
perturbation is surprising, and it clearly deserves further
investigations.
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Genomic analysis of gene expression relationships in
transcriptional regulatory networks
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From merging several data sources, we created an

extensive map of the transcriptional regulatory network

in Saccharomyces cerevisiae, comprising 7419 inter-

actions connecting 180 transcription factors (TFs) with

their target genes. We integrated this network with

gene-expression data, relating the expression profiles

of TFs and target genes. We found that genes targeted

by the same TF tend to be co-expressed, with the

degree of co-expression increasing if genes share more

than one TF. Moreover, shared targets of a TF tend to

have similar cellular functions. By contrast, the

expression relationships between the TFs and their

targets are much more complicated, often exhibit-

ing time-shifted or inverted behavior. Further infor-

mation is available at http://bioinfo.mbb.yale.edu/

regulation/TIG/

An important question in molecular biology is how gene
expression is regulated in response to changes in the
environment. Previous studies have explored this by
making genome-wide measurements of gene expression
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levels with DNA arrays [1–3] and by searching for
transcription factor (TF)-binding sites using genetic,
biochemical and large-scale ChIp–chip (chromatin immu-
noprecipitation and DNA chip) experiments [4–10]. Here,
we integrate gene-expression and TF-binding data for
Saccharomyces cerevisiae to determine the effect that
regulatory networks have on the expression of targeted
genes.

TF–target regulatory network

We compiled a yeast regulation dataset by merging the
results of genetic, biochemical and ChIp-chip experiments
[4,5,7,10]. It contains 7419 TF-target pairs from 180 TFs
and 3474 target genes (Table 1). Regulatory networks can
be simplified into six basic motifs [9,10] (Fig. 1a). Here, we
focus on the single input motif (SIM), multi-input motif
(MIM) and feed-forward loop (FFL) as the data for the
remaining motifs are too sparse.

Gene-expression dataset

We obtained expression profiles of yeast genes through two
complete cell cycles [11]. Between the expression profiles of
pairs of genes, we used a local clustering method to
calculate four types of temporal relationships [12] (Fig. 1b):
correlated, time-shifted, inverted and inverted time-shifted.
To find these relationships, expression levels must be
assessed over a time-course, with many measurements, at
small and uniform intervals. Most available datasets do
not satisfy these conditions, being only suitable for simple
correlation calculations (i.e. co-expression); thus, we can
only conduct detailed analysis on the cell-cycle dataset.
Nevertheless, similar overall results are observed in other
microarray datasets.

Statistical formalism

We use several statistics to quantify the significance of our
observations. The P-value is the probability that an
observation (e.g. co-expression of target genes) would be
made by chance, and is calculated using the cumulative

binomial distribution:

Pðc$coÞ
¼

XN
c¼co

N!

N!ðN 2 cÞ!

� �
pcð1 2 pÞN2c

N is the total number of possible gene pairs in the data, co

is the number of observed pairs with a specific relationship
(i.e. from expression or function), and p is the probability of
finding a gene pair with the same relationship randomly
(picking from the entire genome).

The log odds ratio (LOD) is the enrichment a particular
relationship in the presence of regulation with respect to
random expectation for the occurrence of the relationship:

LOD ¼ ln
PðrelationshiplregulationÞ

PðrelationshipÞ

� �

P(relationshiplregulation) is the probability of gene
pairs with certain regulatory relationship (e.g. TF !

target) having a specific expression or functional relation-
ship (e.g. correlated expression). P(relationship) is the
probability of randomly selected gene pairs having the
same expression or functional relationship. When we
report this together with P-values, we use the following
notation {log P-value;LOD value}.

Relationships between target genes

Target genes are co-expressed

First, we investigate expression relationships between
genes targeted by the same TFs. Overall, 3.3% of target
gene pairs are co-expressed, which is four times greater
than random expectation {212;1.3} (Fig. 2a, column ‘All’).
We detect few inverted or time-shifted relationships (see
section ‘Effect of regulatory-signal type’).

The level of correlation is very dependent on the type of
regulatory network motif (Fig. 2a). Genes targeted by
individual TFs (SIM) are not strongly correlated: just 1.3%
of target pairs are co-expressed although this is signifi-
cantly higher than expected {211;0.29}. Correlation is
stronger for genes targeted by multiple, common TFs:

Table 1. Summary of transcriptional regulatory network dataset

Motifsb SIM MIM FFL All Refs

No. of TFs 119 118 97 180

No. of targets 1754 986 511 3474

No. of TF–target pairs Total 1754 2781 1523 7419

Activationc 37 50 19–33d 144

Repressionc 12 34 23–10d 79

LOD values for co-expressed target pairse Stress response 0.44a 3.55a 0.59 0.88a [13]

Sporulation 0.03 0.25 0.08 20.05 [15]

Diauxic shift 0.11a 1.78a 0.30a 0.30a [3]

DNA damage 1.24a 4.87a 1.26a 2.14a [14]

Cell cycle 0.37a 2.09a 1.62a 0.52a [17]

Cell cycle 0.29a 2.79a 1.35a 0.93a [11]

Cell cycle 0.22a 2.50a 0.91a 0.64a [16]

Abbreviations: All, all the transcription factor–target pairs; FFL, feed-forward loop; LOD, log odds ratio; MIM, multi-input motif; SIM, single-input motif; TF, transcription

factor.
aLOD values with P-value smaller than 1 £ 1025 (see Supplementary Table 1 at http://download.bmnqc.com/supp/tig/Ru230_Yu.pdf).
bThere are three smaller motifs: Auto, 22 targets, MCL, 31 targets, RC, 119 targets. The random expectation for the number of targets is 6130, the number of yeast genes. The

random expectation for the number of gene pairs in yeast is 18785385 ¼ 6130ð6129Þ=2; which is obtained by counting all pairs between yeast genes.
cPositive expression relationships (correlated and time-shifted) are considered as activation signals, whereas negative relationships (inverted and inverted time-shifted) are

considered as repression signals. Overall, 18 regulators activate some of their targets but repress others. Note this is distinct from the number of activator relations determined

experimentally (as described in sections ‘Effect of regulatory-signal type’ and ‘Relations to regulatory-signal type).
dWe show the number of relations for TF1–target pairs (N1) and TF2–target pairs (N2) in FFLs, using the following notation (N1–N2).
eLOD values for target gene pairs having correlated profiles in different expression datasets. The local clustering method cannot be applied, so expression correlation is

measured using the Pearson correlation coefficient. Co-expressed gene pairs are those in the top 1% of largest correlation coefficients.
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24.4% of MIM target pairs {212;3.2} and 5.0% of FFL
targets exhibit co-expression {212;1.6}. Similar results are
observed for other expression datasets [3,13–17] (Table 1).

The differences in enrichment (i.e. LOD values) indicate
that expression is much more tightly regulated when
multiple TFs are involved. However, with .100 yeast
transcription factors yet to be investigated [18], unidenti-
fied TF–target relationships will probably alter the

classification of SIM target genes to MIM or FFL networks
in the future.

Target genes have similar functions

Previous studies showed that co-expressed genes tend to
share similar functions [19,20]. By comparing the MIPS
(Munich Information Center for Protein Sequences, level 2)
functional classifications [21], we find that genes targeted

Fig. 1. Transcriptional regulatory motifs and temporal gene expression relationships. (a) The six basic regulatory motifs, where circles represent the transcription factors

(TFs) and squares, targets. For the single input motif, the target gene has one TF; for the multi-input motif, target gene has multiple TFs. In the feed-forward loop, the lead-

ing TF (TF1) regulates an intermediate TF (TF2), and both regulate the target gene. In autoregulation, the TF targets itself, and in the multi-component loop, two TFs regulate

each other. In a regulator chain, a set of TFs regulate each other in series. (b) The four gene expression relationships: correlated, where genes have similar

profiles (co-expressed); time-shifted, where genes have similar profiles, but one is delayed with respect to the other in the cell cycle; inverted, where genes have

opposing profiles; and inverted time-shifted. The local clustering method uses a dynamic programming algorithm to align the expression profiles of the genes in ques-

tion. From the alignment, the method is able to determine which of the four types the relationship is and assign a clustering score measuring the significance of the

relationship; for the Cho et al. dataset [11], a score of 13 or above corresponds to a relationship significant to P ¼ 2:7 £ 1023 (see Supplementary data at http://download.

bmnqc.com/supp/tig/Ru230_Yu.pdf).
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Fig. 2. Expression relationships between gene pairs. Log odds ratio (LOD) values above 0 signify observations that are more common than expected by chance, and vice

versa (see Supplementary data at http://download.bmnqc.com/supp/tig/Ru230_Yu.pdf). (a–d) Relationships between target genes (as indicated by the color coding) for

each of the different network motifs. (Note the category ‘All’ includes all gene pairs co-regulated by at least one common transcription factor.) (a) LOD values of the likeli-

hood that target gene pairs have correlated expression in different network motifs. (b) LOD values of the likelihood that target pairs share the same cellular function. (c)

LOD values of the likelihood that target pairs with the same function have correlated expression. (d) LOD values of the likelihood that co-activated or co-repressed target

pairs exhibit one of the four expression relationships. (e,f) Expression relationships between TFs and target genes. (e) LOD values of the likelihood that TFs and their target

genes exhibit one of the four expression relationships in different network motifs. FFLs are divided into the TF-target relationship for the leading (TF1) and intermediate TFs

(TF2). (f) LOD values of the likelihood that activator and repressor TF-target pairs exhibit one of the four expression relationships. FFL, feed-forward loop; MIM, multi-input

motif; SIM, single-input motif; TF1–T FFL, TF1–target pairs in FFLs; TF2–T FFLs, TF2–target pairs in FFLs.
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by the same TFs are five times more likely to share
functions than expected randomly {212;1.6} (Fig. 2b).
Comparing between regulatory motifs, we again see that
target genes sharing more than one common TF tend to
exhibit this effect to an even greater degree (SIM{210;1.6},
MIM{212;2.2}). Interestingly, FFL motifs display the
smallest enrichment {211;1.5}. We speculate that this is
because they have specialized effects on gene expression
(see below) and so regulate a very precise subset of genes
that do not necessarily share functions, but nonetheless
require coordinated expression.

Co-expression is most likely for target genes with similar

functions

We also examined the expression relationships for co-
targeted genes that share functions (Fig. 2c). The degree of
co-expression is extremely high if targets have the same
function, but low if they do not. For example, 75% of MIM
target genes are co-expressed if they share functions
{212;4.3} but only 3.6% if they do not {26;1.3}. Thus, there
must be a common set of TFs for genes of similar functions
to be co-expressed. Furthermore, although TFs often
target genes of various functions, there are regulatory
subdivisions and co-expression does not usually extend
across functional categories.

Effect of regulatory-signal type

We have limited experimental data describing type of
regulatory signal (i.e. activation or repression) for 906
TF-target pairs [5]. Overall, target genes display correlated
expression relationships (see section ‘Target genes are co-
expressed’). However, we observe more complex relation-
ships once regulatory-signal type is considered (Fig. 2d).
Unsurprisingly, co-activated genes mostly have correlated
relationships {212;2.3}. By contrast, co-repressed genes
have a variety of relationships. The results indicate that
genes activated by the same TFs co-express, but genes
inhibited by the same repressors do not always co-express,
although they shut down simultaneously.

Relationships between TFs and target genes

Complex expression relationships

Next we compared the expression profiles of TFs with their
targets (Fig. 2e). Here the relationships are more complex
than co-expression: SIMs exhibit time-shifted {23;0.64}
and inverted time-shifted relationships {22;0.69},
whereas MIMs display inverted time-shifted relationships
{29;1.4}. This suggests that target genes have a delayed
response to regulatory events.

FFL motifs present the most interesting and complex
relationships. The leading TFs in the motif (denoted TF1)
generally have negative relationships with the target
genes; that is, inverted {22;0.82} or inverted time-shifted
{210;2.0}. The intermediate TFs (TF2) exhibit all four
types of relationship. The most common arrangement
(55% of FFLs, Supplementary Table 2 at http://download.
bmnqc.com/supp/tig/Ru230_Yu.pdf) is where the leading
TF has a negative relationship with the target and the
intermediate TF has a positive one (i.e. correlated or time-
shifted). (Note, however, there are only 11 FFLs for which

both TF1 and TF2 have significant expression relation-
ships with the targets.)

Relation to regulatory-signal type

As in section ‘Effect of regulatory-signal type’, we can
measure the TF–target expression relationships when the
type of regulatory signals is taken into account. Although
the data are too sparse to make statistically sound
conclusions, we try to make some observations. Unsur-
prisingly, activators are co-expressed with their targets
{22;0.63} (Fig. 2f), and comprise over 50% of TF–target
pairs with significant expression relationships. We also
find that repressors exhibit inverted {22;1.1} and inverted
time-shifted relationships {22;1.2}. There are unexpected
results too. Activators display significant inverted time-
shifted relationships {26;1.8} and repressors show
(normal) time-shifted relationships. There are several
reasons for this. A sizeable proportion of TFs (15%) act
both as activators and repressors, in some cases for the
same target. Furthermore, the combined effect of multiple
TFs in MIM and FFL motifs can have an unpredictable
effect on target expression.

Examples of TF-target relationships

In Fig. 3 we examine specific regulatory networks.

SIM: ndd1 network

Ndd1, a cell-cycle regulator during S and G2/M transition
[22,23], acts as the sole regulating TF for Mcm21, a
kinetochore protein required for normal cell growth from
late S to early M phase [24,25], and STB5, encoding
another transcription factor [26]. All three genes display
cell cycle periodicity. NDD1 expression peaks early in S
and sustains high expression until G2. The targets are co-
expressed and time-shifted with respect to NDD1 by one
time-point, peaking later in S.

MIM: forkhead network

Ndd1 is recruited to G2/M-transition-specific promoters by
Fkh1 and Fkh2, two forkhead transcription activators
[22,23,27]. Collectively, these three TFs regulate Dbf2, a
kinase needed for cell-cycle regulation [28], and HDR1
(function unknown). The expression profiles of the three
TFs are only loosely correlated and peak at different points
from early S to late G2. The targets are time-shifted with
respect to FKH1 by two time-points and peak at the G2/M
transition. The local clustering scores show that their
expression profiles are better correlated than in the
preceding SIM example (Supplementary Table 3 at
http://download.bmnqc.com/supp/tig/Ru230_Yu.pdf).

FFL: mbp1/swi4 network

In a feed-forward-loop, Mbp1 (a cell-cycle regulator
controlling DNA replication and repair [6,29]) is the
leading TF, Swi4 (a cell-cycle regulator controlling cell-
wall and membrane synthesis [6,29]) is the intermediate
TF, and SPT21 (a TF involved in histone expression [30])
and YML102C-A (function unknown) are the target genes.
The profiles of the intermediate TF and target genes are
correlated and peak sharply in G1. By contrast, the leading
TF displays an inverted relationship, which highlights its
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involvement as a target repressor. (Previous studies have
shown Mbp1 acts as an activator for ,50% its targets
during the G1/S transition and as a repressor for ,10% of
its targets later in the cycle [6,7,29].)

Conclusions

In summary, we find significant connections between the
networks from TF-binding experiments and gene
expression data. (1) Genes targeted by the same TF are
generally co-expressed and the correlation in expression
profiles is highest for genes targeted by multiple TFs. (2)
Genes targeted by the same TF tend to share cellular
functions, and there are subdivisions within individual
network motifs that separate the regulation of genes of
distinct functions. (3) The expression profiles of transcrip-
tion factors and their target genes display more complex

relationships than simple correlation, with the regulatory
response of target genes often being delayed. Note that our
results are fairly robust with respect to specifics of the
regulatiory network. As a check, we recalculated all our
results using just the interactions in the Lee et al. dataset
(106 regulators and 2416 genes) [10], and we got
essentially the same results.

Data availability

The datasets used for this analysis are available at http://
bioinfo.mbb.yale.edu/regulation/TIG/.
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