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networks. In particular, proteins with a greater

degree of marginal essentiality tend to be network

hubs (i.e. with many interactions) and tend to have

a shorter characteristic path length to their neigh-

bors. We extend our network analysis to encom-

pass transcriptional regulatory networks. Although

transcription factors with many targets tend to be

essential, surprisingly, we find that genes that are

regulated by many transcription factors are usually

not essential.

The functional significance of a gene, at its most basic
level, is defined by its essentiality. In simple terms, an
essential gene is one that, when knocked out, renders
the cell unviable. Nevertheless, non-essential genes can
be found to be synthetically lethal (i.e. cell death
occurs when a pair of non-essential genes is deleted
simultaneously). Because essentiality can be deter-
mined without knowing the function of a gene
(e.g. random transposon mutagenesis [1,2] or gene-
deletion [3]), it is a powerful descriptor and starting
point for further analysis when no other information is
available for a particular gene.

Although the definition of essentiality is not novel,
Thatcher et al. recently introduced the ‘marginal
benefit’ hypothesis [4]. It states that many non-
essential genes make significant but small contri-
butions to the fitness of the cell although the effects
might not be sufficiently large to be detected by
conventional methods. In this article, we define
systematically ‘marginal essentiality’ (M) as a quanti-
tative measure of the importance of a non-essential
gene to a cell. Our measure incorporates the results
from a diverse set of four large-scale knockout
experiments that examined different aspects of the
impact of a protein on cell fitness. These four exper-
iments measure the effect of a particular knockout on: (i)
growth rate [5]; (ii) phenotypes under diverse environ-
ments [2]; (iii) sporulation efficiency [6]; and
(iv) sensitivity to small molecules [7]. These datasets
are the only available large-scale knockout analyses
for yeast. (There are several other smaller datasets
[8–12] that have data only on a small fraction of the
genome and were therefore not suitable for our
analysis.)

Protein networks are characterized by four major
topological characteristics: degree [number of links per
node ðKÞ], clustering coefficient ðCÞ; characteristic path
length [average distance between nodes ðLÞ] and
diameter [maximum inter-node distance ðDÞ; Figure 1a
and supplementary material online] [13–16]. It has
been shown that some protein networks follow power-
law distributions [17,18] – that is they consist of many
interconnecting nodes, a few of which have unchar-
acteristically high degrees (hubs). In addition, power-
law distributions can be characterized as scale-free –
that is the possibility for a node to have a certain
number of links does not depend on the total number of
nodes within the network (i.e. the scale of the
network). Scale-free networks provide stability to the
cell because many non-hub (i.e. leaf) genes can be

disabled without greatly affecting the viability of the
cell [18].

Recently, Jeong et al. focused on the relationship
between hubs and essential genes and determined that
hubs tend to be essential [19]. Fraser et al. also
observed that the effect of an individual protein on cell
fitness correlates with the number of its interaction
partners [20]. In this article, we extended the previous

Figure 1. (a) Schematic illustration of the diameter of a sub-network. In an undir-

ected network, the diameter of the essential protein network (shown by the red

line) is the maximum distance between any two essential proteins. The path can

go through non-essential proteins but has to start and end at essential proteins;

the same conditions apply to the non-essential protein network. (b) A comparison

of key topological characteristics. The values of different characteristics for essen-

tial, synthetic lethal and non-essential proteins are given in the table together with

the P-values, which measure the statistical significance of the difference between

the values for essential and non-essential proteins. The values are calculated as

described in the supplementary materials online. P-values are calculated using

non-parametric Mann-Whitney U-tests. (c) A comparison of power-law distri-

butions. The plot is on a log–log scale. The regression equations (y) and corre-

lation coefficients (R) are given close to the corresponding lines in the figure.
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work to marginal essentiality and performed a genome-
wide analysis of essentiality within a wide variety of
protein networks. Further information is available
from http://bioinfo.mbb.yale.edu/network/essen.

Comparison between essential and non-essential

proteins within an interaction network

We constructed a comprehensive and reliable yeast-
interaction network containing 23 294 unique inter-
actions among 4743 proteins (supplementary material
online) [16,21]. In a gross comparison we found that
essential proteins, generally, have significantly more
‘links’ than the non-essential proteins, validating ear-
lier findings [19]. Specifically, essential proteins have
approximately twice as many links compared with non-
essential proteins (Figure 1b). We can also see from the
power-law plots of the interactions of essential and
non-essential genes (Figure 1c) that the essential genes
have a shallower slope, indicating that a proportion-
ately larger fraction of them are hubs.

Given that essential proteins, on average, tend to
have more interactions than non-essential proteins, we
determined the fraction of hubs that are essential. We
define hubs as the top quartile of proteins with respect
to the number of interactions (supplementary material

online); therefore, 1061 proteins are defined as hubs
within the yeast network. We found ,43% of hubs in
yeast are essential (Figure 2a); this is significantly
higher than random expectation (20%).

Furthermore, within the interaction network, essen-
tial proteins also tend to be more cliquish (as
determined from the clustering coefficient) and tend
to be more closely connected to each other (as
determined from the characteristic path length and
diameter). Not surprisingly, the values of these
topological statistics (except for the clustering coeffi-
cient) for synthetic lethal genes are between those of
the essential and non-essential genes (Figure 1b).

Topological characteristics for marginal essentiality

within an interaction network

We expanded our analysis to non-essential genes,
analyzing the relationship between marginal essenti-
ality and topological characteristics. Overall, we found
simple, monotonic trends for all four topological
characteristics (Figure 3 and supplementary Figure 2
online). In particular, we found a positive correlation
with marginal essentiality for descriptors of local
interconnectivity (i.e. degree and clustering coeffi-
cient) but an inverse correlation for long-distance

Figure 2. The likelihood of essentiality for different classes of genes. (a) Protein hubs in the interaction network tend to be essential. Based on the degree distribution

(Figure 1 in the supplementary online), 1061 proteins were considered as protein hubs, within which the percentage of essential proteins was examined. ‘Whole genome’

refers to the likelihood that all proteins in the whole genome that have at least one interaction partner to be essential. There are, in total, 4743 proteins with at least one

interaction partner in the dataset, among which 977 (,20%) are known to be essential. (b) Transcription factors (TFs) with many (.100) targets are more likely (P , 1027) to

be essential than the other proteins. (c) Genes with many regulating TFs ($10) are less likely (P , 10212) to be essential than those with only a few TFs (2–9), whereas these

genes are less likely (P , 10202) to be essential than those with only one TF. (d) Genes with more functions are more likely to be essential. Proteins whose function is

annotated as ‘unclassified’ in MIPS are considered to have zero function in this analysis. The P-value measures the difference between genes with only one function and

those with more than four functions. The P-values in all panels are calculated by the cumulative binomial distribution.
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interactions (i.e. diameter and characteristic path
length). Thus, the more marginally essential a gene
is the more likely it is to have a large number of
interaction partners – in agreement with the con-
clusion of Fraser et al. [20]. More importantly, the
greater the marginal essentiality of a protein, the
more likely it will be closely connected to other
proteins – as reflected by a short characteristic path
length. This implies that the effect of that protein on
other proteins is more direct.

Furthermore, a protein with a greater marginal essenti-
ality has a higher likelihood of being one of the 1061 hubs
(Figure 3d). Because hubs in the protein-interaction net-
works have been shown to be important for cell fitness [19],
this positive correlation further confirms the biological
relevance of our marginal-essentiality definition.

Analysis of regulatory networks

Finally, we analyzed protein essentiality within many
smaller regulatory networks (i.e. transcription factors

and the target genes that they regulate) [22–26].
These networks differ from protein–protein interaction
networks in that they are directed. We looked at
regulatory networks from two separate perspectives:
(i) the regulator population (e.g. out degree) – where
we examined a directed network of transcription
factors acting on targets; and (ii) the target population
(e.g. in degree) – where we analyzed the sets of target
genes that are regulated by any given transcription
factor.

Analyzing the regulator population, we found that
essential genes contribute to a larger percentage of the
more promiscuous transcription factors (Figure 2b). In
analyzing the target population, we found that the
targets that are associated with the fewest transcrip-
tion factors have a proportionately higher number of
essential genes (Figure 2c).

The results for the regulators and the targets, although
seemingly contradictory, are logical. If a regulator is
deleted, the expression of all its target genes will be more

Figure 3. Monotonic relationships between topological characteristics and marginal essentiality for non-essential genes. (a) A positive correlation exists between the aver-

age degree ðK Þ and marginal essentiality ðMÞ: (b) A positive correlation exists between the clustering coefficient ðCÞ and marginal essentiality. (c) A negative correlation

exists between the characteristic path length ðDÞ and marginal essentiality. (d) A positive correlation exists between hub percentage and marginal essentiality. The marginal

essentiality for each non-essential gene is calculated by averaging the data from four datasets: (i) growth rate [5]; (ii) phenotype [2]; (iii) sporulation efficiency [6]; and (iv)

small-molecule sensitivity [7]. Because the raw data in different datasets are on different scales, all the data points are normalized through dividing by the largest value in

each dataset. In particular, the marginal essentiality ðMi Þ for gene i is calculated by: Mi ¼

X

j[Ji

Fi:j IFmax ;j

Ji

, where Fi,j is the value for gene i in dataset j : Fmax ;j is the maximum

value in dataset j: Ji is the number of datasets that have information on gene i in the four datasets. All the data included in the calculations are the raw data from the orig-

inal datasets, except the growth rate data, which were baseline corrected. Before calculating the marginal essentiality, we verified that the four datasets were mutually inde-

pendent. Although other methods could also be used to define marginal essentiality, we determined that different definitions have little effect (supplementary material

online). Genes are grouped into five bins based on their marginal essentialities: bin 1, ,0.05; bin 2 [0.05, 0.1); bin 3 [0.1, 0.2); bin 4 [0.2, 0.3); bin 5, $0.3. The y-axis rep-

resents the topological characteristics among the genes within the same bin. P-values show the statistical significance of the difference between the first and the last bars

on each graph. The values of the topological characteristics, the marginal essentialities and the P-values are calculated as described in supplementary material online.
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or less affected. Therefore, the more targets a regulator
has, the more important it is. Our analysis of the regulator
population has, logically, shown that the promiscuous
regulators tend to be essential.

By contrast, we have found that most essential
genes are ‘house-keeping’ genes [i.e. their expression
level is much higher and the fluctuation of their
expression is much lower compared with non-essential
genes (supplementary Table 1 online)]. Therefore, the
expression of essential genes tends to have less
regulation, whereas non-essential genes often use
more regulators to control the expression of gene
products. This might be because essential proteins
perform the most basic and important functions within
the cell and, consequently, always need to be switched
‘on’. Their expression does not need to be regulated by
many factors because this makes the essential genes
dependent on the viability of more regulators, which
makes the cell less stable.

Relationship between essentiality and function

Having concluded that the essentiality of a gene is
directly related to its importance to the cell fitness in
both interaction and regulatory networks, we examined
the relationship between the number of functions of a
gene and its tendency to be essential using the
functional classification from the Munich information
center for protein sequence (MIPS) [27]. Figure 2d
shows that the likelihood of a gene being essential has
a monotonic relationship with the number of its
functions (i.e. genes with more functions are more
likely to be essential).

Conclusion

In this article, we have provided a comprehensive
definition of ‘marginal essentiality’ and analyzed the
tendency of the more marginally essential genes to
behave as hubs. Surprisingly, we also found that hubs
in the target subpopulations within the regulatory
networks tend not to be essential genes. The datasets
used in this analysis are available at http://bioinfo.
mbb.yale.edu/network/essen.
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