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ABSTRACT We investigated protein motions us-
ing normal modes within a database framework, deter-
mining on a large sample the degree to which normal
modes anticipate the direction of the observed motion
and were useful for motions classification. As a start-
ing point for our analysis, we identified a large num-
ber of examples of protein flexibility from a compre-
hensive set of structural alignments of the proteins in
the PDB. Each example consisted of a pair of proteins
that were considerably different in structure given
their sequence similarity. On each pair, we performed
geometric comparisons and adiabatic-mapping inter-
polations in a high-throughput pipeline, arriving at a
final list of 3,814 putative motions and standardized
statistics for each. We then computed the normal
modes of each motion in this list, determining the
linear combination of modes that best approximated
the direction of the observed motion. We integrated
our new motions and normal mode calculations in the
Macromolecular Motions Database, through a new
ranking interface at http://molmovdb.org. Based on
the normal mode calculations and the interpolations,
we identified a new statistic, mode concentration,
related to the mathematical concept of information
content, which describes the degree to which the
direction of the observed motion can be summarized
by a few modes. Using this statistic, we were able to
determine the fraction of the 3,814 motions where one
could anticipate the direction of the actual motion
from only a few modes. We also investigated mode
concentration in comparison to related statistics on
combinations of normal modes and correlated it with
quantities characterizing protein flexibility (e.g., maxi-
mum backbone displacement or number of mobile
atoms). Finally, we evaluated the ability of mode
concentration to automatically classify motions into a
variety of simple categories (e.g., whether or not they
are “fragment-like”), in comparison to motion statis-
tics. This involved the application of decision trees
and feature selection (particular machine-learning
techniques) to training and testing sets derived from
merging the “list” of motions with manually classified
ones. Proteins 2002;48:682–695. © 2002 Wiley-Liss, Inc.

INTRODUCTION

Protein motions play a key role in a wide range of
biological phenomena, including chemical concentration

regulation, signal transduction, transport of metabolites,
and cellular locomotion.1–3 Motion is typically the way a
structure actually carries out a specific function; for this
reason, motions are an essential link between function and
structure.

We previously developed a database of macromolecular
motions,1,4,5 which consisted of crystallographically docu-
mented protein motions. We also developed a morph
server coupled to a collection of protein “morph” movies
and related statistics.6 Here:

1. we identify �4,000 putative new motions from auto-
matic structural comparison on the PDB7;

2. we add these to our database and present the results in
a new ranking interface;

3. we analyze the dynamics of these many motions, per-
form normal mode analysis on them, and calculate
statistics to encapsulate the results of the normal mode
analysis;

4. from the normal mode analysis and the interpolations,
we assemble a corpus of statistics and perform datamin-
ing and feature extraction on this corpus; and

5. we identify a number of statistics, in particular, mode
concentration, that we find useful.

Our work builds upon a rich literature in macromolecu-
lar motions.8–11 Motion related to proteins’ mechanical
function has mainly been studied experimentally by X-ray
crystallography. Traditional X-ray crystallography has
provided key insights into the relationships between con-
formational change and macromolecular function; GroEL12

and beta-actin13 are just two of many examples. Progress
in the field of time-resolved X-ray crystallography14–16 has
also enhanced the study of biologically significant protein
conformational change. Recently, it has become possible to
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study larger protein conformational changes via NMR.17

Other approaches have focused on the use of computa-
tional methods.18–25 A systematic comparison of PDB-
derived difference vectors has been published elsewhere
on a much smaller scale.26

Normal mode analysis is a computational approach that
can be applied to protein conformational change. Widely
used by spectroscopists for many years to associate IR and
Raman experimental peaks with small molecule vibra-
tional modes,27 advances in computer technology over the
last few decades has made normal mode analysis of
proteins and other large molecules practical. This was first
applied to proteins in the mid 1980s and has subsequently
been scaled up.28–34 The concept of normal mode analysis
is to find a set of basis vectors (normal modes) describing
the molecule’s concerted atomic motion and spanning the
set of all 3N �6 degrees of freedom. For very large
molecules, it is often of more interest to try to find a small
subset of these normal modes that seem in some way
especially important. By modeling the interatomic bonds
as springs and analyzing the protein as a large set of
coupled harmonic oscillators, one can calculate a fre-
quency of periodic motion associated with each normal
mode, and then attempt to find normal modes with low
frequencies. The low-frequency normal modes of proteins
are thought to correspond to the large-scale real-world
vibrations of the protein, and can be used to deduce
significant biological properties. There is evidence to sug-
gest35–40 that proper, symmetric normal mode vibration of
binding pockets is crucial to correct biological activity in
some proteins.

The principle of normal mode analysis is to solve an
eigenvalue equation of the form

q̈�F � q�0 (1)

where the vector q is a vector representing the displace-
ments in three dimensions of the various atoms of the
molecule, and F is a matrix that can be computed from the
system’s mass and potential energy functions. Solutions to
the above system are vectors of periodic functions (the
normal modes) vibrating in unison at the characteristic
frequency of the mode.

Normal modes have proved to be highly useful in both
modeling protein motions and in interpretation of the
experimental results.29,32,41–53 Macromolecular motions
can be often characterized by a long (nanosecond or
beyond) time-scale, and it has been suggested54,55 that it
may be possible to identify one or a few low-frequency
normal modes, which would connect conformational end-
points. However, in certain cases (e.g., calmodulin motion)
the amplitudes for the actual (observed) motion and the
normal modes displacement vectors may differ by several
orders of magnitude. For these cases, our theory may only
be valid in interpretation of the motion initiation stage and
in analysis of facilitating factors causing the actual mo-
tion.

In this paper we apply normal mode analysis to the
study of protein motions. Fundamentally, we chose normal
modes over MD and other related computational tech-

niques because normal mode analysis gives a concise
description of a motion (in terms of a small number of
modes) that is ideal for subsequent statistical tabulation.
Also, the application of normal mode analysis techniques
to �4,000 conformational changes is much less expensive
than most of the competing techniques.

In this analysis, the question we are trying to answer is
to what degree the direction of the observed motion (a set
of vectors connecting the structure pair) occurs along with
the displacement vectors of the lowest normal modes for
the initial conformation. This may indirectly provide an
insight about how much protein dynamics is dominated by
anharmonic contributions, even though it was not a goal of
this work to develop any such quantitative anharmonicity
measure. Since the structure pairs may not always be
available, one of the main motivations behind this work
was to see if it were possible to develop an inexpensive
motion analysis technique capable of assessing the direc-
tion of the actual protein motion.

Our normal mode analyses are related to the “Essential
Dynamics” (ED) methods of Berdensen56,57 on normal
modes, involving a singular value decomposition analysis
of normal mode atomic displacements and how they relate
to experimentally solved conformations. Essential Dynam-
ics can also be applied to other dynamical approaches that
generate displacements including techniques that do not
make a harmonic assumption such as MD simulations or
experimentally determined ensembles of structures.56 How-
ever, our analysis is in many ways formally different, and
we apply it within a database framework. Many of the
problems customarily found in ED analyses also apply:
e.g., the superfluous rotational and translational differ-
ences must be eliminated by superimposing the experimen-
tal structures to fix at least one domain; in the process, the
motion’s screw-axis may be characterized.58 Previously,
we developed web software tools to solve these problems in
a different way using purely experimental information.6

Here, we analyze a comprehensive database of thousands
of putative protein motions, whereas existing publications
limit their scope to single proteins or databases specific to
certain types of proteins.

MATERIALS AND METHODS
Data Sources
Full outlier set

To identify a large dataset of proteins with conforma-
tional changes, Wilson et al.59 performed automatic pair-
wise sequence, structure, and function comparisons on
about 30,000 pairs of protein domains constructed accord-
ing to scop fold classification.60–65 Using this set of
alignments, we were able to identify �4,400 pairs of likely
protein motions. We call this set the “full outlier set” (the
definitions of these terms are shown in Table IA). Its
construction is described in detail in Figure 1. Basically,
we plotted RMS structure alignment scores against se-
quence percent identity for the �30,000 scop domain pairs
aligned in Wilson et al.59 We binned the plot into one-
percent-wide bins. For each bin, we computed a mean RMS
and standard deviation. Points lying more than two stan-
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TABLE I. Definitions Table†

A. Term Definition or URL lcation

Macromolecular motions http://bioinfo.mbb.yale.edu/MolMovDB
database Used for classification and annotation of motions in outlier database

SCOP database http://scop.mrc-lmb.cam.ac.uk/scop/
Used for classification and annotation of motions via SCOP extension technique.

Wilson et al.59 set As shown in Figure 1, a set of 30,000 of SCOP identifier pairs was constructed for Wilson et al.59 This was then
separated into two sets: the 30,000 pair “Wilson et al.” set used in that paper, and the “Full Outlier Set”
(described immediately below), which we use in this text. See the caption to Figure 1 for more information.

Full outlier set Text file
http://bioinfo.mbb.yale.edu/molmovdb/datasets/outliers.txt
Pairs of proteins (SCOP domains) whose structural similarity score more than two standard deviations above

the mean structural similarity for their sequence similarity. See the caption to Figure 1 for more
information on the construction of this set.

Workable outlier set This is the subset of the full outlier set on which both morph server processing and normal mode analysis were
successful. It consists of 3,814 motion pairs.

Manual training set This is the training set that was produced by examining the SCOP domains in the outlier set for matches
against PDB IDs in the set of manually classified motions in the Database of Macromolecular Motions.1

Matches received the same classification as in the database, which were determined by manual
examination of the specific literature. Thus, confidence in the accuracy of these classification is high.

Extended training set The outlier set was searched for pairs that shared the same SCOP fold family as pairs classified in the Manual
Training Set; these then received an identical classification. We found empirically that, because proteins
that share the same SCOP fold often share similar mechanisms, proteins with the same SCOP fold have a
high probability of undergoing similar conformation change and, hence, sharing the same motion size
classification. Consequently, these classifications should be accurate but are less reliable than the
classification in the Manual Training Set.

Classified set This is simply the entire workable outlier set (minus those already classified in the extended training set) run
through the automatic classifier defined by the decision tree, which we produced when we analyzed the
extended training set.

B. Term Definition

Mode concentration This is discussed extensively in the text. It is a simple measure of how much the protein’s motion is
concentrated into any single low-frequency normal mode.

No. of CAatoms Number of C-alpha atoms in the protein
Residuals This is the Euclidean length of the residual difference between the atomic displacements between protein

pairs and the SVD fit of the normal modes to the atomic displacements (in Angstroms)
Norm0 Maximum Value of the SVD displacement vector (unitless)
Norm1 Mean of the SVD displacement vector (unitless)
Norm2 Root-mean-square of the SVD displacement vector (unitless)
Frequency The frequency in relative units of the normal mode with the highest SVD coefficient.
Ranking overlap Rank of the normal mode with the largest overlap (unitless). Overlap is defined in the caption to Figure 2.
Maximum overlap Value of the largest overlap (unitless quantity). Overlap is defined in the caption to Figure 2.
Size of 2nd core This is the number of residues in the 2nd core (the 2ndCoreCAs key in the database). This is typically related

to the size of the protein, although in poorly matched protein pairs the number can be less.
Trimmed RMS This is the trimmed RMS score, as defined in Wilson et al.59 and Gerstein and Krebs.1

Maximum CA
movement

This is the largest movement (in Angstroms) of any residue during the course of the motion, as computed by
the Morph Server.

Number of atoms This is the number of atoms in the protein as computed by the Morph Server. (Atoms in non-standard amino
acids are excluded). This is a measure of the size of the protein.

Energy of frames The Morph Server computes energies for the various intermediate structures. These show a strong
relationship to the sequence similarity between the two structures, and are indicators of how “good” a given
morph is. The relationship of intermediate energies (energy of 4th frame, for example) with endpoint frames
(energy of 8th frame, for example) can sometimes provide a rough sense of activation energies.

Translation In hinge motions, the approximate translation (in Angstroms) the moving domains undergoes in the course of
the motion, as automatically computed by the morph server. (This number is also computed for non-hinge
motions, where it is less meaningful.)

Hinge rotation In hinge motions, the rotation (in degrees) of the moving domain around the screw axis in the course of the
motion, as automatically computed by the morph server. (This number tends to be small in non-hinge
motions.)

Number of hinges The number of putative hinges, or flexible linkages involved in the motion, as determined by the Morph Server
Traditional RMS This is simply the traditional RMS score between the domains.
Rank of Norm0 mode This is a software index that identifies the normal mode contributing the most to the motion as computed

within our SVD framework. (The same normal mode that sets norm 0.)
†Section A lists the various data sources used in this paper, giving the location of each, along with a brief explanation of its use or importance.
Section B lists definitions of the key statistics and other terms used in subsequent tables as well as in the text of the paper.
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dard deviations above the mean were removed from the
dataset and used to generate a new dataset, the full outlier
dataset, which ultimately consisted of 4,400 such pairs.
This set is intended as a comprehensive sample of protein
flexibility in the PDB.

Workable outlier set

We ran the full outlier set through our protein morphing
server.6 We placed the resulting database of pre-processed
PDB files, morph statistics, and movies, on the World Wide
Web, organized by their scop fold classification. The new
automated approach was able to process and generate
several thousand new morph movies. As described below,
the morph server acted as a filter, eliminating about 600
pairs in the full outlier set that corresponded to non-
physical motions. Next, we applied the normal mode
analysis described below on the successfully morphed
pairs, to produce a set of about 3,800 motion pairs, the
“outlier set”. In this paper, we concentrate exclusively on
this new “workable outlier set” data.

Manual set

In order to perform feature analysis, we classified two
subsets of the workable outlier set (the “manual set” and
the “extended set”) into the classification schema of the
Database of Macromolecular Motions1 (“fragment,” “do-
main,” “subunit,” “complex” on the basis of size and

“hinge,” “shear,” “neither hinge nor shear,” and “unclassifi-
able” on the basis of packing). Further details about this
classification may be found in our previous paper.1

For the “manual set,” we performed a database merge of
the “outlier set” against the previously published set of
manually classified motions in the Database of Macromo-
lecular Motions,1 the “1998 motions.” The PDB identifiers
in each motion pair in the outlier set were checked for
matches against the PDB identifiers associated with the
1998 motions. When a match was found (meaning the
protein had been manually classified), the motion pair was
given the same classification as its constituent protein had
been given in the database. Two hundred and forty-five
motion pairs met this criterion and were classified accord-
ingly. Classifications in this manual training are expected
to be accurate. (There was, however, one issue in applying
this merge: GroEL is classified both as a subunit and a
fragment motion. Because the Morph server analyzes
single domains, not entire subunits, the fragment classifi-
cation was used in this isolated case.)

Extended set

To enlarge the training data for the supervised machine
learning analysis, we constructed a second, larger training
set (the “extended set”). For a variety of physical reasons,
proteins sharing the same fold family generally share a
similar motion classification—in particular, we have ob-

Fig. 1. Construction of full outlier set. The crosses on this page illustrate motion pairs plotted in terms of
RMS structure alignment scores against sequence percent identity for the 30,000 SCOP domain pairs Wilson
et al.59 identified from the PDB. Data points were binned into one-percent-wide bins, and the mean RMS and
standard deviation in each one-percent-bin was computed. Points more than two standard deviations above
the mean were removed from the original 30,000 pair dataset (red crosses) and used to compose the full outlier
set (green crosses), which ultimately consisted of 4,400 such pairs.
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served this in our manual surveys of motions.1,6,60,66,67

Consequently, we constructed this set under the assump-
tion that domains sharing a fold usually share a motion
classification. The outlier set is constructed in such a way
that both pairs always belong to the same fold family. It
was, therefore, necessary only to determine the scop fold
classification60,65 for each of the 245 motion pairs in
manual training set and then assign the classification in
the manual set to the entire scop fold family. Pairs in the
outlier set belonging to this scop fold family then simply
received the family’s classification. In this way we identi-
fied a set of 1,670 motions, which we call the “extended
training set.” This set of classifications, although poten-
tially less accurate than the manual training set, is still
quite useful.

Preprocessing With Morph Server

We analyzed 3,814 proteins using this method from the
full outlier set. Previously,6 we modified the X-PLOR
package68 to homogenize the stored coordinates, a non-
trivial problem.69,70 Filling-in of missing non-hydrogen
coordinates was necessary for the energy minimization
subsystems to work robustly with a large number of PDB
files and ensured consistent numbering of atoms so the
PDB files for the starting and ending conformations had to
be pre-processed (“homogenized”) by the Morph Server.6

Only pairs of protein conformations for which the Morph
Server had successfully produced a movie were considered;
this had the effect of filtering out pairs unlikely to involve a
true motion, although no doubt some pairs that did not
represent a true biological motion nevertheless did generate
a plausible morph. The Morph Server also removes overall
rotation and translation motions from the input structure.

High-Throughput Normal Mode Analysis of the
Outlier Set

We used MMTK71 to carry out normal mode analysis on
the pre-processed PDB file pairs. The numerical Python
module72 made the linear algebra computations. A master
Perl73 script fed database information to the slave Python
MMTK module. The results reported here were performed
by computing the normal modes of the starting structures
in each pair. Reversing the calculations by computing the
normal modes of the ending structures did not appreciably
alter the results.

Finding the normal modes themselves dominated the
time and memory requirements of our analyses. In order to
process the larger proteins in our database, we approxi-
mated each residue as a single, virtual atom centered at its
C-� coordinate and selected the corresponding standard
force field in MMTK.71 This made the memory require-
ments of the normal mode analysis tractable on our
systems. To further accelerate the computations, we re-
stricted MMTK to compute only the twenty lowest-
frequency normal modes.

We used the MMTK deformation force field model. In
this model, the energy is computed as the difference
between some displaced model and the experimental struc-
ture using the formula:

E1 �
1
2 �

j � 1

N

k�Ri j
(0)�� �Ri j

(0) � di � dj� � �Ri j
(0)� 	2 (2)

where k is a constant, Rij
(0)

is the vector from atom i to atom j
in the experimental structure, di is the vector between the
atom i in the displaced structure and the same atom in the
ground-state experimental structure.

Each calculation averaged 20 seconds per protein pair
on a 450-Mhz Pentium III processor with 0.7 Gigabytes of
RAM running the Red Hat Linux operating system. An
average analysis took about 100 Megabytes of memory to
invert the matrix.

Theoretical Approach for Analysis of Normal Mode
Statistics

We computed a number of key statistics on the normal
modes (Table IB), which we describe here.

Analysis of observed motion

The lowest frequency normal modes determined by Nor-
mal Mode Analysis may be represented as an m 
 n matrix
A, where m is three times the number of atoms in the system
(one entry for each Cartesian axis), and n is the number of
normal modes of interest. In this paper, n is twenty.

Imagine a vector v� of length n, specifying some interesting
linear combination of normal modes. Then Av� is a vector of
length m, representing a trajectory of atoms. If we let the
vectors ci and cf be the vectors of length m giving the positions
of the m / 3 atoms in conformations Ci (starting) and Cf

(ending), respectively. We determined these from our data-
base of motion, which has such data, chiefly derived from
experimental sources such as X-ray crystallography.

If we now define a new vector b � cf � ci, or the
differences between the ending and starting positions of
each of the atoms of the structure along all three Cartesian
axes, then we can find optimal v so that

Av̄ � b̄ (3)

In the normal case where dim v� � 3N � 6, this
represents an over-determined system of linear equations,
and may be solved by an appropriate numerical technique
for solving linear least squares, such as Single Value
Decomposition (SVD).74 In practice, this is a very quick
calculation, nearly instantaneous to the user.

Analytic Measures
Overlap of each mode with direction of motion

For every motion pair, we computed the overlap of each
normal mode against the vectors giving the differences
between the structures corresponding to the motions. For one
particular atom, we define the “overlap” Oij as the cosine of
the angle between the mode and the direction of motion,

Oij�
b̄i � f̄ij

�b̄i� � �f̄ij�
. (4)

In the above formula Oij is represented as a normalized
dot product between some reference vector b̄i (in this case,
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the displacement between the PDB structures of the
motion pair in question) and f̄ij, the jth normal mode
displacement vector for the same atom.

For the ensemble of atoms in a structure, we can define
“average overlap” Oj as the mean overlap averaged over all
N atoms in the structure, i.e.,

Oj �
1
n �

i � 1

n

Oi j. (5)

We can also calculate an average absolute value of the
cosine 1/ni�1

n �Oij�, which provides a quantitative mea-
sure of the first-order overall deviation for a particular
normal mode from the observed motion. The larger values
of this quantity indicate that a given mode’s atomic
displacement vectors are more similar in directionality to
the vectors giving the differences between the PDB files.
The mode of “maximum overlap” is the mode with the

greatest “absolute average overlap” and most matches the
protein motion’s directionality.

S-correlation

A means of quantifying the similarity of the displace-
ment between the PDB structures and the normal mode
displacement vectors can be also achieved by calculating
the following quantity,

s � ��
j � 1

n

j 2Oj
2 � � �

j � 1

n

jOj
2�2

(6)

where Oj is defined as above. This formula*, directly
adapted from Hinsen’s work39 with a lowering of dimen-
sionality, gives the s-correlation between the reference
vector and the set of normal mode displacement vectors.
This may be used to provide an overall quantitative
measure of the similarity in directionality between the
observed displacements and those of the various normal
modes. Thus, the convention used to number the modes
does not affect s-correlation in a meaningful way.

In the present work, we also utilize an interesting
mathematical property of this statistic: its positive definite
values imply that the displacement vectors from only the
lowest two normal modes may coincide with the direction
of the observed motion.

Mode concentration

Based on the fit of the modes to the observed motion, we
calculate a number of statistics that show the degree to

*This formula is identical to the one in Hinsen’s work. However, one
may also find useful a related statistic, a direct analog of the second
order momentum:

��
j � 1

n

j 2Oj
2 � � �

j � 1

n

jOj�2

Fig. 2. a: Analysis of the normalized mode-concentration statistic to
assess the normal modes populations. The center of the normalized
mode-concentration histogram is traced to the number of available states
(modes) using the Boltzmann logarithmic dependence relation. b: Histo-
gram of norm0 statistic calculated over all entries in our database. The
plot clearly shows that the large contributions (over 50%) from a single
normal mode are not uncommon.

Fig. 3. Our software places the twenty lowest-frequency normal
modes in an array, thereby assigning each normal mode an index, from
zero to nineteen. Increasing index numbers identify higher-frequency
normal modes. We computed the overlap of each normal mode and
recorded the index of the normal mode of greatest overlap. We plotted the
number of times each index had greatest overlap in this histogram.
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which the fit is dominated by a single mode. We define
norm zero (“norm0”) as simply the weight of the largest
component (i.e., the largest value in the vector v), the one
norm as the average component (“norm1”), and the two
norm as simply the Euclidean mean (“norm2”) of the
component’s weight.

All of these statistics give a measure of the degree to
which the vector v is dominated by a single component. In
somewhat more sophisticated fashion, we can measure
this using information theory approaches.

In coding theory, information content is related to the
negative entropy of a physical system. It specifies how much

Fig. 4. Relationship between protein size and maximum overlap. To make the effect clearer, the y-values
were binned into groups of 15 residues. The mean and standard deviation were computed for the values in
each bin, with the results plotted. Each heavy horizontal bar indicates the mean in each bin, while the vertical
bars indicate two standard deviations above and below the mean.

Fig. 5. Correlation between the frequency of the mode of maximum overlap and protein size.
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information is stored in a given set of numbers, and is
typically used to compare the efficiencies of compression
techniques. Therefore, once v� has been obtained, a statistic
may be computed to summarize the information contained in
the vector v� :

I � �
i � 1

n

� �vi�ln�vi� (7)

This statistic specifies how much movement is concen-
trated in any given mode, hence its name, “mode concentra-
tion.”

We can normalize I to unity by dividing it over its
maximal value, corresponding to the uniform movement
distribution over all available modes, and obtain the
“percentage mode concentration” statistic Ĩ, that specifies
the degree to which a given motion is localized within a few
modes relative to the uniform distribution (maximal disor-
der). As mentioned above, one can also directly relate
information content (and, thus, also our normalized infor-
mation content) to the well-known Boltzmann formula
S � k In N for the entropy (measure of the system

disorder in statistical mechanics) expressed through the
number of states N available to the system, i.e.,

Ī�ln N (8)

The normalization ensures that Ī approaches zero if all
movement is concentrated in only one normal mode (N �
1), whereas the value of Ī � 1 corresponds to the even
distribution of motion over all available normal modes
(i.e., to the maximal value of I computed from Eq. (7)).

RESULTS
Application of These Statistics to the Outlier
Dataset

Figures 2 through 6 illustrate some properties of the
above statistics on the outlier dataset.

Figure 2 shows distributions of the normalized mode
concentration and norm0 statistics. Using the logarithmic
dependence Eq.(8) of the normalized mode concentration
with respect to the number of available modes, one can
arrive at the number of most heavily involved modes. This
would be the value of N, for which the value of Ī is most
frequently observed. The observed peak in the normalized

TABLE II. Summary of New Statistics Added to Morph Server†

Key No. of CAatoms Residuals Norm1 Norm2 Frequency Ranking overlap Maximum overlap

Mean 220 480 �0.001 540 3.1 2.7 0.0031
Std. dev. 110 660 0.051 360 0.89 3.6 0.005
Minimum 39 0.23 �0.14 15 4.2E–08 0 4.7E-5
Maximum 1,000 8,800 0.15 2,700 8.6 19 0.11
Median 210 330 0.00093 520 3.1 1 0.0017
†This table presents mean, standard deviation, minimum, maximum, and median values for the new statistics that were added to the database
following normal mode analysis of approximately 3,800 motion pairs in the database. The statistics are defined in Table IB.

Fig. 6. Relationship between mode concentration and norm0 (concentration of motion in the mode with
greatest concentration).
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mode-concentration histogram at 0.6 [Fig. 2(a)] suggests
that the actual direction of the motion lies most often along
the direction of two modes. Analysis of norm0 histogram
[Fig. 2(b)] further confirms this finding: the most com-
monly observed weight of the major contributing mode lies
within the range 0.5–0.6 (i.e., there is usually one mode
that dominates the motion fit) whereas the normal mode
approximations with values of norm0 below 0.4 are quite
rare (the latter would imply that there are usually more
than two mostly contributing normal modes exist for each
normal mode fit).

Figure 3 shows that most often the low-frequency modes
tend to be the ones with maximum overlap with the actual
direction of motion (Fig. 3). There is also a relationship
between protein size (measured in number of residues),
mode frequency, and maximum overlap (Figs. 4 and 5).

Protein size (measured in number of residues) is nega-
tively correlated to maximum overlap (Fig. 4). Larger
proteins have additional fragments that can be involved in
a motion and, hence, additional degrees of freedom, decreas-
ing the overlap between the tested normal modes and the
observed motion. (An alternative explanation for this

Fig. 7. Decision tree concepts. Two decision trees (not shown here) were generated by S-Plus (MathSoft,
Inc.) using default parameters from the 245-element manual training set and the 1,670-element extend training
set (defined in Table IA). These trees classify motions as “fragment,” “domain,” or “subunit.” The decision tree
associated with the extended training set defined an automatic classifier (implemented in Perl by examination
of the tree) that produced the “classified set.” This figure shows the conceptual operation of decision trees. At
each node, the classifier chooses either the right or left branch, respectively, depending on whether or not the
node’s associated statistic is greater than the value associated with the node. Inset: Structure of an actual
decision tree is shown in miniature. The classifier follows the decision tree until it reaches one of the terminal
leaves, where a classification is made. A “training set” providing a set of examples and associated “correct”
classifications is run through the S-Plus program, which generates a decision tree that can classify the training
set correctly.

690 W.G. KREBS ET AL.
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observation is that the various approximations used in
normal modes approximation work less well for larger
proteins.) Maximum overlap decreases with protein size,
but the effect is not dramatic, so it should be possible to
design a standard analysis that works well on proteins
comparable to those in our database.

Increasing protein size (in residues) corresponds to
modes of maximum overlap of decreasing frequency (Fig.
5). A standard analysis concerned with larger proteins
may need to consider more low-frequency normal modes
than would suffice for smaller proteins. It would be

desirable, given a protein of specific size, to deduce a
frequency cut-off value, above which normal modes could
be expected to be less useful in an analysis of motion.
Analyses of individual proteins in the literature support
the existence of such a cutoff 46,75 showing a slight depen-
dency on the force field used. Our results show that it is
possible to determine such a cut-off frequency statistically
from our database (Fig. 5) and thereby empirically deduce
a reasonable number of normal modes to use in a given
type of analysis. Researchers using an identical force field
to the one used in this study may consult Figure 5 directly
to determine the appropriate cut-off for their particular
protein; researchers using slightly different force fields or
dynamical methods may wish to obtain access to the
database to compute a cut-off value appropriate for their
specific dynamical analysis.

Validation of Mode Concentration With Feature
Extraction Techniques

The physical and information theory basis of the mode
concentration statistic suggested it might be useful in
classification problems. Subsequent analysis via machine
learning techniques (below) supports this.

Artificial intelligence feature analysis techniques, par-
ticularly supervised machine learning, provide one way of
validating the usefulness of our mode concentration statis-
tic. In general, the concept of supervised machine learning
is that the system is “taught” to classify a given set of
inputs by being given a “training set” that matches a
sample set of inputs to a correct set of outputs.76

As described above, we created the manual and ex-
tended data sets as training sets to perform feature
analysis. Using supervised machine learning tech-
niques,76,77 we constructed two decision trees in S-Plus
(MathSoft, Inc.) using the software’s default parame-
ters77–79 (one for each of the two training sets) to classify
the statistics, including the new ones (Table II), in the
morph server.6 The use of S-Plus to construct decision
trees from a specific training data set is a straightforward
operation.

Decision trees, a form of supervised machine learning,
attempt to partition the examples in the training set based

TABLE III. Comparison of the Percentages and Absolute Counts of
Domain, Fragment, and Subunit Motions in the Classified, Extended,

and Manual Training Sets†

Motion size

Predicted Observed

Classified set Extended set Manual set

Count Percent Count Percent Count Percent

Domain 2,165 95 1549 93 180 73
Fragment 94 4 107 6 50 20
Subunit 14 1 14 1 15 6
Totals 2,273 100 1670 100 245 100
†Definitions of the different sets in the header are given in the text as well as Table IA. “Count” gives
the number of times the particular motion size classification (Domain, Fragment, and Subunit) occurs
in that dataset. “Percent” is the percentage out of the total number (“Total”) of domain, fragment, and
subunit motions in the dataset. The two columns on the left for the auto-classified set (“count” and
“percent”) represent a prediction made by an auto-classifier; the remaining columns represent
observations.

TABLE IV. † Automatic Ranking of Database Statistics via
Decision Tree Feature Extraction

Database statistic

Depth in tree
built upon

extended set

Depth in tree
built upon
manual set

Size of 2nd core 1 1
Trimmed RMS 3 2
Maximum CA movement 5 2
Number of atoms 4 3
Mode concentration 6 4
Energy of 2nd frame 6 4
Translation 4 5
Hinge rotation (degrees) 4 6
Number of hinges 6
Energy of 3rd frame 6
Norm0 (maximum value) 5 9
Energy of 9th frame 3
Number of residues 5
Frequency 5
Residuals 6
Norm1 (average norm) 6
Rank of Norm0 mode 7
Traditional RMS 8
Norm2 (Euclidean norm) 8
Energy of 4th frame 9
Energy of 9th frame 9
Energy of 8th frame 13
†This table indicates the earliest depth of the supervised machine
learning decision tree each statistic first occurs, thus quantifying the
relevance of each statistic to the particular motion property at hand
(“fragment,” “domain,” or “subunit” motion, in this case).
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on the values of individual statistics (Fig. 7). In the actual
decision tree, each statistic used in the classification
decision appears in at least one branch junction. Features
more relevant to the classification problem tend to appear
earlier in the decision-making process, corresponding to a
higher-level branch in the trees. By recording the depth
any statistic first appears in the decision tree, decision
trees may be used for feature analysis (Table III). Mode
concentration ranks prominently with a low depth, indicat-
ing that it appears high in the tree and is, therefore, useful
for classifying motions.

Using appropriate, simple physical and mathematical
concepts (normal mode analysis, singular value decomposi-
tion), we postulated several statistics (mode concentration
and the various analytic norm measures) and confirmed
our initial hypotheses using artificial intelligence tech-
niques. These culled the morph server’s6 output of 36
physically-motivated statistics down to a set of nine “essen-
tial” statistics that proved most useful in this particular
classification problem (Table IV), which agree roughly
with our own sense of the statistics most related to motion
size. Similar databases of heterogeneous biological statis-
tics may be “distilled” from a larger body of experimental
data with these and similar techniques. In this case, the
automatic classification features of the decision trees are
only a side benefit. Feature analysis confirmed our earlier

intuition that mode concentration can be useful for classi-
fying motions.

Depending on the supervised machine learning tech-
nique used (decision trees), larger training sets can some-
times produce a more accurate automatic classifier than a
smaller classifier. For this reason, it is possible that an
automatic classifier produced from the larger extended
training set may classify more accurately than one pro-
duced from the smaller, more accurate manual set, al-
though this may seem counterintuitive. Comparing the
results produced by the manual and the extended training
sets thus will serve as a useful check.

Web and Database Integration

We used the results of our decision tree analysis (Table
III) to improve the ordering and presentation of statistics
in Macromolecular Motions. Database web reports (http://
molmovdb.org). In addition, a new web tool (Fig. 8) on this
site graphically depicts output from the normal mode
analysis as well as older experimental information.

The new data from normal mode analysis have been
integrated into both the Macromolecular Motions Data-
base and the Partslist Database (http://partslist.org/) as
well.80 This allows comparison by fold of motion and other
data by a number of techniques, including regression
analysis. Interactive users can test a number of statistics

Fig. 8. Output of new set of Web tools associated with normal mode analysis that the user may request on any protein for which a PDB structure file is
available. The URL for this server is http://www.molmovdb.org; these features may be accessed by browsing to a specific movie and selecting one of
these analyses from the menu. a: The parts of the protein that actually move, as calculated from comparison of the starting and ending PDB structures for
the motion. Areas that move are colored in red, while areas that remain stationary are colored in blue. The user may compare these three panels to
deduce structural information. Hinge locations involved in the motion may be deduced, as these are highly flexible regions (as identified by a and b)
located near the moving domains (show in red in c). The specific protein example shown is that of an immunoglobulin elbow joint motion (morph ID
d2fb411-dlafv11). b: Performs a normal mode flexibility analysis on the structure. Regions that are more flexible are colored in red, while less flexible
regions are colored in blue. c: Similar information, using experimental temperature factors supplied in the PDB file, if available.
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for correlation against the new data, as well as identify
outlying folds that do not maintain the normal regression
pattern by mouse over. Figure 9 gives a screen shot of
motions ranked by average mode concentration in the
Movie Gallery page of the Macromolecular Motions Data-
base, which will show the animation of the corresponding
motion on click.

DISCUSSION

Comprehensive structural studies within a database
framework, such as the one described here, can comple-
ment more traditional computational studies of single
molecules in a number of ways. The most immediate
benefit is that a database study makes more data available
to researchers, and can sometimes make more general
statements about trends and patterns in the results than
would be possible from similar studies on a smaller sample

of macromolecules. A disadvantage of the type of database
study performed here is that they require greater computa-
tional resources than equivalent studies on single macro-
molecules. Also, the implementation of automatic methods
to handle a large class of macromolecular may require
somewhat greater algorithmic sophistication since steps
requiring manual processing are less desirable when deal-
ing with a large number of structures.

Researchers who have developed their own, novel compu-
tational structural studies may expand their computations
from analyses of single molecules to a comprehensive
study of an entire structural database, such as the Data-
base of Macromolecular Motions. The results of such
structural studies constitute databases in their own right.
Artificial intelligence techniques can then be applied to
such derived databases to append additional, useful statis-
tics, “distill” a derived database down to a set of “essential”

Fig. 9. Screenshot of the Movie Gallery web page. This shows a Movie Gallery page in the Macromolecular
Motions Database that ranks different motions according to the average mode concentration.

DATABASE OF MACROMOLECULAR MOTIONS 693

 10970134, 2002, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prot.10168 by C

ornell U
niversity, W

iley O
nline L

ibrary on [27/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



statistics, as well as construct automatic classifiers. This
has obvious practical applications; e.g., pharmaceutical
companies might mine existing biological databases and
apply existing or new algorithmic techniques (e.g., vari-
ants on normal mode analysis) to generate derived data-
bases describing potential drug targets within a statistical
framework. Artificial intelligence techniques can be used
to extract key features and empirically assess the validity
of new statistical models.

CONCLUSIONS

We have developed a framework that allows for a
statistical study, in combination with our Database of
Macromolecular Motions, of the importance of normal
mode vibrations in biologically significant macromolecular
motions. A statistic calculated from our analysis of normal
mode displacements, mode concentration, is corroborated
by feature selection as a useful statistic in classification.
Feature selection techniques can be used to “summarize”
databases of experimentally derived statistics into an
especially salient set of “essential” statistics.

Examining the relationship between the aggregate direc-
tionality of the normal modes and structures’ conforma-
tional change through a statistic such as mode concentra-
tion can be used to classify the motion (“fragment,”
“domain,” or “subunit”). Normal modes have already been
used58 to identify dynamic protein domains. An analysis of
the distribution of low-frequency normal mode trajectories
should provide information about the type of protein
motion and size of the domains involved in the motion. Our
data empirically support earlier results46 that analysis of
only a small number of low-frequency modes should suffice
for qualitative analysis of protein dynamics. The database
can also be used to determine statistically the cut-off for
normal modes computed using different force fields.

In addition to being made available through the Macro-
molecular Motions Database, our new data sets are inte-
grated into the external Partslist database.80 We have
provided additional web tools associated with this paper
that allow molecular biologists to perform flexibility analy-
sis on structures with putative motions, thereby identify
key residues involved in the motion, and compare the
results with similar analysis on the over 4,000 new
motions now available in the database.
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