outgoing degree of transcription factor A is 3 and its incoming degree is 2. Genes
without transcription factor activities (shown as rectangles) only have incoming degrees.
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one factor regulates a second factor, which in turn regulates the first one; and (f)
regulator chain, which for several regulators, one regulates another in a chain
fashion.

Application of Topological Analysis

The ultimate goal of functional genomics is to determine the function of every
gene product in fully sequenced genomes. Different prediction schemes have
been proposed, such as the concept that coexpressed genes share similar func-
tions or that interacting proteins have the same functions. Given the relative ease
with which large-scale protein-protein interaction datasets can now be produced,
functional genomics relies on interaction data to determine the function of an
unclassified protein based on its interacting partners. Traditionally, pairs of
interacting proteins have been thought to share similar functions (25, 26); but
because proteins normally interact with more than one partner, and the interact-
ing partners for the same protein do not generally share the same functions, this
idea is clearly problematic. A better method, known as the “majority rule”
method (135, 136), assigns an unknown protein to the functional class to which
the majority of its partners belong. Obviously, the method is still inefficient
because only a small portion of the genes in fully sequenced genomes have
functional annotations, and the functional assignment of an unknown protein will
affect the assignment of its interaction partners, which will in turn affect the
assignment of this protein itself. This circular reasoning serves to amplify
possible errors in function prediction. Therefore, in order to efficiently predict
protein functions based on interaction networks, the global topological structures
of the networks have to be taken into consideration. Here, two such methods will
be discussed in detail.

Bu et al. (131) introduced a method to determine quasi cliques within
interaction networks using spectral analysis. These quasi cliques were proven to

Figure 4 Depiction of the six basic regulatory motifs. The figure shows transcription
factors (circles) and targets (rectangles). Detailed descriptions are given in the section
entitled “Substructures Within Networks.”

1078 XIA ET AL.

A
nn

u.
 R

ev
. B

io
ch

em
. 2

00
4.

73
:1

05
1-

10
87

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
C

or
ne

ll 
U

ni
ve

rs
ity

 o
n 

04
/2

7/
23

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



be biologically relevant functional groups; this is similar to the concept of protein
complexes discussed above. In order to perform spectral analysis, an interaction
network is represented by an N � N adjacency matrix. N is the total number of
proteins within the network. The adjacency matrix is defined as A � (aij), where
aij � 1 if protein i interacts with protein j, and aij � 0 if not. For each
eigenvector of the matrix with a positive eigenvalue, the proteins corresponding
to absolutely larger components tend to form a quasi clique, meaning every two
of them tend to interact with each other. The quasi cliques were defined based on
the following criteria: (a) each quasi clique must contain at least 10 proteins; (b)
the proteins were sorted by their absolute weight value in an eigenvector, and the
top 10% were selected; and (c) each protein in a quasi clique must interact with
at least 20% of the clique members. The clustering coefficient of each quasi
clique was tuned for a high degree of interconnectivity. Within yeast interaction
networks, 48 quasi cliques were successfully identified. The proteins of each
quasi clique indeed tend to share common functions based on MIPS functional
classification (131).

Concurrently, Vazquez et al. (137) proposed a global optimization method to
predict functions of unknown proteins within the interaction networks. Simply
put, the global optimization method computes a score for any particular config-
uration of the functional assignment for the whole protein interaction network.
The score is lower if fewer interacting pairs are assigned to distinct functional
classes. The method aims to find the configuration of functional assignment with
the lowest possible score through global optimization. Because there can be more
than one optimal solution for this kind of problem, a “simulated annealing”
technique was introduced to determine the optimal configurations, and the most
frequent functional assignment for a certain protein in all optimal solutions was
assigned as its function. In order to evaluate the success rate, a fraction of
classified proteins were considered as unclassified in the input data; for proteins
with more than one interacting partner, the performance of the global optimiza-
tion method is much better than that of the majority rule method (137).

Cross-referencing Different Networks

So far, we have discussed many distinct types of networks. The fact that such
networks exist in all species means that the total number of different networks is
far larger. It is impossible to investigate every network of every organism in
equal detail; however, in model organisms, particularly Saccharomyces cerevi-
siae, a vast amount of data has been accumulated for all these types of networks.
Mapping the networks in model organisms to other species by homology
provides insight into how to exploit the usefulness (and prevent the potential
pitfalls) of annotating unknown genes in other less characterized species. To this
end, Walhout et al. (31) introduced the concept of “interolog” to transfer
interaction networks from one species to another. Interologs are defined as
orthologous pairs of interacting proteins in different organisms. Thus if interact-
ing proteins X and Y in one organism have interacting orthologs X’ and Y’ in

1079BIOMOLECULAR NETWORK ANALYSIS

A
nn

u.
 R

ev
. B

io
ch

em
. 2

00
4.

73
:1

05
1-

10
87

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
C

or
ne

ll 
U

ni
ve

rs
ity

 o
n 

04
/2

7/
23

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



another species, the X-Y and X’-Y’ interactions are called interologs (31).
Subsequently, based on 216 worm protein pairs and 72 yeast protein pairs,
Matthews et al. (138) experimentally estimated the accuracy of this interolog
method to be in the range of 16% to 31% for two species that are evolutionarily
distant by about 900 million years.

Cross-species comparison of interaction networks tells us how these networks
evolve. Similarly, comparison of different networks within the same organism
often sheds light on the basic organization principles of the cell. Yu et al.
analyzed the regulatory and expression networks for S. cerevisiae and were able
to show that coregulated genes are generally coexpressed, and the correlation in
expression profiles is highest for genes targeted by multiple transcription factors.
Furthermore, coregulated gene pairs tend to share cellular functions, and there
are subdivisions within individual network motifs that separate the regulation of
genes of distinct functions. The expression profiles of transcription factors and
their target genes display more complex relationships than simple correlation,
with the regulatory response of target genes often being delayed (57).

INTERACTION NETWORKS AND SYSTEMS BIOLOGY

Mapping and understanding molecular interaction networks represent the first
steps toward modeling how a cell actually operates in time and space. As a result
of genome-wide high-throughput experiments, we are now generating a compre-
hensive parts list of functional elements for many genomes, and soon we will also
have a comprehensive catalog of how these functional elements interact with and
regulate each other. The grand challenge then will be to put all the pieces back
together to create predictive models of cellular behavior. Such is the goal of
systems biology, an emerging field that quantitatively measures and models the
behavior of a cell from a systems perspective, which is a result of the collective
spatial-temporal dynamics of its interacting components (139, 140). Here we
briefly review some of the challenges and initial successes of using interaction
networks to model cellular behavior.

The first challenge is to create a 3D view of molecular interaction networks in
a cell. This is important because biomolecules are 3D objects; they function and
interact through spatially precise atomic interactions in crowded microenviron-
ments. The second challenge is to capture the dynamic and context-dependent
nature of interaction networks. In addition to mapping out all possible interac-
tions, it is also important to know under which conditions (cellular state,
environment type, and protein modification type) each interaction is present in a
cell. Finally, the third challenge is to quantitatively measure interaction networks.
Interaction networks tell us whether or not two molecules interact. In order to
model cellular behavior, it is also important to know how strongly and how
quickly they interact. Such requirements call for continuing improvements in
quantitative high-throughput methods.
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Despite these considerable challenges, a number of recent modeling successes
indicate a promising future for systems biology. For well-characterized interac-
tion networks with a small number of genes and proteins, it is possible to build
a detailed kinetic model of the system, and simulations are generally in good
agreement with experiments. Such systems include, among others, bacterio-
phages (141), bacteria chemotaxis (142), circadian clocks (143), and signaling
pathways (144). Available software could potentially scale up these detailed
simulations to the level of an entire cell (145, 146), but the predictive power of
the whole-cell simulations is limited by the fact that the vast majority of
underlying kinetic parameters remain unknown.

Alternatively, it is possible to model the behavior of interaction networks in
a coarse manner without knowing detailed kinetic parameters. Such modeling
can be applied on a genomic scale or on less well-characterized systems because
it requires only a few parameters beyond the topology and stoichiometry of the
network. A prime example is the flux balance analysis of metabolic networks
(147), where the steady-state behavior of the entire network can be modeled
reasonably well. Similarly, much of the logic and dynamics of a bacteria
cell-cycle regulatory network can be understood and possibly modeled without a
full set of kinetic parameters (148).

These modeling efforts are providing us with an increasing number of insights
into the design principles of biomolecular networks. For example, biomolecular
networks can be grouped into modules (1). Functional elements within a module
interact strongly with each other and carry out a common function in a concerted
fashion. Biomolecular networks are resilient toward common external and
internal perturbations (149). Furthermore, noise is an integral part of the func-
tioning of biomolecular networks (150).

In summary, molecular interaction networks are at the core of current
functional genomic research. These networks represent an appealing framework
upon which different genomic data can be integrated, and analysis of these
networks has yielded the first clues about their organizational and design
principles. Furthermore, these networks lay the foundation for systems biology
analysis of the cell. With combined experimental, computational, and theoretical
efforts, a complete mapping of all interaction networks, and ultimately a rational
understanding of cellular behavior, will become a reality.
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APPENDIX

Details on Using Bayesian Networks for Integrating
Interaction Datasets

Given multiple experimental results ei (from N different experiments, with i �
1. . . N), the posterior odds of a protein-protein interaction can be computed as
follows with a naive Bayesian network:

Opost � �
i � 1

N

Li(ei)Oprior 1.

Here, Opost is defined as

Opost �
P(I � ��e1,e2. . .eN)

P(I � ��e1,e2. . .eN)
�

P(I � ��e1,e2. . .eN)

1 � P(I � ��e1,e2. . .eN)
2.

whereas Oprior is

Oprior �
P(I � �)

P(I � �)
�

P(I � �)

1 � P(I � �)
. 3.

Thus the posterior odds describe the odds of having a protein-protein interaction
(I � �) given that we have the information from the N experiments, whereas the
prior odds are related to the chance of randomly finding a protein-protein
interaction when no experimental data are known. If Opost 	 1, the chances of
having an interaction are higher than the chances of having no interaction. For the
RNA polymerase II example given in the main text, the prior odds were set to
13/(45–13) � 0.41, i.e., the ratio of protein pairs observed to be in contact in the
crystal structure of RNA polymerase II divided by the remaining protein pairs,
but they could also be determined by counting the number of protein-protein
interactions in comparable protein structures.

Li(ei) describes the likelihood ratio of the experimental result ei, and it can be
computed from the table in Figure 1 as follows:

Li(ei � �1) �
TPi

TPi � FNi

FPi � TNi

FPi

4.

and

Li(ei � �1) �
FNi

TPi � FNi

FPi � TNi

TNi

5.
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where the subscript i refers to a particular column in Figure 1. (We assume here
for simplicity that an experiment either has a positive or a negative result, i.e.,
ei � 
1). For a perfect experiment with no errors, one would observe FPi 3 0
and FNi 3 0, such that L(ei � �1) 3 � and L(ei � �1) 3 0.

The naive Bayes procedure can be intuitively understood by comparing it to the
voting procedure. In the voting procedure the experimental results are simply added
up:

s � �
i � 1

N

ei . 6.

Then, when s � 0, we consider the protein pair to be interacting (and
noninteracting otherwise). Note that all experiments are weighted equally. In
contrast, the naive Bayes procedure weights each experiment differently based on
the likelihood ratio values. The analogy to a weighted voting procedure can be
seen if we take the logarithm of Equation 1:

log(Opost) � �
i � 1

N

log(Li(ei)) � log(Oprior) . 7.

Here, a protein pair is considered to be interacting if log(Opost) � 0, whereas the
term log(Li(ei)) corresponds to the weight of experiment ei. The difference with
the voting procedure is the inclusion of the term log(Oprior), which represents the
chance of randomly finding a protein-protein interaction without experimental
information.

The Annual Review of Biochemistry is online at http://biochem.annualreviews.org
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